qemu/target/riscv/pmp.c
Nicolas Pitre 2e98339918 target/riscv/pmp: guard against PMP ranges with a negative size
For a TOR entry to match, the stard address must be lower than the end
address. Normally this is always the case, but correct code might still
run into the following scenario:

Initial state:

	pmpaddr3 = 0x2000	pmp3cfg = OFF
	pmpaddr4 = 0x3000	pmp4cfg = TOR

Execution:

	1. write 0x40ff to pmpaddr3
	2. write 0x32ff to pmpaddr4
	3. set pmp3cfg to NAPOT with a read-modify-write on pmpcfg0
	4. set pmp4cfg to NAPOT with a read-modify-write on pmpcfg1

When (2) is emulated, a call to pmp_update_rule() creates a negative
range for pmp4 as pmp4cfg is still set to TOR. And when (3) is emulated,
a call to tlb_flush() is performed, causing pmp_get_tlb_size() to return
a very creatively large TLB size for pmp4. This, in turn, may result in
accesses to non-existent/unitialized memory regions and a fault, so that
(4) ends up never being executed.

This is in m-mode with MPRV unset, meaning that unlocked PMP entries
should have no effect. Therefore such a behavior based on PMP content
is very unexpected.

Make sure no negative PMP range can be created, whether explicitly by
the emulated code or implicitly like the above.

Signed-off-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <3oq0sqs1-67o0-145-5n1s-453o118804q@syhkavp.arg>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2022-07-03 10:03:20 +10:00

655 lines
18 KiB
C

/*
* QEMU RISC-V PMP (Physical Memory Protection)
*
* Author: Daire McNamara, daire.mcnamara@emdalo.com
* Ivan Griffin, ivan.griffin@emdalo.com
*
* This provides a RISC-V Physical Memory Protection implementation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "cpu.h"
#include "trace.h"
#include "exec/exec-all.h"
static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
uint8_t val);
static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
/*
* Accessor method to extract address matching type 'a field' from cfg reg
*/
static inline uint8_t pmp_get_a_field(uint8_t cfg)
{
uint8_t a = cfg >> 3;
return a & 0x3;
}
/*
* Check whether a PMP is locked or not.
*/
static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
{
if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
return 1;
}
/* Top PMP has no 'next' to check */
if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
return 0;
}
return 0;
}
/*
* Count the number of active rules.
*/
uint32_t pmp_get_num_rules(CPURISCVState *env)
{
return env->pmp_state.num_rules;
}
/*
* Accessor to get the cfg reg for a specific PMP/HART
*/
static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
{
if (pmp_index < MAX_RISCV_PMPS) {
return env->pmp_state.pmp[pmp_index].cfg_reg;
}
return 0;
}
/*
* Accessor to set the cfg reg for a specific PMP/HART
* Bounds checks and relevant lock bit.
*/
static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
{
if (pmp_index < MAX_RISCV_PMPS) {
bool locked = true;
if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
/* mseccfg.RLB is set */
if (MSECCFG_RLB_ISSET(env)) {
locked = false;
}
/* mseccfg.MML is not set */
if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) {
locked = false;
}
/* mseccfg.MML is set */
if (MSECCFG_MML_ISSET(env)) {
/* not adding execute bit */
if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) {
locked = false;
}
/* shared region and not adding X bit */
if ((val & PMP_LOCK) != PMP_LOCK &&
(val & 0x7) != (PMP_WRITE | PMP_EXEC)) {
locked = false;
}
}
} else {
if (!pmp_is_locked(env, pmp_index)) {
locked = false;
}
}
if (locked) {
qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
} else {
env->pmp_state.pmp[pmp_index].cfg_reg = val;
pmp_update_rule(env, pmp_index);
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpcfg write - out of bounds\n");
}
}
static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
{
/*
aaaa...aaa0 8-byte NAPOT range
aaaa...aa01 16-byte NAPOT range
aaaa...a011 32-byte NAPOT range
...
aa01...1111 2^XLEN-byte NAPOT range
a011...1111 2^(XLEN+1)-byte NAPOT range
0111...1111 2^(XLEN+2)-byte NAPOT range
1111...1111 Reserved
*/
a = (a << 2) | 0x3;
*sa = a & (a + 1);
*ea = a | (a + 1);
}
void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
{
uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
target_ulong prev_addr = 0u;
target_ulong sa = 0u;
target_ulong ea = 0u;
if (pmp_index >= 1u) {
prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
}
switch (pmp_get_a_field(this_cfg)) {
case PMP_AMATCH_OFF:
sa = 0u;
ea = -1;
break;
case PMP_AMATCH_TOR:
sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
ea = (this_addr << 2) - 1u;
if (sa > ea) {
sa = ea = 0u;
}
break;
case PMP_AMATCH_NA4:
sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
ea = (sa + 4u) - 1u;
break;
case PMP_AMATCH_NAPOT:
pmp_decode_napot(this_addr, &sa, &ea);
break;
default:
sa = 0u;
ea = 0u;
break;
}
env->pmp_state.addr[pmp_index].sa = sa;
env->pmp_state.addr[pmp_index].ea = ea;
}
void pmp_update_rule_nums(CPURISCVState *env)
{
int i;
env->pmp_state.num_rules = 0;
for (i = 0; i < MAX_RISCV_PMPS; i++) {
const uint8_t a_field =
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
if (PMP_AMATCH_OFF != a_field) {
env->pmp_state.num_rules++;
}
}
}
/* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
* end address values.
* This function is called relatively infrequently whereas the check that
* an address is within a pmp rule is called often, so optimise that one
*/
static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
{
pmp_update_rule_addr(env, pmp_index);
pmp_update_rule_nums(env);
}
static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
{
int result = 0;
if ((addr >= env->pmp_state.addr[pmp_index].sa)
&& (addr <= env->pmp_state.addr[pmp_index].ea)) {
result = 1;
} else {
result = 0;
}
return result;
}
/*
* Check if the address has required RWX privs when no PMP entry is matched.
*/
static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
target_ulong mode)
{
bool ret;
if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
if (MSECCFG_MMWP_ISSET(env)) {
/*
* The Machine Mode Whitelist Policy (mseccfg.MMWP) is set
* so we default to deny all, even for M-mode.
*/
*allowed_privs = 0;
return false;
} else if (MSECCFG_MML_ISSET(env)) {
/*
* The Machine Mode Lockdown (mseccfg.MML) bit is set
* so we can only execute code in M-mode with an applicable
* rule. Other modes are disabled.
*/
if (mode == PRV_M && !(privs & PMP_EXEC)) {
ret = true;
*allowed_privs = PMP_READ | PMP_WRITE;
} else {
ret = false;
*allowed_privs = 0;
}
return ret;
}
}
if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
/*
* Privileged spec v1.10 states if HW doesn't implement any PMP entry
* or no PMP entry matches an M-Mode access, the access succeeds.
*/
ret = true;
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
} else {
/*
* Other modes are not allowed to succeed if they don't * match a rule,
* but there are rules. We've checked for no rule earlier in this
* function.
*/
ret = false;
*allowed_privs = 0;
}
return ret;
}
/*
* Public Interface
*/
/*
* Check if the address has required RWX privs to complete desired operation
*/
bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
target_ulong mode)
{
int i = 0;
int ret = -1;
int pmp_size = 0;
target_ulong s = 0;
target_ulong e = 0;
/* Short cut if no rules */
if (0 == pmp_get_num_rules(env)) {
return pmp_hart_has_privs_default(env, addr, size, privs,
allowed_privs, mode);
}
if (size == 0) {
if (riscv_feature(env, RISCV_FEATURE_MMU)) {
/*
* If size is unknown (0), assume that all bytes
* from addr to the end of the page will be accessed.
*/
pmp_size = -(addr | TARGET_PAGE_MASK);
} else {
pmp_size = sizeof(target_ulong);
}
} else {
pmp_size = size;
}
/* 1.10 draft priv spec states there is an implicit order
from low to high */
for (i = 0; i < MAX_RISCV_PMPS; i++) {
s = pmp_is_in_range(env, i, addr);
e = pmp_is_in_range(env, i, addr + pmp_size - 1);
/* partially inside */
if ((s + e) == 1) {
qemu_log_mask(LOG_GUEST_ERROR,
"pmp violation - access is partially inside\n");
ret = 0;
break;
}
/* fully inside */
const uint8_t a_field =
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
/*
* Convert the PMP permissions to match the truth table in the
* ePMP spec.
*/
const uint8_t epmp_operation =
((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) |
((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) |
(env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) |
((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2);
if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
/*
* If the PMP entry is not off and the address is in range,
* do the priv check
*/
if (!MSECCFG_MML_ISSET(env)) {
/*
* If mseccfg.MML Bit is not set, do pmp priv check
* This will always apply to regular PMP.
*/
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
if ((mode != PRV_M) || pmp_is_locked(env, i)) {
*allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
}
} else {
/*
* If mseccfg.MML Bit set, do the enhanced pmp priv check
*/
if (mode == PRV_M) {
switch (epmp_operation) {
case 0:
case 1:
case 4:
case 5:
case 6:
case 7:
case 8:
*allowed_privs = 0;
break;
case 2:
case 3:
case 14:
*allowed_privs = PMP_READ | PMP_WRITE;
break;
case 9:
case 10:
*allowed_privs = PMP_EXEC;
break;
case 11:
case 13:
*allowed_privs = PMP_READ | PMP_EXEC;
break;
case 12:
case 15:
*allowed_privs = PMP_READ;
break;
default:
g_assert_not_reached();
}
} else {
switch (epmp_operation) {
case 0:
case 8:
case 9:
case 12:
case 13:
case 14:
*allowed_privs = 0;
break;
case 1:
case 10:
case 11:
*allowed_privs = PMP_EXEC;
break;
case 2:
case 4:
case 15:
*allowed_privs = PMP_READ;
break;
case 3:
case 6:
*allowed_privs = PMP_READ | PMP_WRITE;
break;
case 5:
*allowed_privs = PMP_READ | PMP_EXEC;
break;
case 7:
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
break;
default:
g_assert_not_reached();
}
}
}
ret = ((privs & *allowed_privs) == privs);
break;
}
}
/* No rule matched */
if (ret == -1) {
return pmp_hart_has_privs_default(env, addr, size, privs,
allowed_privs, mode);
}
return ret == 1 ? true : false;
}
/*
* Handle a write to a pmpcfg CSR
*/
void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
target_ulong val)
{
int i;
uint8_t cfg_val;
int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
for (i = 0; i < pmpcfg_nums; i++) {
cfg_val = (val >> 8 * i) & 0xff;
pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
}
/* If PMP permission of any addr has been changed, flush TLB pages. */
tlb_flush(env_cpu(env));
}
/*
* Handle a read from a pmpcfg CSR
*/
target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
{
int i;
target_ulong cfg_val = 0;
target_ulong val = 0;
int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
for (i = 0; i < pmpcfg_nums; i++) {
val = pmp_read_cfg(env, (reg_index * 4) + i);
cfg_val |= (val << (i * 8));
}
trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
return cfg_val;
}
/*
* Handle a write to a pmpaddr CSR
*/
void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
target_ulong val)
{
trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
if (addr_index < MAX_RISCV_PMPS) {
/*
* In TOR mode, need to check the lock bit of the next pmp
* (if there is a next).
*/
if (addr_index + 1 < MAX_RISCV_PMPS) {
uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
if (pmp_cfg & PMP_LOCK &&
PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr write - pmpcfg + 1 locked\n");
return;
}
}
if (!pmp_is_locked(env, addr_index)) {
env->pmp_state.pmp[addr_index].addr_reg = val;
pmp_update_rule(env, addr_index);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr write - locked\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr write - out of bounds\n");
}
}
/*
* Handle a read from a pmpaddr CSR
*/
target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
{
target_ulong val = 0;
if (addr_index < MAX_RISCV_PMPS) {
val = env->pmp_state.pmp[addr_index].addr_reg;
trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr read - out of bounds\n");
}
return val;
}
/*
* Handle a write to a mseccfg CSR
*/
void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
{
int i;
trace_mseccfg_csr_write(env->mhartid, val);
/* RLB cannot be enabled if it's already 0 and if any regions are locked */
if (!MSECCFG_RLB_ISSET(env)) {
for (i = 0; i < MAX_RISCV_PMPS; i++) {
if (pmp_is_locked(env, i)) {
val &= ~MSECCFG_RLB;
break;
}
}
}
/* Sticky bits */
val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
env->mseccfg = val;
}
/*
* Handle a read from a mseccfg CSR
*/
target_ulong mseccfg_csr_read(CPURISCVState *env)
{
trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
return env->mseccfg;
}
/*
* Calculate the TLB size if the start address or the end address of
* PMP entry is presented in the TLB page.
*/
static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
target_ulong tlb_sa, target_ulong tlb_ea)
{
target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
return pmp_ea - pmp_sa + 1;
}
if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
return tlb_ea - pmp_sa + 1;
}
if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
return pmp_ea - tlb_sa + 1;
}
return 0;
}
/*
* Check is there a PMP entry which range covers this page. If so,
* try to find the minimum granularity for the TLB size.
*/
bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
target_ulong *tlb_size)
{
int i;
target_ulong val;
target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
for (i = 0; i < MAX_RISCV_PMPS; i++) {
val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
if (val) {
if (*tlb_size == 0 || *tlb_size > val) {
*tlb_size = val;
}
}
}
if (*tlb_size != 0) {
return true;
}
return false;
}
/*
* Convert PMP privilege to TLB page privilege.
*/
int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
{
int prot = 0;
if (pmp_priv & PMP_READ) {
prot |= PAGE_READ;
}
if (pmp_priv & PMP_WRITE) {
prot |= PAGE_WRITE;
}
if (pmp_priv & PMP_EXEC) {
prot |= PAGE_EXEC;
}
return prot;
}