qemu/target-i386/exec.h

592 lines
14 KiB
C
Raw Normal View History

/*
* i386 execution defines
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "dyngen-exec.h"
/* XXX: factorize this mess */
#ifdef TARGET_X86_64
#define TARGET_LONG_BITS 64
#else
#define TARGET_LONG_BITS 32
#endif
#include "cpu-defs.h"
/* at least 4 register variables are defined */
register struct CPUX86State *env asm(AREG0);
#if TARGET_LONG_BITS > HOST_LONG_BITS
/* no registers can be used */
#define T0 (env->t0)
#define T1 (env->t1)
#define T2 (env->t2)
#else
/* XXX: use unsigned long instead of target_ulong - better code will
be generated for 64 bit CPUs */
register target_ulong T0 asm(AREG1);
register target_ulong T1 asm(AREG2);
register target_ulong T2 asm(AREG3);
/* if more registers are available, we define some registers too */
#ifdef AREG4
register target_ulong EAX asm(AREG4);
#define reg_EAX
#endif
#ifdef AREG5
register target_ulong ESP asm(AREG5);
#define reg_ESP
#endif
#ifdef AREG6
register target_ulong EBP asm(AREG6);
#define reg_EBP
#endif
#ifdef AREG7
register target_ulong ECX asm(AREG7);
#define reg_ECX
#endif
#ifdef AREG8
register target_ulong EDX asm(AREG8);
#define reg_EDX
#endif
#ifdef AREG9
register target_ulong EBX asm(AREG9);
#define reg_EBX
#endif
#ifdef AREG10
register target_ulong ESI asm(AREG10);
#define reg_ESI
#endif
#ifdef AREG11
register target_ulong EDI asm(AREG11);
#define reg_EDI
#endif
#endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
#define A0 T2
extern FILE *logfile;
extern int loglevel;
#ifndef reg_EAX
#define EAX (env->regs[R_EAX])
#endif
#ifndef reg_ECX
#define ECX (env->regs[R_ECX])
#endif
#ifndef reg_EDX
#define EDX (env->regs[R_EDX])
#endif
#ifndef reg_EBX
#define EBX (env->regs[R_EBX])
#endif
#ifndef reg_ESP
#define ESP (env->regs[R_ESP])
#endif
#ifndef reg_EBP
#define EBP (env->regs[R_EBP])
#endif
#ifndef reg_ESI
#define ESI (env->regs[R_ESI])
#endif
#ifndef reg_EDI
#define EDI (env->regs[R_EDI])
#endif
#define EIP (env->eip)
#define DF (env->df)
#define CC_SRC (env->cc_src)
#define CC_DST (env->cc_dst)
#define CC_OP (env->cc_op)
/* float macros */
#define FT0 (env->ft0)
#define ST0 (env->fpregs[env->fpstt].d)
#define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
#define ST1 ST(1)
#ifdef USE_FP_CONVERT
#define FP_CONVERT (env->fp_convert)
#endif
#include "cpu.h"
#include "exec-all.h"
typedef struct CCTable {
int (*compute_all)(void); /* return all the flags */
int (*compute_c)(void); /* return the C flag */
} CCTable;
extern CCTable cc_table[];
void load_seg(int seg_reg, int selector);
void helper_ljmp_protected_T0_T1(int next_eip);
void helper_lcall_real_T0_T1(int shift, int next_eip);
void helper_lcall_protected_T0_T1(int shift, int next_eip);
void helper_iret_real(int shift);
void helper_iret_protected(int shift, int next_eip);
void helper_lret_protected(int shift, int addend);
void helper_lldt_T0(void);
void helper_ltr_T0(void);
void helper_movl_crN_T0(int reg);
void helper_movl_drN_T0(int reg);
void helper_invlpg(target_ulong addr);
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write, int is_user, int is_softmmu);
void tlb_fill(target_ulong addr, int is_write, int is_user,
void *retaddr);
void __hidden cpu_lock(void);
void __hidden cpu_unlock(void);
void do_interrupt(int intno, int is_int, int error_code,
target_ulong next_eip, int is_hw);
void do_interrupt_user(int intno, int is_int, int error_code,
target_ulong next_eip);
void raise_interrupt(int intno, int is_int, int error_code,
int next_eip_addend);
void raise_exception_err(int exception_index, int error_code);
void raise_exception(int exception_index);
void do_smm_enter(void);
void __hidden cpu_loop_exit(void);
void OPPROTO op_movl_eflags_T0(void);
void OPPROTO op_movl_T0_eflags(void);
void helper_divl_EAX_T0(void);
void helper_idivl_EAX_T0(void);
void helper_mulq_EAX_T0(void);
void helper_imulq_EAX_T0(void);
void helper_imulq_T0_T1(void);
void helper_divq_EAX_T0(void);
void helper_idivq_EAX_T0(void);
void helper_bswapq_T0(void);
void helper_cmpxchg8b(void);
void helper_single_step(void);
void helper_cpuid(void);
void helper_enter_level(int level, int data32);
void helper_enter64_level(int level, int data64);
void helper_sysenter(void);
void helper_sysexit(void);
void helper_syscall(int next_eip_addend);
void helper_sysret(int dflag);
void helper_rdtsc(void);
void helper_rdmsr(void);
void helper_wrmsr(void);
void helper_lsl(void);
void helper_lar(void);
void helper_verr(void);
void helper_verw(void);
void helper_rsm(void);
void check_iob_T0(void);
void check_iow_T0(void);
void check_iol_T0(void);
void check_iob_DX(void);
void check_iow_DX(void);
void check_iol_DX(void);
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
static inline double ldfq(target_ulong ptr)
{
union {
double d;
uint64_t i;
} u;
u.i = ldq(ptr);
return u.d;
}
static inline void stfq(target_ulong ptr, double v)
{
union {
double d;
uint64_t i;
} u;
u.d = v;
stq(ptr, u.i);
}
static inline float ldfl(target_ulong ptr)
{
union {
float f;
uint32_t i;
} u;
u.i = ldl(ptr);
return u.f;
}
static inline void stfl(target_ulong ptr, float v)
{
union {
float f;
uint32_t i;
} u;
u.f = v;
stl(ptr, u.i);
}
#endif /* !defined(CONFIG_USER_ONLY) */
#ifdef USE_X86LDOUBLE
/* use long double functions */
#define floatx_to_int32 floatx80_to_int32
#define floatx_to_int64 floatx80_to_int64
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
#define floatx_abs floatx80_abs
#define floatx_chs floatx80_chs
#define floatx_round_to_int floatx80_round_to_int
#define floatx_compare floatx80_compare
#define floatx_compare_quiet floatx80_compare_quiet
#define sin sinl
#define cos cosl
#define sqrt sqrtl
#define pow powl
#define log logl
#define tan tanl
#define atan2 atan2l
#define floor floorl
#define ceil ceill
#define ldexp ldexpl
#else
#define floatx_to_int32 float64_to_int32
#define floatx_to_int64 float64_to_int64
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
#define floatx_abs float64_abs
#define floatx_chs float64_chs
#define floatx_round_to_int float64_round_to_int
#define floatx_compare float64_compare
#define floatx_compare_quiet float64_compare_quiet
#endif
extern CPU86_LDouble sin(CPU86_LDouble x);
extern CPU86_LDouble cos(CPU86_LDouble x);
extern CPU86_LDouble sqrt(CPU86_LDouble x);
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
extern CPU86_LDouble log(CPU86_LDouble x);
extern CPU86_LDouble tan(CPU86_LDouble x);
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
extern CPU86_LDouble floor(CPU86_LDouble x);
extern CPU86_LDouble ceil(CPU86_LDouble x);
#define RC_MASK 0xc00
#define RC_NEAR 0x000
#define RC_DOWN 0x400
#define RC_UP 0x800
#define RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
#ifdef USE_X86LDOUBLE
/* only for x86 */
typedef union {
long double d;
struct {
unsigned long long lower;
unsigned short upper;
} l;
} CPU86_LDoubleU;
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
#else
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
typedef union {
double d;
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
struct {
uint32_t lower;
int32_t upper;
} l;
#else
struct {
int32_t upper;
uint32_t lower;
} l;
#endif
#ifndef __arm__
int64_t ll;
#endif
} CPU86_LDoubleU;
/* the following deal with IEEE double-precision numbers */
#define MAXEXPD 0x7ff
#define EXPBIAS 1023
#define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
#define SIGND(fp) ((fp.l.upper) & 0x80000000)
#ifdef __arm__
#define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
#else
#define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
#endif
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
#endif
static inline void fpush(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(void)
{
env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
#ifndef USE_X86LDOUBLE
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
CPU86_LDoubleU temp;
int upper, e;
uint64_t ll;
/* mantissa */
upper = lduw(ptr + 8);
/* XXX: handle overflow ? */
e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
e |= (upper >> 4) & 0x800; /* sign */
ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
#ifdef __arm__
temp.l.upper = (e << 20) | (ll >> 32);
temp.l.lower = ll;
#else
temp.ll = ll | ((uint64_t)e << 52);
#endif
return temp.d;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
CPU86_LDoubleU temp;
int e;
temp.d = f;
/* mantissa */
stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
/* exponent + sign */
e = EXPD(temp) - EXPBIAS + 16383;
e |= SIGND(temp) >> 16;
stw(ptr + 8, e);
}
#else
/* XXX: same endianness assumed */
#ifdef CONFIG_USER_ONLY
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
return *(CPU86_LDouble *)ptr;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
*(CPU86_LDouble *)ptr = f;
}
#else
/* we use memory access macros */
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
CPU86_LDoubleU temp;
temp.l.lower = ldq(ptr);
temp.l.upper = lduw(ptr + 8);
return temp.d;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
CPU86_LDoubleU temp;
temp.d = f;
stq(ptr, temp.l.lower);
stw(ptr + 8, temp.l.upper);
}
#endif /* !CONFIG_USER_ONLY */
#endif /* USE_X86LDOUBLE */
#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B (1 << 15)
#define FPUC_EM 0x3f
extern const CPU86_LDouble f15rk[7];
void helper_fldt_ST0_A0(void);
void helper_fstt_ST0_A0(void);
void fpu_raise_exception(void);
CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
void helper_fbld_ST0_A0(void);
void helper_fbst_ST0_A0(void);
void helper_f2xm1(void);
void helper_fyl2x(void);
void helper_fptan(void);
void helper_fpatan(void);
void helper_fxtract(void);
void helper_fprem1(void);
void helper_fprem(void);
void helper_fyl2xp1(void);
void helper_fsqrt(void);
void helper_fsincos(void);
void helper_frndint(void);
void helper_fscale(void);
void helper_fsin(void);
void helper_fcos(void);
void helper_fxam_ST0(void);
void helper_fstenv(target_ulong ptr, int data32);
void helper_fldenv(target_ulong ptr, int data32);
void helper_fsave(target_ulong ptr, int data32);
void helper_frstor(target_ulong ptr, int data32);
void helper_fxsave(target_ulong ptr, int data64);
void helper_fxrstor(target_ulong ptr, int data64);
void restore_native_fp_state(CPUState *env);
void save_native_fp_state(CPUState *env);
float approx_rsqrt(float a);
float approx_rcp(float a);
void update_fp_status(void);
void helper_hlt(void);
void helper_monitor(void);
void helper_mwait(void);
extern const uint8_t parity_table[256];
extern const uint8_t rclw_table[32];
extern const uint8_t rclb_table[32];
static inline uint32_t compute_eflags(void)
{
return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
}
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
static inline void load_eflags(int eflags, int update_mask)
{
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
env->eflags = (env->eflags & ~update_mask) |
(eflags & update_mask);
}
static inline void env_to_regs(void)
{
#ifdef reg_EAX
EAX = env->regs[R_EAX];
#endif
#ifdef reg_ECX
ECX = env->regs[R_ECX];
#endif
#ifdef reg_EDX
EDX = env->regs[R_EDX];
#endif
#ifdef reg_EBX
EBX = env->regs[R_EBX];
#endif
#ifdef reg_ESP
ESP = env->regs[R_ESP];
#endif
#ifdef reg_EBP
EBP = env->regs[R_EBP];
#endif
#ifdef reg_ESI
ESI = env->regs[R_ESI];
#endif
#ifdef reg_EDI
EDI = env->regs[R_EDI];
#endif
}
static inline void regs_to_env(void)
{
#ifdef reg_EAX
env->regs[R_EAX] = EAX;
#endif
#ifdef reg_ECX
env->regs[R_ECX] = ECX;
#endif
#ifdef reg_EDX
env->regs[R_EDX] = EDX;
#endif
#ifdef reg_EBX
env->regs[R_EBX] = EBX;
#endif
#ifdef reg_ESP
env->regs[R_ESP] = ESP;
#endif
#ifdef reg_EBP
env->regs[R_EBP] = EBP;
#endif
#ifdef reg_ESI
env->regs[R_ESI] = ESI;
#endif
#ifdef reg_EDI
env->regs[R_EDI] = EDI;
#endif
}
static inline int cpu_halted(CPUState *env) {
/* handle exit of HALTED state */
if (!(env->hflags & HF_HALTED_MASK))
return 0;
/* disable halt condition */
if ((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) {
env->hflags &= ~HF_HALTED_MASK;
return 0;
}
return EXCP_HALTED;
}