Commit graph

191 commits

Author SHA1 Message Date
Linus Torvalds 91b6163be4 sysctl changes for v6.10-rc1
Summary
 * Removed sentinel elements from ctl_table structs in kernel/*
 
   Removing sentinels in ctl_table arrays reduces the build time size and
   runtime memory consumed by ~64 bytes per array. Removals for net/, io_uring/,
   mm/, ipc/ and security/ are set to go into mainline through their respective
   subsystems making the next release the most likely place where the final
   series that removes the check for proc_name == NULL will land. This PR adds
   to removals already in arch/, drivers/ and fs/.
 
 * Adjusted ctl_table definitions and references to allow constification
 
   Adjustments:
     - Removing unused ctl_table function arguments
     - Moving non-const elements from ctl_table to ctl_table_header
     - Making ctl_table pointers const in ctl_table_root structure
 
   Making the static ctl_table structs const will increase safety by keeping the
   pointers to proc_handler functions in .rodata. Though no ctl_tables where
   made const in this PR, the ground work for making that possible has started
   with these changes sent by Thomas Weißschuh.
 
 Testing
 * These changes went into linux-next after v6.9-rc4; giving it a good month of
   testing.
 -----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEErkcJVyXmMSXOyyeQupfNUreWQU8FAmZFvBMACgkQupfNUreW
 QU/eGAv9EWeiXKxr3EVSMAsb9MWbJq7C99I/pd5hMf+qH4PgJpKDH7w/sb2e8h8+
 unGiW83ikgrtph7OS4/xM3Y9r3Nvzd6C/OztqgMnNKeRFdMgP7wu9HaSNs05ordb
 CqJdhvL93quc5HxrGTS9sdLK/wLJWOHwuWMXhX4qS44JNxTdPV2q10Rb7DZyHZ6O
 C9qp61L2Q2CrnOBKIx8MoeCh20ynJQAo3b0pTN63ZYF4D0vqCcnYNNTPkge4ID8/
 ULJoP5hAQY0vJ4g4fC4Gmooa5GECpm8MfZUf3SdgPyauqM/sm3dVdsLXAWD4Phcp
 TsG2a/5KMYwnLHrUGwDW7bFfEemRU88h0Iam56+SKMl1kMlEpWaLL9ApQXoHFayG
 e10izS+i/nlQiqYIHtuczCoTimT4/LGnonCLcdA//C3XzBT5MnOd7xsjuaQSpFWl
 /CV9SZa4ABwzX7u2jty8ik90iihLCFQyKj1d9m1mDVbgb6r3iUOxVuHBgMtY7MF7
 eyaEmV7l
 =/rQW
 -----END PGP SIGNATURE-----

Merge tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl

Pull sysctl updates from Joel Granados:

 - Remove sentinel elements from ctl_table structs in kernel/*

   Removing sentinels in ctl_table arrays reduces the build time size
   and runtime memory consumed by ~64 bytes per array. Removals for
   net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
   through their respective subsystems making the next release the most
   likely place where the final series that removes the check for
   proc_name == NULL will land.

   This adds to removals already in arch/, drivers/ and fs/.

 - Adjust ctl_table definitions and references to allow constification
     - Remove unused ctl_table function arguments
     - Move non-const elements from ctl_table to ctl_table_header
     - Make ctl_table pointers const in ctl_table_root structure

   Making the static ctl_table structs const will increase safety by
   keeping the pointers to proc_handler functions in .rodata. Though no
   ctl_tables where made const in this PR, the ground work for making
   that possible has started with these changes sent by Thomas
   Weißschuh.

* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
  sysctl: drop now unnecessary out-of-bounds check
  sysctl: move sysctl type to ctl_table_header
  sysctl: drop sysctl_is_perm_empty_ctl_table
  sysctl: treewide: constify argument ctl_table_root::permissions(table)
  sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
  bpf: Remove the now superfluous sentinel elements from ctl_table array
  delayacct: Remove the now superfluous sentinel elements from ctl_table array
  kprobes: Remove the now superfluous sentinel elements from ctl_table array
  printk: Remove the now superfluous sentinel elements from ctl_table array
  scheduler: Remove the now superfluous sentinel elements from ctl_table array
  seccomp: Remove the now superfluous sentinel elements from ctl_table array
  timekeeping: Remove the now superfluous sentinel elements from ctl_table array
  ftrace: Remove the now superfluous sentinel elements from ctl_table array
  umh: Remove the now superfluous sentinel elements from ctl_table array
  kernel misc: Remove the now superfluous sentinel elements from ctl_table array
2024-05-17 17:31:24 -07:00
Linus Torvalds 6e5a0c30b6 Scheduler changes for v6.10:
- Add cpufreq pressure feedback for the scheduler
 
  - Rework misfit load-balancing wrt. affinity restrictions
 
  - Clean up and simplify the code around ::overutilized and
    ::overload access.
 
  - Simplify sched_balance_newidle()
 
  - Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
    handling that changed the output.
 
  - Rework & clean up <asm/vtime.h> interactions wrt. arch_vtime_task_switch()
 
  - Reorganize, clean up and unify most of the higher level
    scheduler balancing function names around the sched_balance_*()
    prefix.
 
  - Simplify the balancing flag code (sched_balance_running)
 
  - Miscellaneous cleanups & fixes
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBtA0RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gQEw//WiCiV7zTlWShSiG/g8GTfoAvl53QTWXF
 0jQ8TUcoIhxB5VeGgxVG1srYt8f505UXjH7L0MJLrbC3nOgRCg4NK57WiQEachKK
 HORIJHT0tMMsKIwX9D5Ovo4xYJn+j7mv7j/caB+hIlzZAbWk+zZPNWcS84p0ZS/4
 appY6RIcp7+cI7bisNMGUuNZS14+WMdWoX3TgoI6ekgDZ7Ky+kQvkwGEMBXsNElO
 qZOj6yS/QUE4Htwz0tVfd6h5svoPM/VJMIvl0yfddPGurfNw6jEh/fjcXnLdAzZ6
 9mgcosETncQbm0vfSac116lrrZIR9ygXW/yXP5S7I5dt+r+5pCrBZR2E5g7U4Ezp
 GjX1+6J9U6r6y12AMLRjadFOcDvxdwtszhZq4/wAcmS3B9dvupnH/w7zqY9ho3wr
 hTdtDHoAIzxJh7RNEHgeUC0/yQX3wJ9THzfYltDRIIjHTuvl4d5lHgsug+4Y9ClE
 pUIQm/XKouweQN9TZz2ULle4ZhRrR9sM9QfZYfirJ/RppmuKool4riWyQFQNHLCy
 mBRMjFFsTpFIOoZXU6pD4EabOpWdNrRRuND/0yg3WbDat2gBWq6jvSFv2UN1/v7i
 Un5jijTuN7t8yP5lY5Tyf47kQfLlA9bUx1v56KnF9mrpI87FyiDD3MiQVhDsvpGX
 rP96BIOrkSo=
 =obph
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Add cpufreq pressure feedback for the scheduler

 - Rework misfit load-balancing wrt affinity restrictions

 - Clean up and simplify the code around ::overutilized and
   ::overload access.

 - Simplify sched_balance_newidle()

 - Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
   handling that changed the output.

 - Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()

 - Reorganize, clean up and unify most of the higher level
   scheduler balancing function names around the sched_balance_*()
   prefix

 - Simplify the balancing flag code (sched_balance_running)

 - Miscellaneous cleanups & fixes

* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
  sched/pelt: Remove shift of thermal clock
  sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
  thermal/cpufreq: Remove arch_update_thermal_pressure()
  sched/cpufreq: Take cpufreq feedback into account
  cpufreq: Add a cpufreq pressure feedback for the scheduler
  sched/fair: Fix update of rd->sg_overutilized
  sched/vtime: Do not include <asm/vtime.h> header
  s390/irq,nmi: Include <asm/vtime.h> header directly
  s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
  sched/vtime: Get rid of generic vtime_task_switch() implementation
  sched/vtime: Remove confusing arch_vtime_task_switch() declaration
  sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
  sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
  sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
  sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
  sched/fair: Rename root_domain::overload to ::overloaded
  sched/fair: Use helper functions to access root_domain::overload
  sched/fair: Check root_domain::overload value before update
  sched/fair: Combine EAS check with root_domain::overutilized access
  sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
  ...
2024-05-13 17:18:51 -07:00
Joel Granados fe6fc8e11b timekeeping: Remove the now superfluous sentinel elements from ctl_table array
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)

Remove sentinel element from time_sysctl

Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-04-24 09:43:54 +02:00
Randy Dunlap 9e643ab59d timers: Fix text inconsistencies and spelling
Fix some text for consistency: s/lvl/level/ in a comment and use
correct/full function names in comments.

Correct spelling errors as reported by codespell.

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240331172652.14086-7-rdunlap@infradead.org
2024-04-01 10:36:35 +02:00
Ingo Molnar f4566a1e73 Linux 6.9-rc1
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmYAlq0eHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGYqwH/0fb4pRbVtULpiIK
 Cs7/e/IWzRRWLBq+Jj2KVVTxwjyiKFNOq6K/CHHnljIWo1yN2CIWeOgbHfTI0WfN
 xmBdJP7OtK8MCN9PwwoWhZxMLcyv4pFCERrrkGa7AD+cdN4j/ytQ3mH5V8f/21fd
 rnpQSdpgGXB2SSMHd520Y+e56+gxrrTmsDXjZWM08Wt0bbqAWJrjNe58BMz5hI1t
 yQtcgYRTdUuZBn5TMkT99lK9EFQslV38YCo7RUP5D0DWXS1jSfWlgnCD1Nc1ziF4
 ps/xPdUMDJAc5Tslg/hgJOciSuLqgMzIUsVgZrKysuu3NhwDY1LDWGORmH1t8E8W
 RC25950=
 =F+01
 -----END PGP SIGNATURE-----

Merge tag 'v6.9-rc1' into sched/core, to pick up fixes and to refresh the branch

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-03-25 11:32:29 +01:00
Frederic Weisbecker 0387703986 timers: Fix removed self-IPI on global timer's enqueue in nohz_full
While running in nohz_full mode, a task may enqueue a timer while the
tick is stopped. However the only places where the timer wheel,
alongside the timer migration machinery's decision, may reprogram the
next event accordingly with that new timer's expiry are the idle loop or
any IRQ tail.

However neither the idle task nor an interrupt may run on the CPU if it
resumes busy work in userspace for a long while in full dynticks mode.

To solve this, the timer enqueue path raises a self-IPI that will
re-evaluate the timer wheel on its IRQ tail. This asynchronous solution
avoids potential locking inversion.

This is supposed to happen both for local and global timers but commit:

	b2cf7507e1 ("timers: Always queue timers on the local CPU")

broke the global timers case with removing the ->is_idle field handling
for the global base. As a result, global timers enqueue may go unnoticed
in nohz_full.

Fix this with restoring the idle tracking of the global timer's base,
allowing self-IPIs again on enqueue time.

Fixes: b2cf7507e1 ("timers: Always queue timers on the local CPU")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240318230729.15497-3-frederic@kernel.org
2024-03-19 10:14:55 +01:00
Ingo Molnar 86dd6c04ef sched/balancing: Rename scheduler_tick() => sched_tick()
- Standardize on prefixing scheduler-internal functions defined
  in <linux/sched.h> with sched_*() prefix. scheduler_tick() was
  the only function using the scheduler_ prefix. Harmonize it.

- The other reason to rename it is the NOHZ scheduler tick
  handling functions are already named sched_tick_*().
  Make the 'git grep sched_tick' more meaningful.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-3-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Frederic Weisbecker 19b344a91f timers: Assert no next dyntick timer look-up while CPU is offline
The next timer (re-)evaluation, with the purpose of entering/updating
the dyntick mode, can happen from 3 sites and none of them are relevant
while the CPU is offline:

1) The idle loop:
	a) From the quick check helping the cpuidle governor to heuristically
	   predict the best C-state.
	b) While stopping the tick.

   But if the CPU is offline, the tick has been cancelled and there is
   consequently no need to further stop the tick.

2) Remote expiry: when a CPU remotely expires global timers on behalf of
   another CPU, the latter target's next timer is re-evaluated
   afterwards. However remote expîry doesn't happen on offline CPUs.

3) IRQ exit: on nohz_full mode, the tick is (re-)evaluated on IRQ exit.
   But full dynticks is disabled on offline CPUs.

Therefore it is safe to assume that no next dyntick timer lookup can
be performed on offline CPUs.

Assert this expectation to report any surprise.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240225225508.11587-17-frederic@kernel.org
2024-02-26 11:37:32 +01:00
Anna-Maria Behnsen b2cf7507e1 timers: Always queue timers on the local CPU
The timer pull model is in place so we can remove the heuristics which try
to guess the best target CPU at enqueue/modification time.

All non pinned timers are queued on the local CPU in the separate storage
and eventually pulled at expiry time to a remote CPU.

Originally-by: Richard Cochran (linutronix GmbH) <richardcochran@gmail.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-21-anna-maria@linutronix.de
2024-02-22 17:52:32 +01:00
Anna-Maria Behnsen 7ee9887703 timers: Implement the hierarchical pull model
Placing timers at enqueue time on a target CPU based on dubious heuristics
does not make any sense:

 1) Most timer wheel timers are canceled or rearmed before they expire.

 2) The heuristics to predict which CPU will be busy when the timer expires
    are wrong by definition.

So placing the timers at enqueue wastes precious cycles.

The proper solution to this problem is to always queue the timers on the
local CPU and allow the non pinned timers to be pulled onto a busy CPU at
expiry time.

Therefore split the timer storage into local pinned and global timers:
Local pinned timers are always expired on the CPU on which they have been
queued. Global timers can be expired on any CPU.

As long as a CPU is busy it expires both local and global timers. When a
CPU goes idle it arms for the first expiring local timer. If the first
expiring pinned (local) timer is before the first expiring movable timer,
then no action is required because the CPU will wake up before the first
movable timer expires. If the first expiring movable timer is before the
first expiring pinned (local) timer, then this timer is queued into an idle
timerqueue and eventually expired by another active CPU.

To avoid global locking the timerqueues are implemented as a hierarchy. The
lowest level of the hierarchy holds the CPUs. The CPUs are associated to
groups of 8, which are separated per node. If more than one CPU group
exist, then a second level in the hierarchy collects the groups. Depending
on the size of the system more than 2 levels are required. Each group has a
"migrator" which checks the timerqueue during the tick for remote expirable
timers.

If the last CPU in a group goes idle it reports the first expiring event in
the group up to the next group(s) in the hierarchy. If the last CPU goes
idle it arms its timer for the first system wide expiring timer to ensure
that no timer event is missed.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240222103710.32582-1-anna-maria@linutronix.de
2024-02-22 17:52:32 +01:00
Anna-Maria Behnsen 57e95a5c41 timers: Introduce function to check timer base is_idle flag
To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have a function that returns the value
of the is_idle flag of the timer base to keep the hierarchy states during
online in sync with timer base state.

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-18-anna-maria@linutronix.de
2024-02-22 17:52:32 +01:00
Anna-Maria Behnsen 89f01e10c9 timers: Check if timers base is handled already
Due to the conversion of the NOHZ timer placement to a pull at expiry
time model, the per CPU timer bases with non pinned timers are no
longer handled only by the local CPU. In case a remote CPU already
expires the non pinned timers base of the local CPU, nothing more
needs to be done by the local CPU. A check at the begin of the expire
timers routine is required, because timer base lock is dropped before
executing the timer callback function.

This is a preparatory work, but has no functional impact right now.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-16-anna-maria@linutronix.de
2024-02-22 17:52:32 +01:00
Richard Cochran (linutronix GmbH) 90f5df66c8 timers: Restructure internal locking
Move the locking out from __run_timers() to the call sites, so the
protected section can be extended at the call site. Preparatory work for
changing the NOHZ timer placement to a pull at expiry time model.

No functional change.

Signed-off-by: Richard Cochran (linutronix GmbH) <richardcochran@gmail.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-15-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen f73d9257ff timers: Add get next timer interrupt functionality for remote CPUs
To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have functionality available getting the
next timer interrupt on a remote CPU.

Locking of the timer bases and getting the information for the next timer
interrupt functionality is split into separate functions. This is required
to be compliant with lock ordering when the new model is in place.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-14-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen 70b4cf84f3 timers: Split out "get next timer interrupt" functionality
The functionality for getting the next timer interrupt in
get_next_timer_interrupt() is split into a separate function
fetch_next_timer_interrupt() to be usable by other call sites.

This is preparatory work for the conversion of the NOHZ timer
placement to a pull at expiry time model. No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-13-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen 21927fc89e timers: Retrieve next expiry of pinned/non-pinned timers separately
For the conversion of the NOHZ timer placement to a pull at expiry time
model it's required to have separate expiry times for the pinned and the
non-pinned (movable) timers. Therefore struct timer_events is introduced.

No functional change

Originally-by: Richard Cochran (linutronix GmbH) <richardcochran@gmail.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-12-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen 83a665dc99 timers: Keep the pinned timers separate from the others
Separate the storage space for pinned timers. Deferrable timers (doesn't
matter if pinned or non pinned) are still enqueued into their own base.

This is preparatory work for changing the NOHZ timer placement from a push
at enqueue time to a pull at expiry time model.

Originally-by: Richard Cochran (linutronix GmbH) <richardcochran@gmail.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-11-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen 9f6a3c602c timers: Split next timer interrupt logic
Split the logic for getting next timer interrupt (no matter of recalculated
or already stored in base->next_expiry) into a separate function named
next_timer_interrupt(). Make it available to local call sites only.

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-10-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen af68cb3fc7 timers: Simplify code in run_local_timers()
The logic for raising a softirq the way it is implemented right now, is
readable for two timer bases. When increasing the number of timer bases,
code gets harder to read. With the introduction of the timer migration
hierarchy, there will be three timer bases.

Therefore restructure the code to use a loop. No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-9-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen aae55e9fb8 timers: Make sure TIMER_PINNED flag is set in add_timer_on()
When adding a timer to the timer wheel using add_timer_on(), it is an
implicitly pinned timer. With the timer pull at expiry time model in place,
the TIMER_PINNED flag is required to make sure timers end up in proper
base.

Set the TIMER_PINNED flag unconditionally when add_timer_on() is executed.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-8-anna-maria@linutronix.de
2024-02-22 17:52:31 +01:00
Anna-Maria Behnsen 8e7e247f64 timers: Introduce add_timer() variants which modify timer flags
A timer might be used as a pinned timer (using add_timer_on()) and later on
as non-pinned timer using add_timer(). When the "NOHZ timer pull at expiry
model" is in place, the TIMER_PINNED flag is required to be used whenever a
timer needs to expire on a dedicated CPU. Otherwise the flag must not be
set if expiration on a dedicated CPU is not required.

add_timer_on()'s behavior will be changed during the preparation patches
for the "NOHZ timer pull at expiry model" to unconditionally set the
TIMER_PINNED flag. To be able to clear/ set the flag when queueing a
timer, two variants of add_timer() are introduced.

This is a preparatory step and has no functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-6-anna-maria@linutronix.de
2024-02-22 17:52:30 +01:00
Anna-Maria Behnsen 73129cf4b6 timers: Optimization for timer_base_try_to_set_idle()
When tick is stopped also the timer base is_idle flag is set. When
reentering timer_base_try_to_set_idle() with the tick stopped, there is no
need to check whether the timer base needs to be set idle again. When a
timer was enqueued in the meantime, this is already handled by the
tick_nohz_next_event() call which was executed before
tick_nohz_stop_tick().

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-5-anna-maria@linutronix.de
2024-02-22 17:52:30 +01:00
Anna-Maria Behnsen e2e1d724e9 timers: Move marking timer bases idle into tick_nohz_stop_tick()
The timer base is marked idle when get_next_timer_interrupt() is
executed. But the decision whether the tick will be stopped and whether the
system is able to go idle is done later. When the timer bases is marked
idle and a new first timer is enqueued remote an IPI is raised. Even if it
is not required because the tick is not stopped and the timer base is
evaluated again at the next tick.

To prevent this, the timer base is marked idle in tick_nohz_stop_tick() and
get_next_timer_interrupt() is streamlined by only looking for the next timer
interrupt. All other work is postponed to timer_base_try_to_set_idle() which is
called by tick_nohz_stop_tick(). timer_base_try_to_set_idle() never resets
timer_base::is_idle state. This is done when the tick is restarted via
tick_nohz_restart_sched_tick().

With this, tick_sched::tick_stopped and timer_base::is_idle are always in
sync. So there is no longer the need to execute timer_clear_idle() in
tick_nohz_idle_retain_tick(). This was required before, as
tick_nohz_next_event() set timer_base::is_idle even if the tick would not be
stopped. So timer_clear_idle() is only executed, when timer base is idle. So the
check whether timer base is idle, is now no longer required as well.

While at it fix some nearby whitespace damage as well.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-4-anna-maria@linutronix.de
2024-02-22 17:52:30 +01:00
Anna-Maria Behnsen 39ed699fb6 timers: Split out get next timer interrupt
Split out get_next_timer_interrupt() to be able to extend it and make it
reusable for other call sites.

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-3-anna-maria@linutronix.de
2024-02-22 17:52:30 +01:00
Anna-Maria Behnsen bebed6649e timers: Restructure get_next_timer_interrupt()
get_next_timer_interrupt() contains two parts for the next timer interrupt
calculation. Those two parts are separated by forwarding the base
clock. But the second part does not depend on the forwarded base
clock.

Therefore restructure get_next_timer_interrupt() to keep things together
which belong together.

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-2-anna-maria@linutronix.de
2024-02-22 17:52:30 +01:00
Anna-Maria Behnsen 892abd3571 timers: Add struct member description for timer_base
timer_base struct lacks description of struct members. Important struct
member information is sprinkled in comments or in code all over the place.

Collect information and write struct description to keep track of most
important information in a single place.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240123164702.55612-5-anna-maria@linutronix.de
2024-02-19 09:38:00 +01:00
Anna-Maria Behnsen da65f29dad timers: Fix nextevt calculation when no timers are pending
When no timer is queued into an empty timer base, the next_expiry will not
be updated. It was originally calculated as

  base->clk + NEXT_TIMER_MAX_DELTA

When the timer base stays empty long enough (> NEXT_TIMER_MAX_DELTA), the
next_expiry value of the empty base suggests that there is a timer pending
soon. This might be more a kind of a theoretical problem, but the fix
doesn't hurt.

Use only base->next_expiry value as nextevt when timers are
pending. Otherwise nextevt will be jiffies + NEXT_TIMER_MAX_DELTA. As all
information is in place, update base->next_expiry value of the empty timer
base as well.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-13-anna-maria@linutronix.de
2023-12-20 16:49:39 +01:00
Thomas Gleixner bb8caad508 timers: Rework idle logic
To improve readability of the code, split base->idle calculation and
expires calculation into separate parts. While at it, update the comment
about timer base idle marking.

Thereby the following subtle change happens if the next event is just one
jiffy ahead and the tick was already stopped: Originally base->is_idle
remains true in this situation. Now base->is_idle turns to false. This may
spare an IPI if a timer is enqueued remotely to an idle CPU that is going
to tick on the next jiffy.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-12-anna-maria@linutronix.de
2023-12-20 16:49:39 +01:00
Anna-Maria Behnsen 7a39a5080e timers: Use already existing function for forwarding timer base
There is an already existing function for forwarding the timer
base. Forwarding the timer base is implemented directly in
get_next_timer_interrupt() as well.

Remove the code duplication and invoke __forward_timer_base() instead.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-11-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Anna-Maria Behnsen 1e490484aa timers: Split out forward timer base functionality
Forwarding timer base is done when the next expiry value is calculated and
when a new timer is enqueued. When the next expiry value is calculated the
jiffies value is already available and does not need to be reread a second
time.

Splitting out the forward timer base functionality to make it executable
via both contextes - those where jiffies are already known and those, where
jiffies need to be read.

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-10-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Anna-Maria Behnsen 8a2c9c7e78 timers: Clarify check in forward_timer_base()
The current check whether a forward of the timer base is required can be
simplified by using an already existing comparison function which is easier
to read. The related comment is outdated and was not updated when the check
changed in commit 36cd28a4cd ("timers: Lower base clock forwarding
threshold").

Use time_before_eq() for the check and replace the comment by copying the
comment from the same check inside get_next_timer_interrupt(). Move the
precious information of the outdated comment to the proper place in
__run_timers().

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-9-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Anna-Maria Behnsen b5e6f59888 timers: Move store of next event into __next_timer_interrupt()
Both call sites of __next_timer_interrupt() store the return value directly
in base->next_expiry. Move the store into __next_timer_interrupt() and to
make its purpose more clear, rename the function to next_expiry_recalc().

No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-8-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Anna-Maria Behnsen d124c3393e timers: Do not IPI for deferrable timers
Deferrable timers do not prevent CPU from going idle and are not taken into
account on idle path. Sending an IPI to a remote CPU when a new first
deferrable timer was enqueued will wake up the remote CPU but nothing will
be done regarding the deferrable timers.

Drop IPI completely when a new first deferrable timer was enqueued.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-7-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Anna-Maria Behnsen b573c73101 tracing/timers: Add tracepoint for tracking timer base is_idle flag
When debugging timer code the timer tracepoints are very important. There
is no tracepoint when the is_idle flag of the timer base changes. Instead
of always adding manually trace_printk(), add tracepoints which can be
easily enabled whenever required.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-6-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Anna-Maria Behnsen dbcdcb62b5 tracing/timers: Enhance timer_start tracepoint
For starting a timer, the timer is enqueued into a bucket of the timer
wheel. The bucket expiry is the defacto expiry of the timer but it is not
equal the timer expiry because of increasing granularity when bucket is in
a higher level of the wheel. To be able to figure out in a trace whether a
timer expired in time or not, the bucket expiry time is required as well.

Add bucket expiry time to the timer_start tracepoint and thereby simplify
the arguments.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20231201092654.34614-5-anna-maria@linutronix.de
2023-12-20 16:49:38 +01:00
Thomas Gleixner f571faf6e4 timers: Provide timer_shutdown[_sync]()
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.

In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.

Expose new interfaces for this: timer_shutdown_sync() and timer_shutdown().

timer_shutdown_sync() has the same functionality as timer_delete_sync()
plus the NULL-ification of the timer function.

timer_shutdown() has the same functionality as timer_delete() plus the
NULL-ification of the timer function.

In both cases the rearming of the timer is prevented by silently discarding
rearm attempts due to timer->function being NULL.

Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.314230270@linutronix.de
2022-11-24 15:09:12 +01:00
Thomas Gleixner 0cc04e8045 timers: Add shutdown mechanism to the internal functions
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.

In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.

Add a shutdown argument to the relevant internal functions which makes the
actual deactivation code set timer->function to NULL which in turn prevents
rearming of the timer.

Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.253883224@linutronix.de
2022-11-24 15:09:12 +01:00
Thomas Gleixner 8553b5f277 timers: Split [try_to_]del_timer[_sync]() to prepare for shutdown mode
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.

In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.

Split the inner workings of try_do_del_timer_sync(), del_timer_sync() and
del_timer() into helper functions to prepare for implementing the shutdown
functionality.

No functional change.

Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.195147423@linutronix.de
2022-11-24 15:09:12 +01:00
Thomas Gleixner d02e382cef timers: Silently ignore timers with a NULL function
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.

In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.

In preparation for that replace the warnings in the relevant code paths
with checks for timer->function == NULL. If the pointer is NULL, then
discard the rearm request silently.

Add debug_assert_init() instead of the WARN_ON_ONCE(!timer->function)
checks so that debug objects can warn about non-initialized timers.

The warning of debug objects does not warn if timer->function == NULL.  It
warns when timer was not initialized using timer_setup[_on_stack]() or via
DEFINE_TIMER(). If developers fail to enable debug objects and then waste
lots of time to figure out why their non-initialized timer is not firing,
they deserve it. Same for initializing a timer with a NULL function.

Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/87wn7kdann.ffs@tglx
2022-11-24 15:09:11 +01:00
Thomas Gleixner bb663f0f3c timers: Rename del_timer() to timer_delete()
The timer related functions do not have a strict timer_ prefixed namespace
which is really annoying.

Rename del_timer() to timer_delete() and provide del_timer()
as a wrapper. Document that del_timer() is not for new code.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201625.015535022@linutronix.de
2022-11-24 15:09:11 +01:00
Thomas Gleixner 9b13df3fb6 timers: Rename del_timer_sync() to timer_delete_sync()
The timer related functions do not have a strict timer_ prefixed namespace
which is really annoying.

Rename del_timer_sync() to timer_delete_sync() and provide del_timer_sync()
as a wrapper. Document that del_timer_sync() is not for new code.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.954785441@linutronix.de
2022-11-24 15:09:11 +01:00
Thomas Gleixner 168f6b6ffb timers: Use del_timer_sync() even on UP
del_timer_sync() is assumed to be pointless on uniprocessor systems and can
be mapped to del_timer() because in theory del_timer() can never be invoked
while the timer callback function is executed.

This is not entirely true because del_timer() can be invoked from interrupt
context and therefore hit in the middle of a running timer callback.

Contrary to that del_timer_sync() is not allowed to be invoked from
interrupt context unless the affected timer is marked with TIMER_IRQSAFE.
del_timer_sync() has proper checks in place to detect such a situation.

Give up on the UP optimization and make del_timer_sync() unconditionally
available.

Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201624.888306160@linutronix.de
2022-11-24 15:09:11 +01:00
Thomas Gleixner 14f043f134 timers: Update kernel-doc for various functions
The kernel-doc of timer related functions is partially uncomprehensible
word salad. Rewrite it to make it useful.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.828703870@linutronix.de
2022-11-24 15:09:11 +01:00
Thomas Gleixner 82ed6f7ef5 timers: Replace BUG_ON()s
The timer code still has a few BUG_ON()s left which are crashing the kernel
in situations where it still can recover or simply refuse to take an
action.

Remove the one in the hotplug callback which checks for the CPU being
offline. If that happens then the whole hotplug machinery will explode in
colourful ways.

Replace the rest with WARN_ON_ONCE() and conditional returns where
appropriate.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.769128888@linutronix.de
2022-11-24 15:09:11 +01:00
Thomas Gleixner 9a5a305686 timers: Get rid of del_singleshot_timer_sync()
del_singleshot_timer_sync() used to be an optimization for deleting timers
which are not rearmed from the timer callback function.

This optimization turned out to be broken and got mapped to
del_timer_sync() about 17 years ago.

Get rid of the undocumented indirection and use del_timer_sync() directly.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.706987932@linutronix.de
2022-11-24 15:09:10 +01:00
ye xingchen 8be3f96ced timers: Replace in_irq() with in_hardirq()
Replace the obsolete and ambiguous macro in_irq() with new
macro in_hardirq().

Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20221012012629.334966-1-ye.xingchen@zte.com.cn
2022-10-17 16:00:04 +02:00
Linus Torvalds ac2ab99072 Random number generator updates for Linux 5.19-rc1.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmKKpM8ACgkQSfxwEqXe
 A6726w/+OJimGd4arvpSmdn+vxepSyDLgKfwM0x5zprRVd16xg8CjJr4eMonTesq
 YvtJRqpetb53MB+sMhutlvQqQzrjtf2MBkgPwF4I2gUrk7vLD45Q+AGdGhi/rUwz
 wHGA7xg1FHLHia2M/9idSqi8QlZmUP4u4l5ZnMyTUHiwvRD6XOrWKfqvUSawNzyh
 hCWlTUxDrjizsW5YpsJX/MkRadSC8loJEk5ByZebow6nRPfurJvqfrcOMgHyNrbY
 pOZ/CGPxcetMqotL2TuuJt5wKmenqYhIWGAp3YM2SWWgU2ueBZekW8AYeMfgUcvh
 LWV93RpSuAnE5wsdjIULvjFnEDJBf8ihfMnMrd9G5QjQu44tuKWfY2MghLSpYzaR
 V6UFbRmhrqhqiStHQXOvk1oqxtpbHlc9zzJLmvPmDJcbvzXQ9Opk5GVXAmdtnHnj
 M/ty3wGWxucY6mHqT8MkCShSSslbgEtc1pEIWHdrUgnaiSVoCVBEO+9LqLbjvOTm
 XA/6YtoiCE5FasK51pir1zVb2GORQn0v8HnuAOsusD/iPAlRQ/G5jZkaXbwRQI6j
 atYL1svqvSKn5POnzqAlMUXfMUr19K5xqJdp7i6qmlO1Vq6Z+tWbCQgD1JV+Wjkb
 CMyvXomFCFu4aYKGRE2SBRnWLRghG3kYHqEQ15yTPMQerxbUDNg=
 =SUr3
 -----END PGP SIGNATURE-----

Merge tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random

Pull random number generator updates from Jason Donenfeld:
 "These updates continue to refine the work began in 5.17 and 5.18 of
  modernizing the RNG's crypto and streamlining and documenting its
  code.

  New for 5.19, the updates aim to improve entropy collection methods
  and make some initial decisions regarding the "premature next" problem
  and our threat model. The cloc utility now reports that random.c is
  931 lines of code and 466 lines of comments, not that basic metrics
  like that mean all that much, but at the very least it tells you that
  this is very much a manageable driver now.

  Here's a summary of the various updates:

   - The random_get_entropy() function now always returns something at
     least minimally useful. This is the primary entropy source in most
     collectors, which in the best case expands to something like RDTSC,
     but prior to this change, in the worst case it would just return 0,
     contributing nothing. For 5.19, additional architectures are wired
     up, and architectures that are entirely missing a cycle counter now
     have a generic fallback path, which uses the highest resolution
     clock available from the timekeeping subsystem.

     Some of those clocks can actually be quite good, despite the CPU
     not having a cycle counter of its own, and going off-core for a
     stamp is generally thought to increase jitter, something positive
     from the perspective of entropy gathering. Done very early on in
     the development cycle, this has been sitting in next getting some
     testing for a while now and has relevant acks from the archs, so it
     should be pretty well tested and fine, but is nonetheless the thing
     I'll be keeping my eye on most closely.

   - Of particular note with the random_get_entropy() improvements is
     MIPS, which, on CPUs that lack the c0 count register, will now
     combine the high-speed but short-cycle c0 random register with the
     lower-speed but long-cycle generic fallback path.

   - With random_get_entropy() now always returning something useful,
     the interrupt handler now collects entropy in a consistent
     construction.

   - Rather than comparing two samples of random_get_entropy() for the
     jitter dance, the algorithm now tests many samples, and uses the
     amount of differing ones to determine whether or not jitter entropy
     is usable and how laborious it must be. The problem with comparing
     only two samples was that if the cycle counter was extremely slow,
     but just so happened to be on the cusp of a change, the slowness
     wouldn't be detected. Taking many samples fixes that to some
     degree.

     This, combined with the other improvements to random_get_entropy(),
     should make future unification of /dev/random and /dev/urandom
     maybe more possible. At the very least, were we to attempt it again
     today (we're not), it wouldn't break any of Guenter's test rigs
     that broke when we tried it with 5.18. So, not today, but perhaps
     down the road, that's something we can revisit.

   - We attempt to reseed the RNG immediately upon waking up from system
     suspend or hibernation, making use of the various timestamps about
     suspend time and such available, as well as the usual inputs such
     as RDRAND when available.

   - Batched randomness now falls back to ordinary randomness before the
     RNG is initialized. This provides more consistent guarantees to the
     types of random numbers being returned by the various accessors.

   - The "pre-init injection" code is now gone for good. I suspect you
     in particular will be happy to read that, as I recall you
     expressing your distaste for it a few months ago. Instead, to avoid
     a "premature first" issue, while still allowing for maximal amount
     of entropy availability during system boot, the first 128 bits of
     estimated entropy are used immediately as it arrives, with the next
     128 bits being buffered. And, as before, after the RNG has been
     fully initialized, it winds up reseeding anyway a few seconds later
     in most cases. This resulted in a pretty big simplification of the
     initialization code and let us remove various ad-hoc mechanisms
     like the ugly crng_pre_init_inject().

   - The RNG no longer pretends to handle the "premature next" security
     model, something that various academics and other RNG designs have
     tried to care about in the past. After an interesting mailing list
     thread, these issues are thought to be a) mainly academic and not
     practical at all, and b) actively harming the real security of the
     RNG by delaying new entropy additions after a potential compromise,
     making a potentially bad situation even worse. As well, in the
     first place, our RNG never even properly handled the premature next
     issue, so removing an incomplete solution to a fake problem was
     particularly nice.

     This allowed for numerous other simplifications in the code, which
     is a lot cleaner as a consequence. If you didn't see it before,
     https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/ may be a
     thread worth skimming through.

   - While the interrupt handler received a separate code path years ago
     that avoids locks by using per-cpu data structures and a faster
     mixing algorithm, in order to reduce interrupt latency, input and
     disk events that are triggered in hardirq handlers were still
     hitting locks and more expensive algorithms. Those are now
     redirected to use the faster per-cpu data structures.

   - Rather than having the fake-crypto almost-siphash-based random32
     implementation be used right and left, and in many places where
     cryptographically secure randomness is desirable, the batched
     entropy code is now fast enough to replace that.

   - As usual, numerous code quality and documentation cleanups. For
     example, the initialization state machine now uses enum symbolic
     constants instead of just hard coding numbers everywhere.

   - Since the RNG initializes once, and then is always initialized
     thereafter, a pretty heavy amount of code used during that
     initialization is never used again. It is now completely cordoned
     off using static branches and it winds up in the .text.unlikely
     section so that it doesn't reduce cache compactness after the RNG
     is ready.

   - A variety of functions meant for waiting on the RNG to be
     initialized were only used by vsprintf, and in not a particularly
     optimal way. Replacing that usage with a more ordinary setup made
     it possible to remove those functions.

   - A cleanup of how we warn userspace about the use of uninitialized
     /dev/urandom and uninitialized get_random_bytes() usage.
     Interestingly, with the change you merged for 5.18 that attempts to
     use jitter (but does not block if it can't), the majority of users
     should never see those warnings for /dev/urandom at all now, and
     the one for in-kernel usage is mainly a debug thing.

   - The file_operations struct for /dev/[u]random now implements
     .read_iter and .write_iter instead of .read and .write, allowing it
     to also implement .splice_read and .splice_write, which makes
     splice(2) work again after it was broken here (and in many other
     places in the tree) during the set_fs() removal. This was a bit of
     a last minute arrival from Jens that hasn't had as much time to
     bake, so I'll be keeping my eye on this as well, but it seems
     fairly ordinary. Unfortunately, read_iter() is around 3% slower
     than read() in my tests, which I'm not thrilled about. But Jens and
     Al, spurred by this observation, seem to be making progress in
     removing the bottlenecks on the iter paths in the VFS layer in
     general, which should remove the performance gap for all drivers.

   - Assorted other bug fixes, cleanups, and optimizations.

   - A small SipHash cleanup"

* tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (49 commits)
  random: check for signals after page of pool writes
  random: wire up fops->splice_{read,write}_iter()
  random: convert to using fops->write_iter()
  random: convert to using fops->read_iter()
  random: unify batched entropy implementations
  random: move randomize_page() into mm where it belongs
  random: remove mostly unused async readiness notifier
  random: remove get_random_bytes_arch() and add rng_has_arch_random()
  random: move initialization functions out of hot pages
  random: make consistent use of buf and len
  random: use proper return types on get_random_{int,long}_wait()
  random: remove extern from functions in header
  random: use static branch for crng_ready()
  random: credit architectural init the exact amount
  random: handle latent entropy and command line from random_init()
  random: use proper jiffies comparison macro
  random: remove ratelimiting for in-kernel unseeded randomness
  random: move initialization out of reseeding hot path
  random: avoid initializing twice in credit race
  random: use symbolic constants for crng_init states
  ...
2022-05-24 11:58:10 -07:00
Jason A. Donenfeld d4150779e6 random32: use real rng for non-deterministic randomness
random32.c has two random number generators in it: one that is meant to
be used deterministically, with some predefined seed, and one that does
the same exact thing as random.c, except does it poorly. The first one
has some use cases. The second one no longer does and can be replaced
with calls to random.c's proper random number generator.

The relatively recent siphash-based bad random32.c code was added in
response to concerns that the prior random32.c was too deterministic.
Out of fears that random.c was (at the time) too slow, this code was
anonymously contributed. Then out of that emerged a kind of shadow
entropy gathering system, with its own tentacles throughout various net
code, added willy nilly.

Stop👏making👏bespoke👏random👏number👏generators👏.

Fortunately, recent advances in random.c mean that we can stop playing
with this sketchiness, and just use get_random_u32(), which is now fast
enough. In micro benchmarks using RDPMC, I'm seeing the same median
cycle count between the two functions, with the mean being _slightly_
higher due to batches refilling (which we can optimize further need be).
However, when doing *real* benchmarks of the net functions that actually
use these random numbers, the mean cycles actually *decreased* slightly
(with the median still staying the same), likely because the additional
prandom code means icache misses and complexity, whereas random.c is
generally already being used by something else nearby.

The biggest benefit of this is that there are many users of prandom who
probably should be using cryptographically secure random numbers. This
makes all of those accidental cases become secure by just flipping a
switch. Later on, we can do a tree-wide cleanup to remove the static
inline wrapper functions that this commit adds.

There are also some low-ish hanging fruits for making this even faster
in the future: a get_random_u16() function for use in the networking
stack will give a 2x performance boost there, using SIMD for ChaCha20
will let us compute 4 or 8 or 16 blocks of output in parallel, instead
of just one, giving us large buffers for cheap, and introducing a
get_random_*_bh() function that assumes irqs are already disabled will
shave off a few cycles for ordinary calls. These are things we can chip
away at down the road.

Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:52 +02:00
Stephen Boyd 317f29c14d timers: Provide a better debugobjects hint for delayed works
With debugobjects enabled the timer hint for freeing of active timers
embedded inside delayed works is always the same, i.e. the hint is
delayed_work_timer_fn, even though the function the delayed work is going
to run can be wildly different depending on what work was queued.  Enabling
workqueue debugobjects doesn't help either because the delayed work isn't
considered active until it is actually queued to run on a workqueue. If the
work is freed while the timer is pending the work isn't considered active
so there is no information from workqueue debugobjects.

Special case delayed works in the timer debugobjects hint logic so that the
delayed work function is returned instead of the delayed_work_timer_fn.
This will help to understand which delayed work was pending that got
freed.

Apply the same treatment for kthread_delayed_work because it follows the
same pattern.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220511201951.42408-1-swboyd@chromium.org
2022-05-14 17:40:36 +02:00
tangmeng efaa0227f6 timers: Move timer sysctl into the timer code
This is part of the effort to reduce kernel/sysctl.c to only contain the
core logic.

Signed-off-by: tangmeng <tangmeng@uniontech.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220215065019.7520-1-tangmeng@uniontech.com
2022-04-10 12:38:45 +02:00