Commit graph

1060301 commits

Author SHA1 Message Date
Filipe Manana 1b58ae0e4d btrfs: skip transaction commit after failure to create subvolume
At ioctl.c:create_subvol(), when we fail to create a subvolume we always
commit the transaction. In most cases this is a no-op, since all the error
paths, except for one, abort the transaction - the only exception is when
we fail to insert the new root item into the root tree, in that case we
don't abort the transaction because we didn't do anything that is
irreversible - however we end up committing the transaction which although
is not a functional problem, it adds unnecessary rotation of the backup
roots in the superblock and unnecessary work.

So change that to commit a transaction only when no error happened,
otherwise just call btrfs_end_transaction() to release our reference on
the transaction.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:26 +01:00
Naohiro Aota 82187d2ecd btrfs: zoned: fix chunk allocation condition for zoned allocator
The ZNS specification defines a limit on the number of "active"
zones. That limit impose us to limit the number of block groups which
can be used for an allocation at the same time. Not to exceed the
limit, we reuse the existing active block groups as much as possible
when we can't activate any other zones without sacrificing an already
activated block group in commit a85f05e59b ("btrfs: zoned: avoid
chunk allocation if active block group has enough space").

However, the check is wrong in two ways. First, it checks the
condition for every raid index (ffe_ctl->index). Even if it reaches
the condition and "ffe_ctl->max_extent_size >=
ffe_ctl->min_alloc_size" is met, there can be other block groups
having enough space to hold ffe_ctl->num_bytes. (Actually, this won't
happen in the current zoned code as it only supports SINGLE
profile. But, it can happen once it enables other RAID types.)

Second, it checks the active zone availability depending on the
raid index. The raid index is just an index for
space_info->block_groups, so it has nothing to do with chunk allocation.

These mistakes are causing a faulty allocation in a certain
situation. Consider we are running zoned btrfs on a device whose
max_active_zone == 0 (no limit). And, suppose no block group have a
room to fit ffe_ctl->num_bytes but some room to meet
ffe_ctl->min_alloc_size (i.e. max_extent_size > num_bytes >=
min_alloc_size).

In this situation, the following occur:

- With SINGLE raid_index, it reaches the chunk allocation checking
  code
- The check returns true because we can activate a new zone (no limit)
- But, before allocating the chunk, it iterates to the next raid index
  (RAID5)
- Since there are no RAID5 block groups on zoned mode, it again
  reaches the check code
- The check returns false because of btrfs_can_activate_zone()'s "if
  (raid_index != BTRFS_RAID_SINGLE)" part
- That results in returning -ENOSPC without allocating a new chunk

As a result, we end up hitting -ENOSPC too early.

Move the check to the right place in the can_allocate_chunk() hook,
and do the active zone check depending on the allocation flag, not on
the raid index.

CC: stable@vger.kernel.org # 5.16
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:26 +01:00
Naohiro Aota 50475cd577 btrfs: add extent allocator hook to decide to allocate chunk or not
Introduce a new hook for an extent allocator policy. With the new
hook, a policy can decide to allocate a new block group or not. If
not, it will return -ENOSPC, so btrfs_reserve_extent() will cut the
allocation size in half and retry the allocation if min_alloc_size is
large enough.

The hook has a place holder and will be replaced with the real
implementation in the next patch.

CC: stable@vger.kernel.org # 5.16
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:26 +01:00
Naohiro Aota 1ada69f61c btrfs: zoned: unset dedicated block group on allocation failure
Allocating an extent from a block group can fail for various reasons.
When an allocation from a dedicated block group (for tree-log or
relocation data) fails, we need to unregister it as a dedicated one so
that we can allocate a new block group for the dedicated one.

However, we are returning early when the block group in case it is
read-only, fully used, or not be able to activate the zone. As a result,
we keep the non-usable block group as a dedicated one, leading to
further allocation failure. With many block groups, the allocator will
iterate hopeless loop to find a free extent, results in a hung task.

Fix the issue by delaying the return and doing the proper cleanups.

CC: stable@vger.kernel.org # 5.16
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:26 +01:00
Johannes Thumshirn 7367271000 btrfs: zoned: drop redundant check for REQ_OP_ZONE_APPEND and btrfs_is_zoned
REQ_OP_ZONE_APPEND can only work on zoned devices, so it is redundant to
check if the filesystem is zoned when REQ_OP_ZONE_APPEND is set as the
bio's bio_op.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:26 +01:00
Johannes Thumshirn 554aed7da2 btrfs: zoned: sink zone check into btrfs_repair_one_zone
Sink zone check into btrfs_repair_one_zone() so we don't need to do it
in all callers.

Also as btrfs_repair_one_zone() doesn't return a sensible error, make it
a boolean function and return false in case it got called on a non-zoned
filesystem and true on a zoned filesystem.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:26 +01:00
Johannes Thumshirn 8fdf54fe69 btrfs: zoned: simplify btrfs_check_meta_write_pointer
btrfs_check_meta_write_pointer() will always be called with a NULL
'cache_ret' argument.

As there's no need to check if we have a valid block_group passed in
remove these checks.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Johannes Thumshirn 869f4cdc73 btrfs: zoned: encapsulate inode locking for zoned relocation
Encapsulate the inode lock needed for serializing the data relocation
writes on a zoned filesystem into a helper.

This streamlines the code reading flow and hides special casing for
zoned filesystems.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Anand Jain a26d60dedf btrfs: sysfs: add devinfo/fsid to retrieve actual fsid from the device
In the case of the seed device, the fsid can be different from the mounted
sprout fsid.  The userland has to read the device superblock to know the
fsid but, that idea fails if the device is missing. So add a sysfs
interface devinfo/<devid>/fsid to show the fsid of the device.

For example:
  $ cd /sys/fs/btrfs/b10b02a5-f9de-4276-b9e8-2bfd09a578a8

  $ cat devinfo/1/fsid
  c44d771f-639d-4df3-99ec-5bc7ad2af93b
  $ cat  devinfo/3/fsid
  b10b02a5-f9de-4276-b9e8-2bfd09a578a8

Though it's related to seeding, the name of the sysfs file is plain fsid as it
matches what blkid says.  A path to the device's fsid will aid scripting.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik c18e323564 btrfs: reserve extra space for the free space tree
Filipe reported a problem where sometimes he'd get an ENOSPC abort when
running delayed refs with generic/619 and the free space tree enabled.
This is partly because we do not reserve space for modifying the free
space tree, nor do we have a block rsv associated with that tree.

The delayed_refs_rsv tracks the amount of space required to run delayed
refs.  This means 1 modification means 1 change to the extent root.
With the free space tree this turns into 2 changes, because modifying 1
extent means updating the extent tree and potentially updating the free
space tree to either remove that entry or add the free space.  Thus if
we have the FST enabled, simply double the reservation size for our
modification.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik 9506f95382 btrfs: include the free space tree in the global rsv minimum calculation
Filipe reported a problem where generic/619 was failing with an ENOSPC
abort while running delayed refs, like the following

  BTRFS: Transaction aborted (error -28)
  WARNING: CPU: 3 PID: 522920 at fs/btrfs/free-space-tree.c:1049 add_to_free_space_tree+0xe5/0x110 [btrfs]
  CPU: 3 PID: 522920 Comm: kworker/u16:19 Tainted: G        W         5.16.0-rc2-btrfs-next-106 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
  RIP: 0010:add_to_free_space_tree+0xe5/0x110 [btrfs]
  RSP: 0000:ffffa65087fb7b20 EFLAGS: 00010282
  RAX: 0000000000000000 RBX: 0000000000001000 RCX: 0000000000000000
  RDX: 0000000000000001 RSI: ffffffff9131eeaa RDI: 00000000ffffffff
  RBP: ffff8d62e26481b8 R08: ffffffff9ad97ce0 R09: 0000000000000001
  R10: 0000000000000000 R11: 0000000000000001 R12: 00000000ffffffe4
  R13: ffff8d61c25fe688 R14: ffff8d61ebd88800 R15: ffff8d61ebd88a90
  FS:  0000000000000000(0000) GS:ffff8d64ed400000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fa46a8b1000 CR3: 0000000148d18003 CR4: 0000000000370ee0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   <TASK>
   __btrfs_free_extent+0x516/0x950 [btrfs]
   __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
   btrfs_run_delayed_refs+0x86/0x210 [btrfs]
   flush_space+0x403/0x630 [btrfs]
   ? call_rcu_tasks_generic+0x50/0x80
   ? lock_release+0x223/0x4a0
   ? btrfs_get_alloc_profile+0xb5/0x290 [btrfs]
   ? do_raw_spin_unlock+0x4b/0xa0
   btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs]
   process_one_work+0x24c/0x5b0
   worker_thread+0x55/0x3c0
   ? process_one_work+0x5b0/0x5b0
   kthread+0x17c/0x1a0
   ? set_kthread_struct+0x40/0x40
   ret_from_fork+0x22/0x30

There's a couple of reasons for this, but in generic/619's case the
largest reason is because it is a very small file system, ad we do not
reserve enough space for the global reserve.

With the free space tree we now have the free space tree that we need to
modify when running delayed refs.  This means we need the global reserve
to take this into account when it calculates the minimum size it needs
to be.  This is especially important for very small file systems.

Fix this by adjusting the minimum global block rsv size math to include
the size of the free space tree when calculating the size.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Qu Wenruo c9d328c0c4 btrfs: scrub: merge SCRUB_PAGES_PER_RD_BIO and SCRUB_PAGES_PER_WR_BIO
These two values were introduced in commit ff023aac31 ("Btrfs: add code
to scrub to copy read data to another disk") as an optimization.

But the truth is, block layer scheduler can do whatever it wants to
merge/split bios to improve performance.

Doing such "optimization" is not really going to affect much, especially
considering how good current block layer optimizations are doing.
Remove such old and immature optimization from our code.

Since we're here, also change BUG_ON()s using these two macros to use
ASSERT()s.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Qu Wenruo 0bb3acdc48 btrfs: update SCRUB_MAX_PAGES_PER_BLOCK
Use BTRFS_MAX_METADATA_BLOCKSIZE and SZ_4K (minimal sectorsize) to
calculate this value.

And remove one stale comment on the value, in fact with recent subpage
support, BTRFS_MAX_METADATA_BLOCKSIZE * PAGE_SIZE is already beyond
BTRFS_STRIPE_LEN, just we don't use the full page.

Also since we're here, update the BUG_ON() related to
SCRUB_MAX_PAGES_PER_BLOCK to ASSERT().

As those ASSERT() are really only for developers to catch early obvious
bugs, not to let end users suffer.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik 8697b8f88e btrfs: do not check -EAGAIN when truncating inodes in the log root
We only throttle the btrfs_truncate_inode_items if the root is
SHAREABLE, which isn't set on the log root, which means this loop is
unnecessary.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik e48dac7f6f btrfs: make should_throttle loop local in btrfs_truncate_inode_items
We reset this bool on every loop through the truncate loop, make this
variable local to the loop.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik 0adbc6190c btrfs: combine extra if statements in btrfs_truncate_inode_items
We have

    if (del_item)
	    // do something
    else
	    // something else
    if (del_item)
	    // do yet another thing
    else
	    // something else entirely

back to back in btrfs_truncate_inode_items, collapse these two sets of
if statements into one.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik 376b91d570 btrfs: convert BUG() for pending_del_nr into an ASSERT
This is a logic correctness check, convert it into an ASSERT() instead
of a BUG().

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik 56e1edb0e3 btrfs: convert BUG_ON() in btrfs_truncate_inode_items to ASSERT
We have a correctness BUG_ON() in btrfs_truncate_inode_items to make
sure that we're always using min_type == BTRFS_EXTENT_DATA_KEY if
new_size is > 0.  Convert this to an ASSERT.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:25 +01:00
Josef Bacik 71d18b5354 btrfs: add inode to truncate control
In the future we're going to want to use btrfs_truncate_inode_items
without looking up the associated inode.  In order to accommodate this
add the inode to btrfs_truncate_control and handle the case where
control->inode is NULL appropriately.  This is fairly straightforward,
we simply need to add a helper for the trace points, as the file extent
map update is controlled by a flag on btrfs_truncate_control.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 487e81d2a4 btrfs: pass the ino via truncate control
In the future we are going to want to truncate inode items without
needing to have an btrfs_inode to pass in, so add ino to the
btrfs_truncate_control and use that to look up the inode items to
truncate.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 655807b895 btrfs: use a flag to control when to clear the file extent range
We only care about updating the file extent range when we are doing a
normal truncation.  We skip this for tree logging currently, but we can
also skip this for eviction as well.  Using a flag makes it more
explicit when we want to do this work.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 5caa490ed8 btrfs: control extent reference updates with a control flag for truncate
We've had weird bugs in the past where we forgot to adjust the truncate
path to deal with the fact that we can be called by the tree log path.
Instead of checking if our root is a LOG_ROOT use a flag on the
btrfs_truncate_control to indicate that we don't want to do extent
reference updates during this truncate.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 462b728ea8 btrfs: only call inode_sub_bytes in truncate paths that care
We currently have a bunch of awkward checks to make sure we only update
the inode i_bytes if we're truncating the real inode.  Instead keep
track of the number of bytes we need to sub in the
btrfs_truncate_control, and then do the appropriate adjustment in the
truncate paths that care.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik c2ddb612a8 btrfs: only update i_size in truncate paths that care
We currently will update the i_size of the inode as we truncate it down,
however we skip this if we're calling btrfs_truncate_inode_items from
the tree log code.  However we also don't care about this in the case of
evict.  Instead keep track of this value in the btrfs_truncate_control
and then have btrfs_truncate() and the free space cache truncate path
both do the i_size update themselves.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik d9ac19c380 btrfs: add truncate control struct
I'm going to be adding more arguments and counters to
btrfs_truncate_inode_items, so add a control struct to handle all of the
extra arguments to make it easier to follow.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 7097a941bf btrfs: remove found_extent from btrfs_truncate_inode_items
We only set this if we find a normal file extent, del_item == 1, and the
file extent points to a real extent and isn't a hole extent.  We can use
del_item == 1 && extent_start != 0 to get the same information that
found_extent provides, so remove this variable and use the other
variables instead.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 2adc75d612 btrfs: move btrfs_kill_delayed_inode_items into evict
We have a special case in btrfs_truncate_inode_items() to call
btrfs_kill_delayed_inode_items() if min_type == 0, which is only called
during evict.

Instead move this out into evict proper, and add some comments because I
erroneously attempted to remove this code altogether without
understanding what we were doing.

Evict is updating the inode only because we only care about making sure
the i_nlink count has hit disk.  If we had pending deletions we don't
want to process those via the delayed inode updates, we simply want to
drop all of them and reclaim the reserved metadata space.  Then from
there the btrfs_truncate_inode_items() will do the work to remove all of
the items as appropriate.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 275312a03c btrfs: remove free space cache inode check in btrfs_truncate_inode_items
We no longer have inode cache feature, so this check is extraneous as
the only inode cache is in the tree_root, which is not marked as
SHAREABLE.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 9a4a1429ac btrfs: move extent locking outside of btrfs_truncate_inode_items
Currently we are locking the extent and dropping the extent cache for
any inodes we truncate, unless they're in the tree log.  We call this
helper from:

- truncate
- evict
- tree log
- free space cache truncation

For evict we've already dropped all of the extent cache for this inode
once we've gotten here, and we're the only one accessing this inode, so
this step is unnecessary.

For the tree log code we already skip this part.

Pull this work into the truncate path and the free space cache
truncation path.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 54f03ab1e1 btrfs: move btrfs_truncate_inode_items to inode-item.c
This is an inode item related manipulation with a few vfs related
adjustments.  I'm going to remove the vfs related code from this helper
and simplify it a lot, but I want those changes to be easily seen via
git blame, so move this function now and then the simplification work
can be done.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:24 +01:00
Josef Bacik 26c2c4540d btrfs: add an inode-item.h
We have a few helpers in inode-item.c, and I'm going to make a few
changes to how we do truncate in the future, so break out these
definitions into their own header file to trim down ctree.h some and
make it easier to do the work on truncate in the future.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana 727e60604f btrfs: remove stale comment about locking at btrfs_search_slot()
The comment refers to the old extent buffer locking code, where we used to
have custom locks that had blocking and spinning behaviour modes. That is
not the case anymore, since we have transitioned to rw semaphores, so the
comment does not offer any value anymore. Remove it.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana bb8e9a6080 btrfs: remove BUG_ON() after splitting leaf
After calling split_leaf() we BUG_ON() if the returned value is greater
than zero. However split_leaf() only returns 0, in case of success, or a
negative value in case of an error.

The reason for the BUG_ON() is that if we ever get a positive return
value from split_leaf(), we can not simply propagate it to the callers
of btrfs_search_slot(), as that would be interpreted as "key not found"
and not as an error. That means it could result in callers ending up
causing some potential silent corruption.

So change the BUG_ON() to an ASSERT(), and in case assertions are
disabled, produce a warning and set the return value to an error, to make
it not possible to get into a silent corruption and having the error not
noticed.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana 109324cfda btrfs: move leaf search logic out of btrfs_search_slot()
There's quite a significant amount of code for doing the key search for a
leaf at btrfs_search_slot(), with a couple labels and gotos in it, plus
btrfs_search_slot() is already big enough.

So move the logic that does the key search on a leaf into a new helper
function. This makes it better organized, removing the need for the labels
and the gotos, as well as reducing the indentation level and the size of
btrfs_search_slot().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana e5e1c1741b btrfs: remove useless condition check before splitting leaf
When inserting a key, we check if the write_lock_level is less than 1,
and if so we set it to 1, release the path and retry the tree traversal.

However that is unnecessary, because when ins_len is greater than 0, we
know that write_lock_level can never be less than 1.

The logic to retry is also buggy, because in case ins_len was decremented,
due to an exact key match and the search is not meant for item extension
(path->search_for_extension is 0), we retry without incrementing ins_len,
which would make the next retry decrement it again by the same amount.

So remove the check for write_lock_level being less than 1 and add an
assertion to assert it's always >= 1.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana e2e58d0f8d btrfs: try to unlock parent nodes earlier when inserting a key
When inserting a new key, we release the write lock on the leaf's parent
only after doing the binary search on the leaf. This is because if the
key ends up at slot 0, we will have to update the key at slot 0 of the
parent node. The same reasoning applies to any other upper level nodes
when their slot is 0. We also need to keep the parent locked in case the
leaf does not have enough free space to insert the new key/item, because
in that case we will split the leaf and we will need to add a new key to
the parent due to a new leaf resulting from the split operation.

However if the leaf has enough space for the new key and the key does not
end up at slot 0 of the leaf we could release our write lock on the parent
before doing the binary search on the leaf to figure out the destination
slot. That leads to reducing the amount of time other tasks are blocked
waiting to lock the parent, therefore increasing parallelism when there
are other tasks that are trying to access other leaves accessible through
the same parent. This also applies to other upper nodes besides the
immediate parent, when their slot is 0, since we keep locks on them until
we figure out if the leaf slot is slot 0 or not.

In fact, having the key ending at up slot 0 when is rare. Typically it
only happens when the key is less than or equals to the smallest, the
"left most", key of the entire btree, during a split attempt when we try
to push to the right sibling leaf or when the caller just wants to update
the item of an existing key. It's also very common that a leaf has enough
space to insert a new key, since after a split we move about half of the
keys from one into the new leaf.

So unlock the parent, and any other upper level nodes, when during a key
insertion we notice the key is greater then the first key in the leaf and
the leaf has enough free space. After unlocking the upper level nodes, do
the binary search using a low boundary of slot 1 and not slot 0, to figure
out the slot where the key will be inserted (or where the key already is
in case it exists and the caller wants to modify its item data).
This extra comparison, with the first key, is cheap and the key is very
likely already in a cache line because it immediately follows the header
of the extent buffer and we have recently read the level field of the
header (which in fact is the last field of the header).

The following fs_mark test was run on a non-debug kernel (debian's default
kernel config), with a 12 cores intel CPU, and using a NVMe device:

  $ cat run-fsmark.sh
  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/nvme0n1
  MOUNT_OPTIONS="-o ssd"
  MKFS_OPTIONS="-O no-holes -R free-space-tree"
  FILES=100000
  THREADS=$(nproc --all)
  FILE_SIZE=0

  echo "performance" | \
	tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT

  OPTS="-S 0 -L 10 -n $FILES -s $FILE_SIZE -t $THREADS -k"
  for ((i = 1; i <= $THREADS; i++)); do
      OPTS="$OPTS -d $MNT/d$i"
  done

  fs_mark $OPTS

  umount $MNT

Before this change:

FSUse%        Count         Size    Files/sec     App Overhead
     0      1200000            0     165273.6          5958381
     0      2400000            0     190938.3          6284477
     0      3600000            0     181429.1          6044059
     0      4800000            0     173979.2          6223418
     0      6000000            0     139288.0          6384560
     0      7200000            0     163000.4          6520083
     1      8400000            0      57799.2          5388544
     1      9600000            0      66461.6          5552969
     2     10800000            0      49593.5          5163675
     2     12000000            0      57672.1          4889398

After this change:

FSUse%        Count         Size    Files/sec            App Overhead
     0      1200000            0     167987.3 (+1.6%)         6272730
     0      2400000            0     198563.9 (+4.0%)         6048847
     0      3600000            0     197436.6 (+8.8%)         6163637
     0      4800000            0     202880.7 (+16.6%)        6371771
     1      6000000            0     167275.9 (+20.1%)        6556733
     1      7200000            0     204051.2 (+25.2%)        6817091
     1      8400000            0      69622.8 (+20.5%)        5525675
     1      9600000            0      69384.5 (+4.4%)         5700723
     1     10800000            0      61454.1 (+23.9%)        5363754
     3     12000000            0      61908.7 (+7.3%)         5370196

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana fb81212c07 btrfs: allow generic_bin_search() to take low boundary as an argument
Right now generic_bin_search() always uses a low boundary slot of 0, but
in the next patch we'll want to often skip slot 0 when searching for a
key. So make generic_bin_search() have the low boundary slot specified
as an argument, and move the check for the extent buffer level from
btrfs_bin_search() to generic_bin_search() to avoid adding another
wrapper around generic_bin_search().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Josef Bacik 120de408e4 btrfs: check the root node for uptodate before returning it
Now that we clear the extent buffer uptodate if we fail to write it out
we need to check to see if our root node is uptodate before we search
down it.  Otherwise we could return stale data (or potentially corrupt
data that was caught by the write verification step) and think that the
path is OK to search down.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Nikolay Borisov a174c0a2e8 btrfs: allow device add if balance is paused
Currently paused balance precludes adding a device since they are both
considered exclusive ops and we can have at most one running at a time.
This is problematic in case a filesystem encounters an ENOSPC situation
while balance is running, in this case the only thing the user can do
is mount the fs with "skip_balance" which pauses balance and delete some
data to free up space for balance. However, it should be possible to add
a new device when balance is paused.

Fix this by allowing device add to proceed when balance is paused.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Nikolay Borisov 621a1ee1d3 btrfs: make device add compatible with paused balance in btrfs_exclop_start_try_lock
This is needed to enable device add to work in cases when a file system
has been mounted with 'skip_balance' mount option.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Nikolay Borisov efc0e69c2f btrfs: introduce exclusive operation BALANCE_PAUSED state
Current set of exclusive operation states is not sufficient to handle
all practical use cases. In particular there is a need to be able to add
a device to a filesystem that have paused balance. Currently there is no
way to distinguish between a running and a paused balance. Fix this by
introducing BTRFS_EXCLOP_BALANCE_PAUSED which is going to be set in 2
occasions:

1. When a filesystem is mounted with skip_balance and there is an
   unfinished balance it will now be into BALANCE_PAUSED instead of
   simply BALANCE state.

2. When a running balance is paused.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Filipe Manana d96b34248c btrfs: make send work with concurrent block group relocation
We don't allow send and balance/relocation to run in parallel in order
to prevent send failing or silently producing some bad stream. This is
because while send is using an extent (specially metadata) or about to
read a metadata extent and expecting it belongs to a specific parent
node, relocation can run, the transaction used for the relocation is
committed and the extent gets reallocated while send is still using the
extent, so it ends up with a different content than expected. This can
result in just failing to read a metadata extent due to failure of the
validation checks (parent transid, level, etc), failure to find a
backreference for a data extent, and other unexpected failures. Besides
reallocation, there's also a similar problem of an extent getting
discarded when it's unpinned after the transaction used for block group
relocation is committed.

The restriction between balance and send was added in commit 9e967495e0
("Btrfs: prevent send failures and crashes due to concurrent relocation"),
kernel 5.3, while the more general restriction between send and relocation
was added in commit 1cea5cf0e6 ("btrfs: ensure relocation never runs
while we have send operations running"), kernel 5.14.

Both send and relocation can be very long running operations. Relocation
because it has to do a lot of IO and expensive backreference lookups in
case there are many snapshots, and send due to read IO when operating on
very large trees. This makes it inconvenient for users and tools to deal
with scheduling both operations.

For zoned filesystem we also have automatic block group relocation, so
send can fail with -EAGAIN when users least expect it or send can end up
delaying the block group relocation for too long. In the future we might
also get the automatic block group relocation for non zoned filesystems.

This change makes it possible for send and relocation to run in parallel.
This is achieved the following way:

1) For all tree searches, send acquires a read lock on the commit root
   semaphore;

2) After each tree search, and before releasing the commit root semaphore,
   the leaf is cloned and placed in the search path (struct btrfs_path);

3) After releasing the commit root semaphore, the changed_cb() callback
   is invoked, which operates on the leaf and writes commands to the pipe
   (or file in case send/receive is not used with a pipe). It's important
   here to not hold a lock on the commit root semaphore, because if we did
   we could deadlock when sending and receiving to the same filesystem
   using a pipe - the send task blocks on the pipe because it's full, the
   receive task, which is the only consumer of the pipe, triggers a
   transaction commit when attempting to create a subvolume or reserve
   space for a write operation for example, but the transaction commit
   blocks trying to write lock the commit root semaphore, resulting in a
   deadlock;

4) Before moving to the next key, or advancing to the next change in case
   of an incremental send, check if a transaction used for relocation was
   committed (or is about to finish its commit). If so, release the search
   path(s) and restart the search, to where we were before, so that we
   don't operate on stale extent buffers. The search restarts are always
   possible because both the send and parent roots are RO, and no one can
   add, remove of update keys (change their offset) in RO trees - the
   only exception is deduplication, but that is still not allowed to run
   in parallel with send;

5) Periodically check if there is contention on the commit root semaphore,
   which means there is a transaction commit trying to write lock it, and
   release the semaphore and reschedule if there is contention, so as to
   avoid causing any significant delays to transaction commits.

This leaves some room for optimizations for send to have less path
releases and re searching the trees when there's relocation running, but
for now it's kept simple as it performs quite well (on very large trees
with resulting send streams in the order of a few hundred gigabytes).

Test case btrfs/187, from fstests, stresses relocation, send and
deduplication attempting to run in parallel, but without verifying if send
succeeds and if it produces correct streams. A new test case will be added
that exercises relocation happening in parallel with send and then checks
that send succeeds and the resulting streams are correct.

A final note is that for now this still leaves the mutual exclusion
between send operations and deduplication on files belonging to a root
used by send operations. A solution for that will be slightly more complex
but it will eventually be built on top of this change.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-07 14:18:23 +01:00
Nikolay Borisov 364be84211 btrfs: change name and type of private member of btrfs_free_space_ctl
btrfs_free_space_ctl::private is either unset or it always points to
struct btrfs_block_group when it is set. So there's no point in keeping
the unhelpful 'private' name and keeping it an untyped pointer. Change
both the type and name to be self-describing. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:50 +01:00
Nikolay Borisov 290ef19add btrfs: make __btrfs_add_free_space take just block group reference
There is no point in the function taking an fs_info and a
btrfs_free_space because the ctl passed always belongs to the block
group. Furthermore fs_info can be referenced from the block group. No
functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:50 +01:00
Nikolay Borisov 32e1649b53 btrfs: consolidate unlink_free_space/__unlink_free_space functions
The only difference between the two is whether btrfs_free_space::bytes
is adjusted. Instead of having 2 separate functions control this
behavior via an additional parameter and make them one function instead.
No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:50 +01:00
Nikolay Borisov f594f13c19 btrfs: consolidate bitmap_clear_bits/__bitmap_clear_bits
The only difference is the former adjusts btrfs_free_space::bytes
member. Consolidate the two function into 1 and add a bool parameter
which controls whether the adjustment is made or not. No functional
changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:50 +01:00
Josef Bacik abed4aaae4 btrfs: track the csum, extent, and free space trees in a rb tree
In the future we are going to have multiple copies of these trees.  To
facilitate this we need a way to lookup the different roots we are
looking for.  Handle this by adding a global root rb tree that is
indexed on the root->root_key.  Then instead of loading the roots at
mount time with individually targeted keys, simply search the tree_root
for anything with the specific objectid we want.  This will make it
straightforward to support both old style and new style file systems.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:50 +01:00
Josef Bacik 7fcf8a0050 btrfs: remove useless WARN_ON in record_root_in_trans
We don't set SHAREABLE on the extent root, we don't need to have this
safety check here.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:49 +01:00
Josef Bacik 7939dd9f35 btrfs: stop accessing ->free_space_root directly
We're going to have multiple free space roots in the future, so adjust
all the users of the free space root to use a helper to access the root.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:49 +01:00
Josef Bacik fc28b25e1f btrfs: stop accessing ->csum_root directly
We are going to have multiple csum roots in the future, so convert all
users of ->csum_root to btrfs_csum_root() and rename ->csum_root to
->_csum_root so we can easily find remaining users in the future.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03 15:09:49 +01:00