linux/drivers/acpi/acpica/evxfevnt.c

954 lines
26 KiB
C
Raw Normal View History

/******************************************************************************
*
* Module Name: evxfevnt - External Interfaces, ACPI event disable/enable
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2010, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include <acpi/acpi.h>
#include "accommon.h"
#include "acevents.h"
#include "acnamesp.h"
#include "actables.h"
#define _COMPONENT ACPI_EVENTS
ACPI_MODULE_NAME("evxfevnt")
/* Local prototypes */
static acpi_status
acpi_ev_get_gpe_device(struct acpi_gpe_xrupt_info *gpe_xrupt_info,
struct acpi_gpe_block_info *gpe_block, void *context);
/*******************************************************************************
*
* FUNCTION: acpi_enable
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Transfers the system into ACPI mode.
*
******************************************************************************/
acpi_status acpi_enable(void)
{
ACPICA: simplify SCI_EN workaround acpi_hw_set_mode() double checks its effectiveness by calling acpi_hw_get_mode() -- polling up to 3 seconds. It would be more logical for its caller, acpi_enable() acpi_enable() to do the double-checking. (lets assume that acpi_disable() isn't interesting) The ACPI specification is unclear on this point. Some parts say that the BIOS sets SCI_EN and then returns to the OS, but one part says "OSPM polls the SCI_EN bit until it is sampled SET". The systems I have on hand do the former, SCI_EN is observed to be set upon return from the BIOS. So we move the check up out of acpi_hw_set_mode() up into acpi_enable() where it makes logical sense. Then we replace the 3-second polling loop with a single check. If this check fails, we'll see: "Hardware did not enter ACPI mode" and the system will bail out of ACPI initialization and likely fail to boot. If we see that in practice, we can restore the polling, but put it into acpi_enable. This patch is important if acpi_enable() is used in the resume from S3 path. Many systems today are seen coming back from S3 with SCI_EN off, and then failing to set SCI_EN in response to acpi_enable(). Those systems will take 3 seconds longer to resume due to this loop. However, it is possible that we will not use acpi_enable() in the S3 resume path, and bang SCI_EN directly, which would make the loop harmless, as it would be invisible to all systems except those that need it. Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-06 21:41:08 +00:00
acpi_status status;
int retry;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_enable);
/* ACPI tables must be present */
if (!acpi_tb_tables_loaded()) {
return_ACPI_STATUS(AE_NO_ACPI_TABLES);
}
/* Check current mode */
if (acpi_hw_get_mode() == ACPI_SYS_MODE_ACPI) {
ACPI_DEBUG_PRINT((ACPI_DB_INIT,
"System is already in ACPI mode\n"));
ACPICA: simplify SCI_EN workaround acpi_hw_set_mode() double checks its effectiveness by calling acpi_hw_get_mode() -- polling up to 3 seconds. It would be more logical for its caller, acpi_enable() acpi_enable() to do the double-checking. (lets assume that acpi_disable() isn't interesting) The ACPI specification is unclear on this point. Some parts say that the BIOS sets SCI_EN and then returns to the OS, but one part says "OSPM polls the SCI_EN bit until it is sampled SET". The systems I have on hand do the former, SCI_EN is observed to be set upon return from the BIOS. So we move the check up out of acpi_hw_set_mode() up into acpi_enable() where it makes logical sense. Then we replace the 3-second polling loop with a single check. If this check fails, we'll see: "Hardware did not enter ACPI mode" and the system will bail out of ACPI initialization and likely fail to boot. If we see that in practice, we can restore the polling, but put it into acpi_enable. This patch is important if acpi_enable() is used in the resume from S3 path. Many systems today are seen coming back from S3 with SCI_EN off, and then failing to set SCI_EN in response to acpi_enable(). Those systems will take 3 seconds longer to resume due to this loop. However, it is possible that we will not use acpi_enable() in the S3 resume path, and bang SCI_EN directly, which would make the loop harmless, as it would be invisible to all systems except those that need it. Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-06 21:41:08 +00:00
return_ACPI_STATUS(AE_OK);
}
ACPICA: simplify SCI_EN workaround acpi_hw_set_mode() double checks its effectiveness by calling acpi_hw_get_mode() -- polling up to 3 seconds. It would be more logical for its caller, acpi_enable() acpi_enable() to do the double-checking. (lets assume that acpi_disable() isn't interesting) The ACPI specification is unclear on this point. Some parts say that the BIOS sets SCI_EN and then returns to the OS, but one part says "OSPM polls the SCI_EN bit until it is sampled SET". The systems I have on hand do the former, SCI_EN is observed to be set upon return from the BIOS. So we move the check up out of acpi_hw_set_mode() up into acpi_enable() where it makes logical sense. Then we replace the 3-second polling loop with a single check. If this check fails, we'll see: "Hardware did not enter ACPI mode" and the system will bail out of ACPI initialization and likely fail to boot. If we see that in practice, we can restore the polling, but put it into acpi_enable. This patch is important if acpi_enable() is used in the resume from S3 path. Many systems today are seen coming back from S3 with SCI_EN off, and then failing to set SCI_EN in response to acpi_enable(). Those systems will take 3 seconds longer to resume due to this loop. However, it is possible that we will not use acpi_enable() in the S3 resume path, and bang SCI_EN directly, which would make the loop harmless, as it would be invisible to all systems except those that need it. Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-06 21:41:08 +00:00
/* Transition to ACPI mode */
ACPICA: simplify SCI_EN workaround acpi_hw_set_mode() double checks its effectiveness by calling acpi_hw_get_mode() -- polling up to 3 seconds. It would be more logical for its caller, acpi_enable() acpi_enable() to do the double-checking. (lets assume that acpi_disable() isn't interesting) The ACPI specification is unclear on this point. Some parts say that the BIOS sets SCI_EN and then returns to the OS, but one part says "OSPM polls the SCI_EN bit until it is sampled SET". The systems I have on hand do the former, SCI_EN is observed to be set upon return from the BIOS. So we move the check up out of acpi_hw_set_mode() up into acpi_enable() where it makes logical sense. Then we replace the 3-second polling loop with a single check. If this check fails, we'll see: "Hardware did not enter ACPI mode" and the system will bail out of ACPI initialization and likely fail to boot. If we see that in practice, we can restore the polling, but put it into acpi_enable. This patch is important if acpi_enable() is used in the resume from S3 path. Many systems today are seen coming back from S3 with SCI_EN off, and then failing to set SCI_EN in response to acpi_enable(). Those systems will take 3 seconds longer to resume due to this loop. However, it is possible that we will not use acpi_enable() in the S3 resume path, and bang SCI_EN directly, which would make the loop harmless, as it would be invisible to all systems except those that need it. Signed-off-by: Len Brown <len.brown@intel.com>
2010-05-06 21:41:08 +00:00
status = acpi_hw_set_mode(ACPI_SYS_MODE_ACPI);
if (ACPI_FAILURE(status)) {
ACPI_ERROR((AE_INFO,
"Could not transition to ACPI mode"));
return_ACPI_STATUS(status);
}
/* Sanity check that transition succeeded */
for (retry = 0; retry < 30000; ++retry) {
if (acpi_hw_get_mode() == ACPI_SYS_MODE_ACPI) {
if (retry != 0)
ACPI_WARNING((AE_INFO,
"Platform took > %d00 usec to enter ACPI mode", retry));
return_ACPI_STATUS(AE_OK);
}
acpi_os_stall(100); /* 100 usec */
}
ACPI_ERROR((AE_INFO, "Hardware did not enter ACPI mode"));
return_ACPI_STATUS(AE_NO_HARDWARE_RESPONSE);
}
ACPI_EXPORT_SYMBOL(acpi_enable)
/*******************************************************************************
*
* FUNCTION: acpi_disable
*
* PARAMETERS: None
*
* RETURN: Status
*
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 02:49:35 +00:00
* DESCRIPTION: Transfers the system into LEGACY (non-ACPI) mode.
*
******************************************************************************/
acpi_status acpi_disable(void)
{
acpi_status status = AE_OK;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_disable);
if (acpi_hw_get_mode() == ACPI_SYS_MODE_LEGACY) {
ACPI_DEBUG_PRINT((ACPI_DB_INIT,
"System is already in legacy (non-ACPI) mode\n"));
} else {
/* Transition to LEGACY mode */
status = acpi_hw_set_mode(ACPI_SYS_MODE_LEGACY);
if (ACPI_FAILURE(status)) {
[ACPI] ACPICA 20060127 Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled (true on Linux unless acpi=strict), these unresolved references will be passed through to the caller as a NULL package entry. http://bugzilla.kernel.org/show_bug.cgi?id=5741 Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. Implemented the acpi_cpu_flags type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Suggested by Steven Rostedt and Andrew Morton. Fixed a problem where Alias ASL operators are sometimes not correctly resolved. causing AE_AML_INTERNAL http://bugzilla.kernel.org/show_bug.cgi?id=5189 http://bugzilla.kernel.org/show_bug.cgi?id=5674 Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-01-27 21:43:00 +00:00
ACPI_ERROR((AE_INFO,
"Could not exit ACPI mode to legacy mode"));
return_ACPI_STATUS(status);
}
ACPI_DEBUG_PRINT((ACPI_DB_INIT, "ACPI mode disabled\n"));
}
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_disable)
/*******************************************************************************
*
* FUNCTION: acpi_enable_event
*
* PARAMETERS: Event - The fixed eventto be enabled
* Flags - Reserved
*
* RETURN: Status
*
* DESCRIPTION: Enable an ACPI event (fixed)
*
******************************************************************************/
acpi_status acpi_enable_event(u32 event, u32 flags)
{
acpi_status status = AE_OK;
u32 value;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_enable_event);
/* Decode the Fixed Event */
if (event > ACPI_EVENT_MAX) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
/*
* Enable the requested fixed event (by writing a one to the enable
* register bit)
*/
status =
acpi_write_bit_register(acpi_gbl_fixed_event_info[event].
enable_register_id, ACPI_ENABLE_EVENT);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
/* Make sure that the hardware responded */
status =
acpi_read_bit_register(acpi_gbl_fixed_event_info[event].
enable_register_id, &value);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
if (value != 1) {
[ACPI] ACPICA 20060127 Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled (true on Linux unless acpi=strict), these unresolved references will be passed through to the caller as a NULL package entry. http://bugzilla.kernel.org/show_bug.cgi?id=5741 Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. Implemented the acpi_cpu_flags type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Suggested by Steven Rostedt and Andrew Morton. Fixed a problem where Alias ASL operators are sometimes not correctly resolved. causing AE_AML_INTERNAL http://bugzilla.kernel.org/show_bug.cgi?id=5189 http://bugzilla.kernel.org/show_bug.cgi?id=5674 Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-01-27 21:43:00 +00:00
ACPI_ERROR((AE_INFO,
"Could not enable %s event",
acpi_ut_get_event_name(event)));
return_ACPI_STATUS(AE_NO_HARDWARE_RESPONSE);
}
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_enable_event)
/*******************************************************************************
*
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
* FUNCTION: acpi_gpe_wakeup
*
* PARAMETERS: gpe_device - Parent GPE Device. NULL for GPE0/GPE1
* gpe_number - GPE level within the GPE block
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
* Action - Enable or Disable
*
* RETURN: Status
*
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
* DESCRIPTION: Set or clear the GPE's wakeup enable mask bit.
*
******************************************************************************/
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
acpi_status acpi_gpe_wakeup(acpi_handle gpe_device, u32 gpe_number, u8 action)
{
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
acpi_status status = AE_OK;
struct acpi_gpe_event_info *gpe_event_info;
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
struct acpi_gpe_register_info *gpe_register_info;
acpi_cpu_flags flags;
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
u32 register_bit;
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
ACPI_FUNCTION_TRACE(acpi_gpe_wakeup);
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
/* Ensure that we have a valid GPE number */
gpe_event_info = acpi_ev_get_gpe_event_info(gpe_device, gpe_number);
if (!gpe_event_info || !(gpe_event_info->flags & ACPI_GPE_CAN_WAKE)) {
status = AE_BAD_PARAMETER;
goto unlock_and_exit;
}
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
gpe_register_info = gpe_event_info->register_info;
if (!gpe_register_info) {
status = AE_NOT_EXIST;
goto unlock_and_exit;
}
register_bit =
acpi_hw_get_gpe_register_bit(gpe_event_info, gpe_register_info);
/* Perform the action */
switch (action) {
case ACPI_GPE_ENABLE:
ACPI_SET_BIT(gpe_register_info->enable_for_wake,
(u8)register_bit);
break;
case ACPI_GPE_DISABLE:
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
ACPI_CLEAR_BIT(gpe_register_info->enable_for_wake,
(u8)register_bit);
break;
default:
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
ACPI_ERROR((AE_INFO, "%u, Invalid action", action));
status = AE_BAD_PARAMETER;
break;
}
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
unlock_and_exit:
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS(status);
}
ACPICA: Introduce acpi_gpe_wakeup() ACPICA uses reference counters to avoid disabling GPEs too early in case they have been enabled for many times. This is done separately for runtime and for wakeup, but the wakeup GPE reference counter is not really necessary, because GPEs are only enabled to wake up the system at the hardware level by acpi_enter_sleep_state(). Thus it only is necessary to set the corresponding bits in the wakeup enable masks of these GPEs' registers right before the system enters a sleep state. Moreover, the GPE wakeup enable bits can only be set when the target sleep state of the system is known and they need to be cleared immediately after wakeup regardless of how many wakeup devices are associated with a given GPE. On the basis of the above observations, introduce function acpi_gpe_wakeup() to be used for setting or clearing the enable bit corresponding to a given GPE in its enable register's enable_for_wake mask. Modify the ACPI suspend and wakeup code the use acpi_gpe_wakeup() instead of acpi_{enable|disable}_gpe() to set and clear GPE enable bits in their registers' enable_for_wake masks during system transitions to a sleep state and back to the working state, respectively. [This will allow us to drop the third argument of acpi_{enable|disable}_gpe() and simplify the GPE handling code.] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-24 23:18:39 +00:00
ACPI_EXPORT_SYMBOL(acpi_gpe_wakeup)
/*******************************************************************************
*
* FUNCTION: acpi_enable_gpe
*
* PARAMETERS: gpe_device - Parent GPE Device. NULL for GPE0/GPE1
* gpe_number - GPE level within the GPE block
*
* RETURN: Status
*
* DESCRIPTION: Add a reference to a GPE. On the first reference, the GPE is
* hardware-enabled.
*
******************************************************************************/
acpi_status acpi_enable_gpe(acpi_handle gpe_device, u32 gpe_number)
{
ACPI / ACPICA: Fix reference counting problems with GPE handlers If a handler is installed for a GPE associated with an AML method and such that it cannot wake up the system from sleep states, the GPE remains enabled after the handler has been installed, although it should be disabled in that case to avoid spurious execution of the handler. Fix this issue by making acpi_install_gpe_handler() disable GPEs that were previously associated with AML methods and cannot wake up the system from sleep states. Analogously, make acpi_remove_gpe_handler() enable the GPEs that are associated with AML methods after their handlers have been removed and cannot wake up the system from sleep states. In addition to that, fix a code ordering issue in acpi_remove_gpe_handler() that renders the locking ineffective (ACPI_MTX_EVENTS is released temporarily in the middle of the routine to wait for the completion of events already in progress). For this purpose introduce acpi_raw_disable_gpe() and acpi_raw_enable_gpe() to be called with acpi_gbl_gpe_lock held and rework acpi_disable_gpe() and acpi_enable_gpe(), respectively, to use them. Also rework acpi_gpe_can_wake() to use acpi_raw_disable_gpe() instead of calling acpi_disable_gpe() after releasing the lock to avoid the possible theoretical race with acpi_install_gpe_handler(). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: "Moore, Robert" <robert.moore@intel.com> Cc: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-08-03 21:55:14 +00:00
acpi_status status = AE_BAD_PARAMETER;
struct acpi_gpe_event_info *gpe_event_info;
acpi_cpu_flags flags;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_enable_gpe);
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
/* Ensure that we have a valid GPE number */
gpe_event_info = acpi_ev_get_gpe_event_info(gpe_device, gpe_number);
ACPI / ACPICA: Fix reference counting problems with GPE handlers If a handler is installed for a GPE associated with an AML method and such that it cannot wake up the system from sleep states, the GPE remains enabled after the handler has been installed, although it should be disabled in that case to avoid spurious execution of the handler. Fix this issue by making acpi_install_gpe_handler() disable GPEs that were previously associated with AML methods and cannot wake up the system from sleep states. Analogously, make acpi_remove_gpe_handler() enable the GPEs that are associated with AML methods after their handlers have been removed and cannot wake up the system from sleep states. In addition to that, fix a code ordering issue in acpi_remove_gpe_handler() that renders the locking ineffective (ACPI_MTX_EVENTS is released temporarily in the middle of the routine to wait for the completion of events already in progress). For this purpose introduce acpi_raw_disable_gpe() and acpi_raw_enable_gpe() to be called with acpi_gbl_gpe_lock held and rework acpi_disable_gpe() and acpi_enable_gpe(), respectively, to use them. Also rework acpi_gpe_can_wake() to use acpi_raw_disable_gpe() instead of calling acpi_disable_gpe() after releasing the lock to avoid the possible theoretical race with acpi_install_gpe_handler(). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: "Moore, Robert" <robert.moore@intel.com> Cc: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-08-03 21:55:14 +00:00
if (gpe_event_info) {
status = acpi_raw_enable_gpe(gpe_event_info);
}
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_enable_gpe)
/*******************************************************************************
*
* FUNCTION: acpi_disable_gpe
*
* PARAMETERS: gpe_device - Parent GPE Device. NULL for GPE0/GPE1
* gpe_number - GPE level within the GPE block
*
* RETURN: Status
*
* DESCRIPTION: Remove a reference to a GPE. When the last reference is
* removed, only then is the GPE disabled (for runtime GPEs), or
* the GPE mask bit disabled (for wake GPEs)
*
******************************************************************************/
acpi_status acpi_disable_gpe(acpi_handle gpe_device, u32 gpe_number)
{
ACPI / ACPICA: Fix reference counting problems with GPE handlers If a handler is installed for a GPE associated with an AML method and such that it cannot wake up the system from sleep states, the GPE remains enabled after the handler has been installed, although it should be disabled in that case to avoid spurious execution of the handler. Fix this issue by making acpi_install_gpe_handler() disable GPEs that were previously associated with AML methods and cannot wake up the system from sleep states. Analogously, make acpi_remove_gpe_handler() enable the GPEs that are associated with AML methods after their handlers have been removed and cannot wake up the system from sleep states. In addition to that, fix a code ordering issue in acpi_remove_gpe_handler() that renders the locking ineffective (ACPI_MTX_EVENTS is released temporarily in the middle of the routine to wait for the completion of events already in progress). For this purpose introduce acpi_raw_disable_gpe() and acpi_raw_enable_gpe() to be called with acpi_gbl_gpe_lock held and rework acpi_disable_gpe() and acpi_enable_gpe(), respectively, to use them. Also rework acpi_gpe_can_wake() to use acpi_raw_disable_gpe() instead of calling acpi_disable_gpe() after releasing the lock to avoid the possible theoretical race with acpi_install_gpe_handler(). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: "Moore, Robert" <robert.moore@intel.com> Cc: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-08-03 21:55:14 +00:00
acpi_status status = AE_BAD_PARAMETER;
struct acpi_gpe_event_info *gpe_event_info;
acpi_cpu_flags flags;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_disable_gpe);
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
/* Ensure that we have a valid GPE number */
gpe_event_info = acpi_ev_get_gpe_event_info(gpe_device, gpe_number);
ACPI / ACPICA: Fix reference counting problems with GPE handlers If a handler is installed for a GPE associated with an AML method and such that it cannot wake up the system from sleep states, the GPE remains enabled after the handler has been installed, although it should be disabled in that case to avoid spurious execution of the handler. Fix this issue by making acpi_install_gpe_handler() disable GPEs that were previously associated with AML methods and cannot wake up the system from sleep states. Analogously, make acpi_remove_gpe_handler() enable the GPEs that are associated with AML methods after their handlers have been removed and cannot wake up the system from sleep states. In addition to that, fix a code ordering issue in acpi_remove_gpe_handler() that renders the locking ineffective (ACPI_MTX_EVENTS is released temporarily in the middle of the routine to wait for the completion of events already in progress). For this purpose introduce acpi_raw_disable_gpe() and acpi_raw_enable_gpe() to be called with acpi_gbl_gpe_lock held and rework acpi_disable_gpe() and acpi_enable_gpe(), respectively, to use them. Also rework acpi_gpe_can_wake() to use acpi_raw_disable_gpe() instead of calling acpi_disable_gpe() after releasing the lock to avoid the possible theoretical race with acpi_install_gpe_handler(). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: "Moore, Robert" <robert.moore@intel.com> Cc: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2010-08-03 21:55:14 +00:00
if (gpe_event_info) {
status = acpi_raw_disable_gpe(gpe_event_info) ;
}
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_disable_gpe)
ACPI / ACPICA: Do not execute _PRW methods during initialization Currently, during initialization ACPICA walks the entire ACPI namespace in search of any device objects with assciated _PRW methods. All of the _PRW methods found are executed in the process to extract the GPE information returned by them, so that the GPEs in question can be marked as "able to wakeup" (more precisely, the ACPI_GPE_CAN_WAKE flag is set for them). The only purpose of this exercise is to avoid enabling the CAN_WAKE GPEs automatically, even if there are _Lxx/_Exx methods associated with them. However, it is both costly and unnecessary, because the host OS has to execute the _PRW methods anyway to check which devices can wake up the system from sleep states. Moreover, it then uses full information returned by _PRW, including the GPE information, so it can take care of disabling the GPEs if necessary. Remove the code that walks the namespace and executes _PRW from ACPICA and modify comments to reflect that change. Make acpi_bus_set_run_wake_flags() disable GPEs for wakeup devices so that they don't cause spurious wakeup events to be signaled. This not only reduces the complexity of the ACPICA initialization code, but in some cases it should reduce the kernel boot time as well. Unfortunately, for this purpose we need a new ACPICA function, acpi_gpe_can_wake(), to be called by the host OS in order to disable the GPEs that can wake up the system and were previously enabled by acpi_ev_initialize_gpe_block() or acpi_ev_update_gpes() (such a GPE should be disabled only once, because the initialization code enables it only once, but it may be pointed to by _PRW for multiple devices and that's why the additional function is necessary). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com>
2010-07-07 22:43:36 +00:00
/*******************************************************************************
*
* FUNCTION: acpi_gpe_can_wake
*
* PARAMETERS: gpe_device - Parent GPE Device. NULL for GPE0/GPE1
* gpe_number - GPE level within the GPE block
*
* RETURN: Status
*
* DESCRIPTION: Set the ACPI_GPE_CAN_WAKE flag for the given GPE. If the GPE
* has a corresponding method and is currently enabled, disable it
* (GPEs with corresponding methods are enabled unconditionally
* during initialization, but GPEs that can wake up are expected
* to be initially disabled).
*
******************************************************************************/
acpi_status acpi_gpe_can_wake(acpi_handle gpe_device, u32 gpe_number)
{
acpi_status status = AE_OK;
struct acpi_gpe_event_info *gpe_event_info;
acpi_cpu_flags flags;
ACPI_FUNCTION_TRACE(acpi_gpe_can_wake);
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
/* Ensure that we have a valid GPE number */
gpe_event_info = acpi_ev_get_gpe_event_info(gpe_device, gpe_number);
if (gpe_event_info) {
gpe_event_info->flags |= ACPI_GPE_CAN_WAKE;
} else {
status = AE_BAD_PARAMETER;
}
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS(status);
}
ACPI / ACPICA: Do not execute _PRW methods during initialization Currently, during initialization ACPICA walks the entire ACPI namespace in search of any device objects with assciated _PRW methods. All of the _PRW methods found are executed in the process to extract the GPE information returned by them, so that the GPEs in question can be marked as "able to wakeup" (more precisely, the ACPI_GPE_CAN_WAKE flag is set for them). The only purpose of this exercise is to avoid enabling the CAN_WAKE GPEs automatically, even if there are _Lxx/_Exx methods associated with them. However, it is both costly and unnecessary, because the host OS has to execute the _PRW methods anyway to check which devices can wake up the system from sleep states. Moreover, it then uses full information returned by _PRW, including the GPE information, so it can take care of disabling the GPEs if necessary. Remove the code that walks the namespace and executes _PRW from ACPICA and modify comments to reflect that change. Make acpi_bus_set_run_wake_flags() disable GPEs for wakeup devices so that they don't cause spurious wakeup events to be signaled. This not only reduces the complexity of the ACPICA initialization code, but in some cases it should reduce the kernel boot time as well. Unfortunately, for this purpose we need a new ACPICA function, acpi_gpe_can_wake(), to be called by the host OS in order to disable the GPEs that can wake up the system and were previously enabled by acpi_ev_initialize_gpe_block() or acpi_ev_update_gpes() (such a GPE should be disabled only once, because the initialization code enables it only once, but it may be pointed to by _PRW for multiple devices and that's why the additional function is necessary). Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Len Brown <len.brown@intel.com>
2010-07-07 22:43:36 +00:00
ACPI_EXPORT_SYMBOL(acpi_gpe_can_wake)
/*******************************************************************************
*
* FUNCTION: acpi_disable_event
*
* PARAMETERS: Event - The fixed eventto be enabled
* Flags - Reserved
*
* RETURN: Status
*
* DESCRIPTION: Disable an ACPI event (fixed)
*
******************************************************************************/
acpi_status acpi_disable_event(u32 event, u32 flags)
{
acpi_status status = AE_OK;
u32 value;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_disable_event);
/* Decode the Fixed Event */
if (event > ACPI_EVENT_MAX) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
/*
* Disable the requested fixed event (by writing a zero to the enable
* register bit)
*/
status =
acpi_write_bit_register(acpi_gbl_fixed_event_info[event].
enable_register_id, ACPI_DISABLE_EVENT);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
status =
acpi_read_bit_register(acpi_gbl_fixed_event_info[event].
enable_register_id, &value);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
if (value != 0) {
[ACPI] ACPICA 20060127 Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled (true on Linux unless acpi=strict), these unresolved references will be passed through to the caller as a NULL package entry. http://bugzilla.kernel.org/show_bug.cgi?id=5741 Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. Implemented the acpi_cpu_flags type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Suggested by Steven Rostedt and Andrew Morton. Fixed a problem where Alias ASL operators are sometimes not correctly resolved. causing AE_AML_INTERNAL http://bugzilla.kernel.org/show_bug.cgi?id=5189 http://bugzilla.kernel.org/show_bug.cgi?id=5674 Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-01-27 21:43:00 +00:00
ACPI_ERROR((AE_INFO,
"Could not disable %s events",
acpi_ut_get_event_name(event)));
return_ACPI_STATUS(AE_NO_HARDWARE_RESPONSE);
}
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_disable_event)
/*******************************************************************************
*
* FUNCTION: acpi_clear_event
*
* PARAMETERS: Event - The fixed event to be cleared
*
* RETURN: Status
*
* DESCRIPTION: Clear an ACPI event (fixed)
*
******************************************************************************/
acpi_status acpi_clear_event(u32 event)
{
acpi_status status = AE_OK;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_clear_event);
/* Decode the Fixed Event */
if (event > ACPI_EVENT_MAX) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
/*
* Clear the requested fixed event (By writing a one to the status
* register bit)
*/
status =
acpi_write_bit_register(acpi_gbl_fixed_event_info[event].
status_register_id, ACPI_CLEAR_STATUS);
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_clear_event)
/*******************************************************************************
*
* FUNCTION: acpi_clear_gpe
*
* PARAMETERS: gpe_device - Parent GPE Device. NULL for GPE0/GPE1
* gpe_number - GPE level within the GPE block
*
* RETURN: Status
*
* DESCRIPTION: Clear an ACPI event (general purpose)
*
******************************************************************************/
acpi_status acpi_clear_gpe(acpi_handle gpe_device, u32 gpe_number)
{
acpi_status status = AE_OK;
struct acpi_gpe_event_info *gpe_event_info;
acpi_cpu_flags flags;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_clear_gpe);
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
/* Ensure that we have a valid GPE number */
gpe_event_info = acpi_ev_get_gpe_event_info(gpe_device, gpe_number);
if (!gpe_event_info) {
status = AE_BAD_PARAMETER;
goto unlock_and_exit;
}
status = acpi_hw_clear_gpe(gpe_event_info);
unlock_and_exit:
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_clear_gpe)
/*******************************************************************************
*
* FUNCTION: acpi_get_event_status
*
* PARAMETERS: Event - The fixed event
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 02:49:35 +00:00
* event_status - Where the current status of the event will
* be returned
*
* RETURN: Status
*
* DESCRIPTION: Obtains and returns the current status of the event
*
******************************************************************************/
acpi_status acpi_get_event_status(u32 event, acpi_event_status * event_status)
{
acpi_status status = AE_OK;
u32 value;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_get_event_status);
if (!event_status) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
/* Decode the Fixed Event */
if (event > ACPI_EVENT_MAX) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
/* Get the status of the requested fixed event */
status =
acpi_read_bit_register(acpi_gbl_fixed_event_info[event].
enable_register_id, &value);
if (ACPI_FAILURE(status))
return_ACPI_STATUS(status);
*event_status = value;
status =
acpi_read_bit_register(acpi_gbl_fixed_event_info[event].
status_register_id, &value);
if (ACPI_FAILURE(status))
return_ACPI_STATUS(status);
if (value)
*event_status |= ACPI_EVENT_FLAG_SET;
if (acpi_gbl_fixed_event_handlers[event].handler)
*event_status |= ACPI_EVENT_FLAG_HANDLE;
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_get_event_status)
/*******************************************************************************
*
* FUNCTION: acpi_get_gpe_status
*
* PARAMETERS: gpe_device - Parent GPE Device. NULL for GPE0/GPE1
* gpe_number - GPE level within the GPE block
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 02:49:35 +00:00
* event_status - Where the current status of the event will
* be returned
*
* RETURN: Status
*
* DESCRIPTION: Get status of an event (general purpose)
*
******************************************************************************/
acpi_status
acpi_get_gpe_status(acpi_handle gpe_device,
u32 gpe_number, acpi_event_status *event_status)
{
acpi_status status = AE_OK;
struct acpi_gpe_event_info *gpe_event_info;
acpi_cpu_flags flags;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_get_gpe_status);
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
/* Ensure that we have a valid GPE number */
gpe_event_info = acpi_ev_get_gpe_event_info(gpe_device, gpe_number);
if (!gpe_event_info) {
status = AE_BAD_PARAMETER;
goto unlock_and_exit;
}
/* Obtain status on the requested GPE number */
status = acpi_hw_get_gpe_status(gpe_event_info, event_status);
if (gpe_event_info->flags & ACPI_GPE_DISPATCH_MASK)
*event_status |= ACPI_EVENT_FLAG_HANDLE;
unlock_and_exit:
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_get_gpe_status)
/*******************************************************************************
*
* FUNCTION: acpi_install_gpe_block
*
* PARAMETERS: gpe_device - Handle to the parent GPE Block Device
* gpe_block_address - Address and space_iD
* register_count - Number of GPE register pairs in the block
2005-05-13 04:00:00 +00:00
* interrupt_number - H/W interrupt for the block
*
* RETURN: Status
*
* DESCRIPTION: Create and Install a block of GPE registers
*
******************************************************************************/
acpi_status
acpi_install_gpe_block(acpi_handle gpe_device,
struct acpi_generic_address *gpe_block_address,
u32 register_count, u32 interrupt_number)
{
acpi_status status = AE_OK;
union acpi_operand_object *obj_desc;
struct acpi_namespace_node *node;
struct acpi_gpe_block_info *gpe_block;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_install_gpe_block);
if ((!gpe_device) || (!gpe_block_address) || (!register_count)) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
status = acpi_ut_acquire_mutex(ACPI_MTX_NAMESPACE);
if (ACPI_FAILURE(status)) {
return (status);
}
node = acpi_ns_validate_handle(gpe_device);
if (!node) {
status = AE_BAD_PARAMETER;
goto unlock_and_exit;
}
/*
* For user-installed GPE Block Devices, the gpe_block_base_number
* is always zero
*/
status =
acpi_ev_create_gpe_block(node, gpe_block_address, register_count, 0,
interrupt_number, &gpe_block);
if (ACPI_FAILURE(status)) {
goto unlock_and_exit;
}
/* Install block in the device_object attached to the node */
obj_desc = acpi_ns_get_attached_object(node);
if (!obj_desc) {
/*
* No object, create a new one (Device nodes do not always have
* an attached object)
*/
obj_desc = acpi_ut_create_internal_object(ACPI_TYPE_DEVICE);
if (!obj_desc) {
status = AE_NO_MEMORY;
goto unlock_and_exit;
}
status =
acpi_ns_attach_object(node, obj_desc, ACPI_TYPE_DEVICE);
/* Remove local reference to the object */
acpi_ut_remove_reference(obj_desc);
if (ACPI_FAILURE(status)) {
goto unlock_and_exit;
}
}
/* Now install the GPE block in the device_object */
obj_desc->device.gpe_block = gpe_block;
unlock_and_exit:
(void)acpi_ut_release_mutex(ACPI_MTX_NAMESPACE);
return_ACPI_STATUS(status);
}
ACPI_EXPORT_SYMBOL(acpi_install_gpe_block)
/*******************************************************************************
*
* FUNCTION: acpi_remove_gpe_block
*
* PARAMETERS: gpe_device - Handle to the parent GPE Block Device
*
* RETURN: Status
*
* DESCRIPTION: Remove a previously installed block of GPE registers
*
******************************************************************************/
acpi_status acpi_remove_gpe_block(acpi_handle gpe_device)
{
union acpi_operand_object *obj_desc;
acpi_status status;
struct acpi_namespace_node *node;
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
ACPI_FUNCTION_TRACE(acpi_remove_gpe_block);
if (!gpe_device) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
status = acpi_ut_acquire_mutex(ACPI_MTX_NAMESPACE);
if (ACPI_FAILURE(status)) {
return (status);
}
node = acpi_ns_validate_handle(gpe_device);
if (!node) {
status = AE_BAD_PARAMETER;
goto unlock_and_exit;
}
/* Get the device_object attached to the node */
obj_desc = acpi_ns_get_attached_object(node);
if (!obj_desc || !obj_desc->device.gpe_block) {
return_ACPI_STATUS(AE_NULL_OBJECT);
}
/* Delete the GPE block (but not the device_object) */
status = acpi_ev_delete_gpe_block(obj_desc->device.gpe_block);
if (ACPI_SUCCESS(status)) {
obj_desc->device.gpe_block = NULL;
}
unlock_and_exit:
(void)acpi_ut_release_mutex(ACPI_MTX_NAMESPACE);
return_ACPI_STATUS(status);
}
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 02:49:35 +00:00
ACPI_EXPORT_SYMBOL(acpi_remove_gpe_block)
/*******************************************************************************
*
* FUNCTION: acpi_get_gpe_device
*
* PARAMETERS: Index - System GPE index (0-current_gpe_count)
* gpe_device - Where the parent GPE Device is returned
*
* RETURN: Status
*
* DESCRIPTION: Obtain the GPE device associated with the input index. A NULL
* gpe device indicates that the gpe number is contained in one of
* the FADT-defined gpe blocks. Otherwise, the GPE block device.
*
******************************************************************************/
acpi_status
acpi_get_gpe_device(u32 index, acpi_handle *gpe_device)
{
struct acpi_gpe_device_info info;
acpi_status status;
ACPI_FUNCTION_TRACE(acpi_get_gpe_device);
if (!gpe_device) {
return_ACPI_STATUS(AE_BAD_PARAMETER);
}
if (index >= acpi_current_gpe_count) {
return_ACPI_STATUS(AE_NOT_EXIST);
}
/* Setup and walk the GPE list */
info.index = index;
info.status = AE_NOT_EXIST;
info.gpe_device = NULL;
info.next_block_base_index = 0;
status = acpi_ev_walk_gpe_list(acpi_ev_get_gpe_device, &info);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
*gpe_device = info.gpe_device;
return_ACPI_STATUS(info.status);
}
ACPI_EXPORT_SYMBOL(acpi_get_gpe_device)
/*******************************************************************************
*
* FUNCTION: acpi_ev_get_gpe_device
*
* PARAMETERS: GPE_WALK_CALLBACK
*
* RETURN: Status
*
* DESCRIPTION: Matches the input GPE index (0-current_gpe_count) with a GPE
* block device. NULL if the GPE is one of the FADT-defined GPEs.
*
******************************************************************************/
static acpi_status
acpi_ev_get_gpe_device(struct acpi_gpe_xrupt_info *gpe_xrupt_info,
struct acpi_gpe_block_info *gpe_block, void *context)
{
struct acpi_gpe_device_info *info = context;
/* Increment Index by the number of GPEs in this block */
info->next_block_base_index += gpe_block->gpe_count;
if (info->index < info->next_block_base_index) {
/*
* The GPE index is within this block, get the node. Leave the node
* NULL for the FADT-defined GPEs
*/
if ((gpe_block->node)->type == ACPI_TYPE_DEVICE) {
info->gpe_device = gpe_block->node;
}
info->status = AE_OK;
return (AE_CTRL_END);
}
return (AE_OK);
}
/******************************************************************************
*
* FUNCTION: acpi_disable_all_gpes
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Disable and clear all GPEs in all GPE blocks
*
******************************************************************************/
acpi_status acpi_disable_all_gpes(void)
{
acpi_status status;
ACPI_FUNCTION_TRACE(acpi_disable_all_gpes);
status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
status = acpi_hw_disable_all_gpes();
(void)acpi_ut_release_mutex(ACPI_MTX_EVENTS);
return_ACPI_STATUS(status);
}
/******************************************************************************
*
* FUNCTION: acpi_enable_all_runtime_gpes
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Enable all "runtime" GPEs, in all GPE blocks
*
******************************************************************************/
acpi_status acpi_enable_all_runtime_gpes(void)
{
acpi_status status;
ACPI_FUNCTION_TRACE(acpi_enable_all_runtime_gpes);
status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
status = acpi_hw_enable_all_runtime_gpes();
(void)acpi_ut_release_mutex(ACPI_MTX_EVENTS);
return_ACPI_STATUS(status);
}
/******************************************************************************
*
* FUNCTION: acpi_update_gpes
*
* PARAMETERS: None
*
* RETURN: None
*
* DESCRIPTION: Enable all GPEs that have associated _Lxx or _Exx methods and
* are not pointed to by any device _PRW methods indicating that
* these GPEs are generally intended for system or device wakeup
* (such GPEs have to be enabled directly when the devices whose
* _PRW methods point to them are set up for wakeup signaling).
*
******************************************************************************/
acpi_status acpi_update_gpes(void)
{
acpi_status status;
ACPI_FUNCTION_TRACE(acpi_update_gpes);
status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
} else if (acpi_all_gpes_initialized) {
goto unlock;
}
status = acpi_ev_walk_gpe_list(acpi_ev_initialize_gpe_block, NULL);
if (ACPI_SUCCESS(status)) {
acpi_all_gpes_initialized = TRUE;
}
unlock:
(void)acpi_ut_release_mutex(ACPI_MTX_EVENTS);
return_ACPI_STATUS(status);
}