vm: improve kstack_object pindex calculation to avoid pindex holes

This commit replaces the linear transformation of kernel virtual
addresses to kstack_object pindex values with a non-linear
scheme that circumvents physical memory fragmentation caused by
kernel stack guard pages. The new mapping scheme is used to
effectively "skip" guard pages and assign pindices for
non-guard pages in a contiguous fashion.

The new allocation scheme requires that all default-sized kstack KVAs
come from a separate, specially aligned region of the KVA space.
For this to work, this commited introduces a dedicated per-domain
kstack KVA arena used to allocate kernel stacks of default size.
The behaviour on 32-bit platforms remains unchanged due to a
significatly smaller KVA space.

Aside from fullfilling the requirements imposed by the new scheme, a
separate kstack KVA arena facilitates superpage promotion in the rest
of kernel and causes most kstacks to have guard pages at both ends.

Reviewed by:  alc, kib, markj
Tested by:    markj
Approved by:  markj (mentor)
Differential Revision: https://reviews.freebsd.org/D38852
This commit is contained in:
Bojan Novković 2024-04-09 21:02:12 +02:00
parent 014d7082a2
commit 7a79d06697
5 changed files with 318 additions and 66 deletions

View File

@ -366,7 +366,8 @@ struct thread {
struct callout td_slpcallout; /* (h) Callout for sleep. */
struct trapframe *td_frame; /* (k) */
vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */
int td_kstack_pages; /* (a) Size of the kstack. */
u_short td_kstack_pages; /* (a) Size of the kstack. */
u_short td_kstack_domain; /* (a) Domain backing kstack KVA. */
volatile u_int td_critnest; /* (k*) Critical section nest level. */
struct mdthread td_md; /* (k) Any machine-dependent fields. */
struct kaudit_record *td_ar; /* (k) Active audit record, if any. */

View File

@ -127,8 +127,10 @@ struct sf_buf *vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset);
void vm_imgact_unmap_page(struct sf_buf *sf);
void vm_thread_dispose(struct thread *td);
int vm_thread_new(struct thread *td, int pages);
void vm_thread_stack_back(struct domainset *ds, vm_offset_t kaddr,
vm_page_t ma[], int npages, int req_class);
vm_pindex_t vm_kstack_pindex(vm_offset_t ks, int npages);
vm_object_t vm_thread_kstack_size_to_obj(int npages);
int vm_thread_stack_back(vm_offset_t kaddr, vm_page_t ma[], int npages,
int req_class, int domain);
u_int vm_active_count(void);
u_int vm_inactive_count(void);
u_int vm_laundry_count(void);

View File

@ -96,14 +96,23 @@
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pagequeue.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>
#include <vm/vm_phys.h>
#include <machine/cpu.h>
#if VM_NRESERVLEVEL > 0
#define KVA_KSTACK_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
#else
#define KVA_KSTACK_QUANTUM_SHIFT (8 + PAGE_SHIFT)
#endif
#define KVA_KSTACK_QUANTUM (1ul << KVA_KSTACK_QUANTUM_SHIFT)
/*
* MPSAFE
*
@ -262,9 +271,11 @@ vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
pmap_sync_icache(map->pmap, va, sz);
}
vm_object_t kstack_object;
static vm_object_t kstack_object;
static vm_object_t kstack_alt_object;
static uma_zone_t kstack_cache;
static int kstack_cache_size;
static vmem_t *vmd_kstack_arena[MAXMEMDOM];
static int
sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
@ -282,63 +293,218 @@ SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size,
sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks");
/*
* Create the kernel stack (including pcb for i386) for a new thread.
* Allocate a virtual address range from a domain kstack arena, following
* the specified NUMA policy.
*/
static vm_offset_t
vm_thread_alloc_kstack_kva(vm_size_t size, int domain)
{
#ifndef __ILP32__
int rv;
vmem_t *arena;
vm_offset_t addr = 0;
size = round_page(size);
/* Allocate from the kernel arena for non-standard kstack sizes. */
if (size != ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
arena = vm_dom[domain].vmd_kernel_arena;
} else {
arena = vmd_kstack_arena[domain];
}
rv = vmem_alloc(arena, size, M_BESTFIT | M_NOWAIT, &addr);
if (rv == ENOMEM)
return (0);
KASSERT(atop(addr - VM_MIN_KERNEL_ADDRESS) %
(kstack_pages + KSTACK_GUARD_PAGES) == 0,
("%s: allocated kstack KVA not aligned to multiple of kstack size",
__func__));
return (addr);
#else
return (kva_alloc(size));
#endif
}
/*
* Release a region of kernel virtual memory
* allocated from the kstack arena.
*/
static __noinline void
vm_thread_free_kstack_kva(vm_offset_t addr, vm_size_t size, int domain)
{
vmem_t *arena;
size = round_page(size);
#ifdef __ILP32__
arena = kernel_arena;
#else
arena = vmd_kstack_arena[domain];
if (size != ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
arena = vm_dom[domain].vmd_kernel_arena;
}
#endif
vmem_free(arena, addr, size);
}
static vmem_size_t
vm_thread_kstack_import_quantum(void)
{
#ifndef __ILP32__
/*
* The kstack_quantum is larger than KVA_QUANTUM to account
* for holes induced by guard pages.
*/
return (KVA_KSTACK_QUANTUM * (kstack_pages + KSTACK_GUARD_PAGES));
#else
return (KVA_KSTACK_QUANTUM);
#endif
}
/*
* Import KVA from a parent arena into the kstack arena. Imports must be
* a multiple of kernel stack pages + guard pages in size.
*
* Kstack VA allocations need to be aligned so that the linear KVA pindex
* is divisible by the total number of kstack VA pages. This is necessary to
* make vm_kstack_pindex work properly.
*
* We import a multiple of KVA_KSTACK_QUANTUM-sized region from the parent
* arena. The actual size used by the kstack arena is one kstack smaller to
* allow for the necessary alignment adjustments to be made.
*/
static int
vm_thread_kstack_arena_import(void *arena, vmem_size_t size, int flags,
vmem_addr_t *addrp)
{
int error, rem;
size_t kpages = kstack_pages + KSTACK_GUARD_PAGES;
KASSERT(atop(size) % kpages == 0,
("%s: Size %jd is not a multiple of kstack pages (%d)", __func__,
(intmax_t)size, (int)kpages));
error = vmem_xalloc(arena, vm_thread_kstack_import_quantum(),
KVA_KSTACK_QUANTUM, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags,
addrp);
if (error) {
return (error);
}
rem = atop(*addrp - VM_MIN_KERNEL_ADDRESS) % kpages;
if (rem != 0) {
/* Bump addr to next aligned address */
*addrp = *addrp + (kpages - rem) * PAGE_SIZE;
}
return (0);
}
/*
* Release KVA from a parent arena into the kstack arena. Released imports must
* be a multiple of kernel stack pages + guard pages in size.
*/
static void
vm_thread_kstack_arena_release(void *arena, vmem_addr_t addr, vmem_size_t size)
{
int rem;
size_t kpages __diagused = kstack_pages + KSTACK_GUARD_PAGES;
KASSERT(size % kpages == 0,
("%s: Size %jd is not a multiple of kstack pages (%d)", __func__,
(intmax_t)size, (int)kpages));
KASSERT((addr - VM_MIN_KERNEL_ADDRESS) % kpages == 0,
("%s: Address %p is not properly aligned (%p)", __func__,
(void *)addr, (void *)VM_MIN_KERNEL_ADDRESS));
/*
* If the address is not KVA_KSTACK_QUANTUM-aligned we have to decrement
* it to account for the shift in kva_import_kstack.
*/
rem = addr % KVA_KSTACK_QUANTUM;
if (rem) {
KASSERT(rem <= ptoa(kpages),
("%s: rem > kpages (%d), (%d)", __func__, rem,
(int)kpages));
addr -= rem;
}
vmem_xfree(arena, addr, vm_thread_kstack_import_quantum());
}
/*
* Create the kernel stack for a new thread.
*/
static vm_offset_t
vm_thread_stack_create(struct domainset *ds, int pages)
{
vm_page_t ma[KSTACK_MAX_PAGES];
struct vm_domainset_iter di;
int req = VM_ALLOC_NORMAL;
vm_object_t obj;
vm_offset_t ks;
int i;
int domain, i;
/*
* Get a kernel virtual address for this thread's kstack.
*/
ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
if (ks == 0) {
printf("%s: kstack allocation failed\n", __func__);
return (0);
}
obj = vm_thread_kstack_size_to_obj(pages);
if (vm_ndomains > 1)
obj->domain.dr_policy = ds;
vm_domainset_iter_page_init(&di, obj, 0, &domain, &req);
do {
/*
* Get a kernel virtual address for this thread's kstack.
*/
ks = vm_thread_alloc_kstack_kva(ptoa(pages + KSTACK_GUARD_PAGES),
domain);
if (ks == 0)
continue;
ks += ptoa(KSTACK_GUARD_PAGES);
if (KSTACK_GUARD_PAGES != 0) {
pmap_qremove(ks, KSTACK_GUARD_PAGES);
ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
}
/*
* Allocate physical pages to back the stack.
*/
if (vm_thread_stack_back(ks, ma, pages, req, domain) != 0) {
vm_thread_free_kstack_kva(ks - ptoa(KSTACK_GUARD_PAGES),
ptoa(pages + KSTACK_GUARD_PAGES), domain);
continue;
}
if (KSTACK_GUARD_PAGES != 0) {
pmap_qremove(ks - ptoa(KSTACK_GUARD_PAGES),
KSTACK_GUARD_PAGES);
}
for (i = 0; i < pages; i++)
vm_page_valid(ma[i]);
pmap_qenter(ks, ma, pages);
return (ks);
} while (vm_domainset_iter_page(&di, obj, &domain) == 0);
/*
* Allocate physical pages to back the stack.
*/
vm_thread_stack_back(ds, ks, ma, pages, VM_ALLOC_NORMAL);
for (i = 0; i < pages; i++)
vm_page_valid(ma[i]);
pmap_qenter(ks, ma, pages);
return (ks);
return (0);
}
static void
static __noinline void
vm_thread_stack_dispose(vm_offset_t ks, int pages)
{
vm_page_t m;
vm_pindex_t pindex;
int i;
pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
int i, domain;
vm_object_t obj = vm_thread_kstack_size_to_obj(pages);
pindex = vm_kstack_pindex(ks, pages);
domain = vm_phys_domain(vtophys(ks));
pmap_qremove(ks, pages);
VM_OBJECT_WLOCK(kstack_object);
VM_OBJECT_WLOCK(obj);
for (i = 0; i < pages; i++) {
m = vm_page_lookup(kstack_object, pindex + i);
m = vm_page_lookup(obj, pindex + i);
if (m == NULL)
panic("%s: kstack already missing?", __func__);
KASSERT(vm_page_domain(m) == domain,
("%s: page %p domain mismatch, expected %d got %d",
__func__, m, domain, vm_page_domain(m)));
vm_page_xbusy_claim(m);
vm_page_unwire_noq(m);
vm_page_free(m);
}
VM_OBJECT_WUNLOCK(kstack_object);
VM_OBJECT_WUNLOCK(obj);
kasan_mark((void *)ks, ptoa(pages), ptoa(pages), 0);
kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
(pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
vm_thread_free_kstack_kva(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
ptoa(pages + KSTACK_GUARD_PAGES), domain);
}
/*
@ -348,6 +514,7 @@ int
vm_thread_new(struct thread *td, int pages)
{
vm_offset_t ks;
u_short ks_domain;
/* Bounds check */
if (pages <= 1)
@ -369,8 +536,13 @@ vm_thread_new(struct thread *td, int pages)
pages);
if (ks == 0)
return (0);
ks_domain = vm_phys_domain(vtophys(ks));
KASSERT(ks_domain >= 0 && ks_domain < vm_ndomains,
("%s: invalid domain for kstack %p", __func__, (void *)ks));
td->td_kstack = ks;
td->td_kstack_pages = pages;
td->td_kstack_domain = ks_domain;
kasan_mark((void *)ks, ptoa(pages), ptoa(pages), 0);
kmsan_mark((void *)ks, ptoa(pages), KMSAN_STATE_UNINIT);
return (1);
@ -389,6 +561,7 @@ vm_thread_dispose(struct thread *td)
ks = td->td_kstack;
td->td_kstack = 0;
td->td_kstack_pages = 0;
td->td_kstack_domain = MAXMEMDOM;
kasan_mark((void *)ks, 0, ptoa(pages), KASAN_KSTACK_FREED);
if (pages == kstack_pages)
uma_zfree(kstack_cache, (void *)ks);
@ -396,33 +569,78 @@ vm_thread_dispose(struct thread *td)
vm_thread_stack_dispose(ks, pages);
}
/*
* Calculate kstack pindex.
*
* Uses a non-identity mapping if guard pages are
* active to avoid pindex holes in the kstack object.
*/
vm_pindex_t
vm_kstack_pindex(vm_offset_t ks, int kpages)
{
vm_pindex_t pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
#ifdef __ILP32__
return (pindex);
#else
/*
* Return the linear pindex if guard pages aren't active or if we are
* allocating a non-standard kstack size.
*/
if (KSTACK_GUARD_PAGES == 0 || kpages != kstack_pages) {
return (pindex);
}
KASSERT(pindex % (kpages + KSTACK_GUARD_PAGES) >= KSTACK_GUARD_PAGES,
("%s: Attempting to calculate kstack guard page pindex", __func__));
return (pindex -
(pindex / (kpages + KSTACK_GUARD_PAGES) + 1) * KSTACK_GUARD_PAGES);
#endif
}
/*
* Allocate physical pages, following the specified NUMA policy, to back a
* kernel stack.
*/
void
vm_thread_stack_back(struct domainset *ds, vm_offset_t ks, vm_page_t ma[],
int npages, int req_class)
int
vm_thread_stack_back(vm_offset_t ks, vm_page_t ma[], int npages, int req_class,
int domain)
{
vm_object_t obj = vm_thread_kstack_size_to_obj(npages);
vm_pindex_t pindex;
vm_page_t m;
int n;
pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
pindex = vm_kstack_pindex(ks, npages);
VM_OBJECT_WLOCK(kstack_object);
VM_OBJECT_WLOCK(obj);
for (n = 0; n < npages;) {
if (vm_ndomains > 1)
kstack_object->domain.dr_policy = ds;
/*
* Use WAITFAIL to force a reset of the domain selection policy
* if we had to sleep for pages.
*/
n += vm_page_grab_pages(kstack_object, pindex + n,
req_class | VM_ALLOC_WIRED | VM_ALLOC_WAITFAIL,
&ma[n], npages - n);
m = vm_page_grab(obj, pindex + n,
VM_ALLOC_NOCREAT | VM_ALLOC_WIRED);
if (m == NULL) {
m = vm_page_alloc_domain(obj, pindex + n, domain,
req_class | VM_ALLOC_WIRED);
}
if (m == NULL)
break;
ma[n++] = m;
}
VM_OBJECT_WUNLOCK(kstack_object);
if (n < npages)
goto cleanup;
VM_OBJECT_WUNLOCK(obj);
return (0);
cleanup:
vm_object_page_remove(obj, pindex, pindex + n, 0);
VM_OBJECT_WUNLOCK(obj);
return (ENOMEM);
}
vm_object_t
vm_thread_kstack_size_to_obj(int npages)
{
return (npages == kstack_pages ? kstack_object : kstack_alt_object);
}
static int
@ -459,6 +677,9 @@ kstack_release(void *arg, void **store, int cnt)
static void
kstack_cache_init(void *null)
{
vm_size_t kstack_quantum;
int domain;
kstack_object = vm_object_allocate(OBJT_SWAP,
atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
kstack_cache = uma_zcache_create("kstack_cache",
@ -467,6 +688,31 @@ kstack_cache_init(void *null)
UMA_ZONE_FIRSTTOUCH);
kstack_cache_size = imax(128, mp_ncpus * 4);
uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
kstack_alt_object = vm_object_allocate(OBJT_SWAP,
atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
kstack_quantum = vm_thread_kstack_import_quantum();
/*
* Reduce size used by the kstack arena to allow for
* alignment adjustments in vm_thread_kstack_arena_import.
*/
kstack_quantum -= (kstack_pages + KSTACK_GUARD_PAGES) * PAGE_SIZE;
/*
* Create the kstack_arena for each domain and set kernel_arena as
* parent.
*/
for (domain = 0; domain < vm_ndomains; domain++) {
vmd_kstack_arena[domain] = vmem_create("kstack arena", 0, 0,
PAGE_SIZE, 0, M_WAITOK);
KASSERT(vmd_kstack_arena[domain] != NULL,
("%s: failed to create domain %d kstack_arena", __func__,
domain));
vmem_set_import(vmd_kstack_arena[domain],
vm_thread_kstack_arena_import,
vm_thread_kstack_arena_release,
vm_dom[domain].vmd_kernel_arena, kstack_quantum);
}
}
SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL);

View File

@ -76,6 +76,4 @@ extern struct vmem *memguard_arena;
extern u_long vm_kmem_size;
extern u_int exec_map_entries;
extern u_int exec_map_entry_size;
extern vm_object_t kstack_object;
#endif /* _VM_VM_KERN_H_ */

View File

@ -530,22 +530,24 @@ vm_thread_swapout(struct thread *td)
vm_offset_t kaddr;
vm_pindex_t pindex;
int i, pages;
vm_object_t obj;
cpu_thread_swapout(td);
kaddr = td->td_kstack;
pages = td->td_kstack_pages;
pindex = atop(kaddr - VM_MIN_KERNEL_ADDRESS);
obj = vm_thread_kstack_size_to_obj(pages);
pindex = vm_kstack_pindex(kaddr, pages);
pmap_qremove(kaddr, pages);
VM_OBJECT_WLOCK(kstack_object);
VM_OBJECT_WLOCK(obj);
for (i = 0; i < pages; i++) {
m = vm_page_lookup(kstack_object, pindex + i);
m = vm_page_lookup(obj, pindex + i);
if (m == NULL)
panic("vm_thread_swapout: kstack already missing?");
vm_page_dirty(m);
vm_page_xunbusy_unchecked(m);
vm_page_unwire(m, PQ_LAUNDRY);
}
VM_OBJECT_WUNLOCK(kstack_object);
VM_OBJECT_WUNLOCK(obj);
}
/*
@ -556,31 +558,34 @@ vm_thread_swapin(struct thread *td, int oom_alloc)
{
vm_page_t ma[KSTACK_MAX_PAGES];
vm_offset_t kaddr;
vm_object_t obj;
int a, count, i, j, pages, rv __diagused;
kaddr = td->td_kstack;
pages = td->td_kstack_pages;
vm_thread_stack_back(td->td_domain.dr_policy, kaddr, ma, pages,
oom_alloc);
obj = vm_thread_kstack_size_to_obj(pages);
while (vm_thread_stack_back(kaddr, ma, pages, oom_alloc,
td->td_kstack_domain) == ENOMEM)
;
for (i = 0; i < pages;) {
vm_page_assert_xbusied(ma[i]);
if (vm_page_all_valid(ma[i])) {
i++;
continue;
}
vm_object_pip_add(kstack_object, 1);
vm_object_pip_add(obj, 1);
for (j = i + 1; j < pages; j++)
if (vm_page_all_valid(ma[j]))
break;
VM_OBJECT_WLOCK(kstack_object);
rv = vm_pager_has_page(kstack_object, ma[i]->pindex, NULL, &a);
VM_OBJECT_WUNLOCK(kstack_object);
VM_OBJECT_WLOCK(obj);
rv = vm_pager_has_page(obj, ma[i]->pindex, NULL, &a);
VM_OBJECT_WUNLOCK(obj);
KASSERT(rv == 1, ("%s: missing page %p", __func__, ma[i]));
count = min(a + 1, j - i);
rv = vm_pager_get_pages(kstack_object, ma + i, count, NULL, NULL);
rv = vm_pager_get_pages(obj, ma + i, count, NULL, NULL);
KASSERT(rv == VM_PAGER_OK, ("%s: cannot get kstack for proc %d",
__func__, td->td_proc->p_pid));
vm_object_pip_wakeup(kstack_object);
vm_object_pip_wakeup(obj);
i += count;
}
pmap_qenter(kaddr, ma, pages);