Reland "[dartdevc] cleaning up unused web files"

This is a reland of e866f043cf

Original change's description:
> [dartdevc] cleaning up unused web files
>
> Dependent on these google3 changes: https://critique.corp.google.com/#review/272749649
>
> Change-Id: I9e89142cd5b2a619acfc35badb9cf3c549b3be9c
> Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/119587
> Reviewed-by: Konstantin Shcheglov <scheglov@google.com>
> Commit-Queue: Mark Zhou <markzipan@google.com>

Change-Id: I7e01fb4ad60e47808721fa49b3ca3498e7aeaf46
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/120200
Commit-Queue: Mark Zhou <markzipan@google.com>
Reviewed-by: Nicholas Shahan <nshahan@google.com>
This commit is contained in:
Mark Zhou 2019-10-05 00:27:22 +00:00 committed by commit-bot@chromium.org
parent 38f78c01f3
commit 36e4d5e3c2
12 changed files with 23 additions and 1432 deletions

View file

@ -82,6 +82,13 @@ main() { foo(() {}); }
### Dart VM
### Dart for the Web
#### Dart Dev Compiler (DDC)
* Kernel DDC will no longer accept non-dill files as summary inputs.
* Removed support for the deprecated web extension.
### Tools
#### Pub

View file

@ -1,72 +0,0 @@
# dev_compiler changelog
## next release
- add support for AMD modules and make it the default.
- precompile the SDK in AMD, CommonJS, and ES6 flavors.
- legacy module format is deprecated.
- remove --package-paths option
## 0.1.24
- workaround breaking change on requestAnimationFrame
## 0.1.23
- updates for the latest analyzer
- removal of deprecated functionality (server mode) in prep for refactoring
## 0.1.22
- fixes to support the latest analyzer
- improvements in compile speed
- bug fixes on function / closure handling
## 0.1.21
- bug fix for dart:js constructor invocation
## 0.1.20
- support new StackTrace.current method
## 0.1.19
- support for dom libraries (dart:html, etc)
## 0.1.18
- dart:typed_data support
- preliminary TS / Closure output support
- various runtime typing fixes
## 0.1.17
- preliminary node module support
- support for compiling / serving multiple html files
## 0.1.16
- rolled analyzer to 0.27.2-alpha.1
- fixes for static fields
## 0.1.15
- codegen fixes for dart:convert (json decode) and dart:math (max, min)
## 0.1.14
- updates to unpin analyzer and move forward to ^0.27.1+2
## 0.1.13
- various fixes in js codegen
- pinned to analyzer 0.26.2+1 to avoid breaking upstream changes
## 0.1.12
- fixes for babel
- fixes toward new js interop
## 0.1.11
- moved js runtime files to lib/runtime/dart (`dart_runtime.js` -> `dart/_runtime.js`)
- bug fix to source maps
- initial support for f-bound quantification patterns
## 0.1.10
- added an `--html-report` option to create a file summarizing compilation
issues
- added a `-f` alias to the `--force-compile` command line option
- removed many info level messages that were informational to the DDC team
## 0.1.9
## 0.1.8
- added a `--version` command-line option
- added a new entry-point - `dev_compiler` - that aliases to `dartdevc`

View file

@ -1,917 +0,0 @@
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'dart:core' hide MapEntry;
import 'package:analyzer/dart/element/element.dart' as a;
import 'package:analyzer/dart/element/type.dart' as a;
import 'package:analyzer/file_system/physical_file_system.dart' as a;
import 'package:analyzer/src/context/context.dart' as a;
import 'package:analyzer/src/dart/analysis/restricted_analysis_context.dart'
as a;
import 'package:analyzer/src/dart/element/element.dart' as a;
import 'package:analyzer/src/dart/element/member.dart' as a;
import 'package:analyzer/src/dart/element/type.dart' as a;
import 'package:analyzer/src/generated/constant.dart' as a;
import 'package:analyzer/src/generated/engine.dart' as a;
import 'package:analyzer/src/generated/resolver.dart' as a
show NamespaceBuilder, TypeProvider;
import 'package:analyzer/src/generated/source.dart' as a;
import 'package:analyzer/src/generated/type_system.dart' as a;
import 'package:analyzer/src/summary/idl.dart' as a;
import 'package:analyzer/src/summary/package_bundle_reader.dart' as a;
import 'package:analyzer/src/summary/summary_sdk.dart' as a;
import 'package:analyzer/src/summary2/linked_bundle_context.dart' as a;
import 'package:analyzer/src/summary2/linked_element_factory.dart' as a;
import 'package:analyzer/src/summary2/reference.dart' as a;
import 'package:front_end/src/api_unstable/ddc.dart'
show RedirectingFactoryBody;
import 'package:kernel/kernel.dart';
import 'package:kernel/type_algebra.dart';
import '../analyzer/type_utilities.dart' hide freeTypeParameters;
import 'type_table.dart';
/// Converts an Analyzer summary file to a Kernel [Component].
///
/// The first step is to use Analyzer's [a.StoreBasedSummaryResynthesizer] to
/// deserialize the summary file into an [a.Element] model (that way we don't
/// depend directly on the file format). Once we have elements, we visit them
/// and construct the corresponding Kernel [Node]s.
///
/// The main entry points are [convertSdk] and [convertSummaries], which
/// convert the SDK and input summaries, respectively.
///
/// Because we only need to convert summaries, we do not need to handle method
/// bodies. This lets us avoid the complexity of converting Analyzer AST nodes
/// (e.g. expressions, statements).
///
/// For constants we use Analyzer's constant evaluator compute the value from
/// the data in the summary, and then create the appropriate Kernel node to
/// reconstruct the constant (e.g. ListLiteral, ConstructorInvocation, etc).
/// See [_visitConstant] for more information.
///
/// When something refers to an element, we normally create the [Reference] but
/// leave its corresponding [NamedNode] empty until that element is visited and
/// creates the Kernel node. This takes care of cycles, and avoids recursing too
/// deeply as we convert elements.
///
/// Sometimes we need to convert an element eagerly (e.g. if we need to call
/// members on an [InterfaceType] or [Supertype], we need to create its [Class]
/// node). In that case we handle cycles in the visit method (e.g.
/// [visitClassElement]) by creating the node and linking it to its reference
/// before visiting anything else that might recurse.
///
/// Special care must be taken to make sure we link up all [Reference]s with
/// their corresponding [NamedNode]. If we don't do this [verifyReferences]
/// will throw an error. The fix is to figure out why we didn't visit the
/// element for that reference (often this is due to Analyzer's synthetic
/// fields/accessor elements; care must be taken to always reference the real
/// element).
///
/// Because we're using Analyzer's summary resynthesizer, conversion is all or
/// nothing: all summaries must be in Analyzer format, including the SDK.
/// Now that we have this implementation, it may be possible to port code from
/// Analyzer and modify it to resynthesize directly into Kernel trees, if we
/// ever need to support a mix of Kernel and Analyzer summary files.
class AnalyzerToKernel {
final a.LinkedElementFactory _resynth;
final a.SummaryDataStore _summaryData;
final a.TypeProvider types;
final a.Dart2TypeSystem rules;
final _references = HashMap<a.Element, Reference>();
final _typeParams = HashMap<a.TypeParameterElement, TypeParameter>();
final _namespaceBuilder = a.NamespaceBuilder();
AnalyzerToKernel._(this._resynth, this._summaryData)
: types = _resynth.analysisContext.typeProvider,
rules = _resynth.analysisContext.typeSystem as a.Dart2TypeSystem;
/// Create an Analyzer summary to Kernel tree converter, using the provided
/// [analyzerSdkSummary] and [summaryPaths].
///
/// Once the converter is created, [convertSdk] should be called to convert
/// & return the SDK, followed by [convertSummaries] to convert & return the
/// converted summaries.
factory AnalyzerToKernel(
String analyzerSdkSummary, List<String> summaryPaths) {
var summaryData = a.SummaryDataStore(summaryPaths,
resourceProvider: a.PhysicalResourceProvider.INSTANCE,
disallowOverlappingSummaries: false);
var resynthesizer =
_createSummaryResynthesizer(summaryData, analyzerSdkSummary);
return AnalyzerToKernel._(resynthesizer, summaryData);
}
/// Converts the SDK summary to a Kernel component and returns it.
Component convertSdk() {
// _createContextForSummaries puts the SDK summary last in the summary data.
var sdkBundle = _summaryData.bundles.last;
assert(sdkBundle.linkedLibraryUris.every((u) => u.startsWith('dart:')));
var result = _toComponent(sdkBundle);
verifyReferences();
return result;
}
/// Converts the input summaries to Kernel components and return them.
///
/// [convertSdk] must be called before this.
List<Component> convertSummaries() {
// Take all summaries except the SDK one, which is placed last in the list
// by _createContextForSummaries.
var bundles = _summaryData.bundles.take(_summaryData.bundles.length - 1);
var result = bundles.map(_toComponent).toList();
verifyReferences(); // assumption: convertSdk() is called first
return result;
}
void verifyReferences() {
_references.forEach((element, reference) {
// Ensure each reference has a corresponding node.
//
// If it's missing a node, CFE will fail and it is difficult to debug at
// that point because the name and element cannot be accessed.
//
// Typically this error means:
// - we didn't visit an element.
// - we didn't set the `reference: _reference(e)` for the Kernel node.
// - we referenced a synthetic element by mistake, such as referencing the
// synthetic getter/setter, when we should've used the field.
if (reference.node == null) {
throw StateError('missing node for reference, element was: $element' +
(element.isSynthetic ? ' (synthetic)' : ''));
}
});
}
Component _toComponent(a.PackageBundle bundle) {
var libraries = <Library>[];
var uriToSource = <Uri, Source>{};
void addCompilationUnit(a.CompilationUnitElement unit) {
uriToSource[unit.source.uri] = Source(
unit.lineInfo.lineStarts,
[],
unit.uri != null ? Uri.base.resolve(unit.uri) : unit.source.uri,
unit.source.uri);
}
for (var uri in bundle.unlinkedUnitUris) {
if (_summaryData.isPartUnit(uri)) {
// Library parts are handled by their corresponding library.
continue;
}
var element = _resynth.libraryOfUri(uri);
libraries.add(visitLibraryElement(element));
addCompilationUnit(element.definingCompilationUnit);
element.parts.forEach(addCompilationUnit);
}
return Component(libraries: libraries, uriToSource: uriToSource);
}
Class visitClassElement(a.ClassElement e, [Library library]) {
var ref = _reference(e);
if (ref.node != null) return ref.asClass;
// Construct the Class first and link the reference. This ensures the
// (not yet finished) Class node will be returned on the line above, if we
// happen to re-enter this visit method.
var class_ = Class(
name: e.name,
isAbstract: e.isAbstract,
fileUri: e.source.uri,
reference: ref);
// Classes can be visited before their library (e.g. because they're a
// supertype of another class), so make sure to visit the library now.
library ??= visitLibraryElement(e.library);
library.addClass(class_);
class_.isMixinDeclaration = e.isMixin;
class_.typeParameters
.addAll(e.typeParameters.map(visitTypeParameterElement));
setParents(class_.typeParameters, class_);
class_.implementedTypes.addAll(e.interfaces.map(_typeToSupertype));
var fields = class_.fields;
var constructors = class_.constructors;
var procedures = class_.procedures;
fields.addAll(e.fields.where((f) => !f.isSynthetic).map(visitFieldElement));
var redirectingFactories = <Procedure>[];
for (var ctor in e.constructors) {
if (ctor.isFactory) {
var factory_ = _visitFactory(ctor);
procedures.add(factory_);
if (ctor.redirectedConstructor != null) {
redirectingFactories.add(factory_);
}
} else {
constructors.add(visitConstructorElement(ctor));
}
}
if (redirectingFactories.isNotEmpty) {
fields.add(_createRedirectingFactoryField(redirectingFactories, e));
}
procedures.addAll(e.methods.map(visitMethodElement));
procedures.addAll(e.accessors
.where((a) => !a.isSynthetic)
.map(visitPropertyAccessorElement));
setParents(fields, class_);
setParents(constructors, class_);
setParents(procedures, class_);
if (e.isMixinApplication) {
class_.mixedInType = _typeToSupertype(e.mixins.last);
}
var supertype = _typeToSupertype(e.supertype);
class_.supertype = _unrollMixinClasses(e, supertype, library);
_visitAnnotations(e.metadata, class_.addAnnotation);
// TODO(jmesserly): do we need covariance check stubs? We may be okay as
// since we're only handling dependencies here.
//
// But this may lead to redundant stubs (if CFE doesn't see one on a
// superclass) and/or break some assumptions in CFE.
return class_;
}
Supertype _unrollMixinClasses(
a.ClassElement e, Supertype supertype, Library library) {
// TODO(jmesserly): is this enough for mixin desugaring? It only does
// enough to create the intermediate classes.
// Documentation below assumes the given mixin application is in one of
// these forms:
//
// class C extends S with M1, M2, M3;
// class Named = S with M1, M2, M3;
//
// When we refer to the subclass, we mean `C` or `Named`.
/// The number of mixin classes to unroll.
///
/// Named mixin applications have one less class. This can be illustrated
/// here:
///
/// class C extends S with M1, M2, M3 {}
/// class Named = S with M1, M2, M3;
///
/// For `C` we unroll 3 classes: _C&S&M1, _C&S&M1&M2, _C&S&M1&M2&M3.
/// For `Named` we unroll 2 classes: _Named&S&M1, _Named&S&M1&M2.
///
/// The classes themselves will be generated as:
///
/// class C extends _C&S&M1&M2&M3 {}
/// class Named = _Named&S&M1&M2 with M3;
///
var unrollLength = e.mixins.length;
if (e.isMixinApplication) unrollLength--;
if (unrollLength <= 0) return supertype;
/// The mixin application's synthetic name.
///
/// The full name of the mixin application is obtained by prepending the
/// name of the subclass (`C` or `Named` in the above examples) to the
/// running name. For the example `C`, that leads to these names:
///
/// 1. `_C&S&M1`
/// 2. `_C&S&M1&M2`
/// 3. `_C&S&M1&M2&M3`.
var runningName = '_${e.name}&${e.supertype.name}';
/// The type variables used in the current supertype and mixin, or null
/// if this class doesn't have any type parameters.
var usedTypeVars = e.typeParameters.isNotEmpty
? freeTypeParameters(supertype.asInterfaceType)
: null;
for (int i = 0; i < unrollLength; i++) {
var mixin = e.mixins[i];
runningName += "&${mixin.name}";
var mixedInType = _typeToSupertype(mixin);
List<TypeParameter> typeParameters;
if (usedTypeVars != null) {
// Any type params used by superclasses will continue to be used, plus
// anything additional that this mixin uses.
usedTypeVars.addAll(freeTypeParameters(mixedInType.asInterfaceType));
if (usedTypeVars.isNotEmpty) {
// Make fresh type parameters for this class, and then substitute them
// into supertype and mixin type arguments (if any).
var fresh = getFreshTypeParameters(usedTypeVars.toList());
typeParameters = fresh.freshTypeParameters;
supertype = fresh.substituteSuper(supertype);
mixedInType = fresh.substituteSuper(mixedInType);
}
}
var c = Class(
name: runningName,
isAbstract: true,
mixedInType: mixedInType,
supertype: supertype,
typeParameters: typeParameters,
fileUri: e.source.uri);
library.addClass(c);
// Compute the superclass to use for the next iteration of this loop.
//
// Any type arguments are in terms of the original class type parameters.
// This allows us to perform consistent substitutions and have the correct
// type arguments for the final supertype (that we return).
supertype = Supertype(
c,
typeParameters != null
? List.of(usedTypeVars.map((t) => TypeParameterType(t)))
: []);
}
return supertype;
}
Constructor visitConstructorElement(a.ConstructorElement e) {
assert(!e.isFactory);
var ref = _reference(e);
if (ref.node != null) return ref.asConstructor;
// By convention, instance constructors return `void` in Kernel.
var function = _createFunction(e)..returnType = const VoidType();
var result = Constructor(function,
name: _getName(e),
isConst: e.isConst,
isExternal: e.isExternal,
isSynthetic: e.isSynthetic,
fileUri: e.source.uri,
reference: ref);
if (!result.isSynthetic) {
// TODO(jmesserly): CFE does not respect the synthetic bit on constructors
// so we set a bogus offset. This causes CFE to treat it as not synthetic.
//
// (The bug is in DillMemberBuilder.isSynthetic. Synthetic constructors
// have different semantics/optimizations in some cases, so it is
// important that the constructor is correctly marked.)
result.fileOffset = 1;
}
_visitAnnotations(e.metadata, result.addAnnotation);
return result;
}
Procedure _visitFactory(a.ConstructorElement e) {
var ref = _reference(e);
if (ref.node != null) return ref.asProcedure;
var result = Procedure.byReference(_getName(e), ProcedureKind.Factory, null,
isExternal: e.isExternal,
isConst: e.isConst,
isStatic: true,
fileUri: e.source.uri,
reference: ref);
_visitAnnotations(e.metadata, result.addAnnotation);
// Since the factory is static, we need to create fresh type parameters that
// match the ones in the enclosing class.
FreshTypeParameters fresh;
DartType Function(a.DartType) visitType;
if (e.enclosingElement.typeParameters.isNotEmpty) {
fresh = getFreshTypeParameters(
visitClassElement(e.enclosingElement).typeParameters);
visitType = (t) => fresh.substitute(_visitDartType(t, ensureNode: true));
} else {
visitType = _visitDartType;
}
result.function = _createFunction(e, fresh?.freshTypeParameters, visitType);
result.function.parent = result;
var redirect = e.redirectedConstructor;
if (redirect == null) return result;
// Get the raw constructor element before the type is applied.
var rawRedirect =
redirect is a.ConstructorMember ? redirect.baseElement : redirect;
// TODO(jmesserly): conceptually we only need a reference here, but
// RedirectingFactoryBody requires the complete node.
var ctor = rawRedirect.isFactory
? _visitFactory(rawRedirect)
: visitConstructorElement(rawRedirect);
var redirectedType = redirect.type.returnType as a.InterfaceType;
var typeArgs = redirectedType.typeArguments.map(visitType).toList();
result.function.body = RedirectingFactoryBody(ctor, typeArgs);
return result;
}
Field _createRedirectingFactoryField(
List<Procedure> factories, a.ClassElement c) {
return Field(_getName(c, "_redirecting#"),
isStatic: true,
initializer: ListLiteral(List.of(factories.map((f) => StaticGet(f)))),
fileUri: c.source.uri);
}
LibraryDependency visitExportElement(a.ExportElement e) =>
LibraryDependency.byReference(
LibraryDependency.ExportFlag,
const [],
_reference(e.exportedLibrary),
null,
e.combinators.map(_visitCombinator).toList());
Field visitFieldElement(a.FieldElement e) {
var result = Field(_getName(e),
type: _visitDartType(e.type),
initializer: null,
isFinal: e.isFinal,
isConst: e.isConst,
isStatic: e.isStatic,
fileUri: e.source.uri,
reference: _reference(e));
if (!e.isFinal && !e.isConst) {
var class_ = e.enclosingElement as a.ClassElement;
if (class_.typeParameters.isNotEmpty) {
result.isGenericCovariantImpl = _isGenericCovariant(class_, e.type);
}
}
_visitAnnotations(e.metadata, result.addAnnotation);
return result;
}
Procedure visitFunctionElement(a.FunctionElement e) {
var result = Procedure.byReference(
_getName(e), ProcedureKind.Method, _createFunction(e),
isExternal: e.isExternal,
fileUri: e.source.uri,
isStatic: true,
reference: _reference(e));
_visitAnnotations(e.metadata, result.addAnnotation);
return result;
}
Typedef visitFunctionTypeAliasElement(a.FunctionTypeAliasElement e,
[Library library]) {
var ref = _reference(e);
if (ref.node != null) return ref.asTypedef;
var t = Typedef(e.name, null, reference: ref, fileUri: e.source.uri);
library ??= visitLibraryElement(e.library);
library.addTypedef(t);
a.FunctionType type;
var typeParams = e.typeParameters;
if (e is a.GenericTypeAliasElement) {
type = e.function.type;
} else {
type = e.type;
if (typeParams.isNotEmpty) {
// Skip past the type formals, we'll add them back below, so these
// type parameter names will end up in scope in the generated JS.
type = type.instantiate(
typeParams.map((f) => getLegacyTypeParameterType(f)).toList());
}
}
t.typeParameters.addAll(typeParams.map(visitTypeParameterElement));
setParents(t.typeParameters, t);
t.type = _visitDartType(type, originTypedef: t.thisType);
_visitAnnotations(e.metadata, t.addAnnotation);
return t;
}
LibraryDependency visitImportElement(a.ImportElement e) =>
LibraryDependency.byReference(0, const [], _reference(e.importedLibrary),
null, e.combinators.map(_visitCombinator).toList());
Library visitLibraryElement(a.LibraryElement e) {
var ref = _reference(e);
if (ref.node != null) return ref.asLibrary;
var library = Library(e.source.uri,
name: e.name,
fileUri: e.definingCompilationUnit.source.uri,
reference: ref);
library.fileOffset = 0;
_visitAnnotations(e.metadata, library.addAnnotation);
e.imports.map(visitImportElement).forEach(library.addDependency);
e.exports.map(visitExportElement).forEach(library.addDependency);
e.parts.map((p) => LibraryPart(const [], p.uri)).forEach(library.addPart);
_visitUnit(a.CompilationUnitElement u) {
for (var t in u.types) {
visitClassElement(t, library);
}
for (var t in u.mixins) {
visitClassElement(t, library);
}
for (var t in u.functionTypeAliases) {
visitFunctionTypeAliasElement(t, library);
}
u.functions.map(visitFunctionElement).forEach(library.addMember);
u.accessors
.where((a) => !a.isSynthetic)
.map(visitPropertyAccessorElement)
.forEach(library.addMember);
u.topLevelVariables
.map(visitTopLevelVariableElement)
.forEach(library.addMember);
}
_visitUnit(e.definingCompilationUnit);
e.parts.forEach(_visitUnit);
var libraryImpl = e as a.LibraryElementImpl;
libraryImpl.publicNamespace ??=
_namespaceBuilder.createPublicNamespaceForLibrary(e);
libraryImpl.exportNamespace ??=
_namespaceBuilder.createExportNamespaceForLibrary(e);
var publicNames = libraryImpl.publicNamespace.definedNames;
var exportNames = libraryImpl.exportNamespace.definedNames;
exportNames.forEach((name, value) {
if (!publicNames.containsKey(name)) {
value = value is a.PropertyAccessorElement && value.isSynthetic
? value.variable
: value;
library.additionalExports.add(_reference(value));
}
});
return library;
}
Procedure visitMethodElement(a.MethodElement e) {
var result = Procedure.byReference(
_getName(e),
e.isOperator ? ProcedureKind.Operator : ProcedureKind.Method,
_createFunction(e),
isAbstract: e.isAbstract,
isStatic: e.isStatic,
isExternal: e.isExternal,
fileUri: e.source.uri,
reference: _reference(e));
_visitAnnotations(e.metadata, result.addAnnotation);
return result;
}
Procedure visitPropertyAccessorElement(a.PropertyAccessorElement e) {
var result = Procedure.byReference(
_getName(e, e.variable.name),
e.isGetter ? ProcedureKind.Getter : ProcedureKind.Setter,
_createFunction(e),
isAbstract: e.isAbstract,
isStatic: e.isStatic,
isExternal: e.isExternal,
fileUri: e.source.uri,
reference: _reference(e));
_visitAnnotations(e.metadata, result.addAnnotation);
return result;
}
Field visitTopLevelVariableElement(a.TopLevelVariableElement e) {
var result = Field(_getName(e),
type: _visitDartType(e.type),
initializer: null,
isFinal: e.isFinal,
isConst: e.isConst,
isStatic: e.isStatic,
fileUri: e.source.uri,
reference: _reference(e));
_visitAnnotations(e.metadata, result.addAnnotation);
return result;
}
TypeParameter visitTypeParameterElement(a.TypeParameterElement e) {
var t = _typeParams[e];
if (t != null) return t;
_typeParams[e] = t = TypeParameter(e.name);
var hasBound = e.bound != null;
t.bound =
hasBound ? _visitDartType(e.bound) : _visitDartType(types.objectType);
t.defaultType = hasBound ? t.bound : const DynamicType();
var enclosingElement = e.enclosingElement;
if (hasBound && enclosingElement is a.ClassMemberElement) {
var class_ = enclosingElement.enclosingElement;
if (class_ is a.ClassElement && class_.typeParameters.isNotEmpty) {
t.isGenericCovariantImpl = _isGenericCovariant(class_, e.bound);
}
}
return t;
}
Name _getName(a.Element e, [String name]) {
name ??= e.name;
return Name.byReference(
name, name.startsWith('_') ? _reference(e.library) : null);
}
/// Converts an Analyzer [type] to a Kernel type.
///
/// If [ensureNode] is set, the reference to the [Class] or [Typedef] will
/// populated with the node (creating it if needed). Many members on
/// [InterfaceType] and [TypedefType] rely on having a node present, so this
/// enables the use of those members if they're needed by the converter.
DartType _visitDartType(a.DartType type,
{bool ensureNode = false, TypedefType originTypedef}) {
if (type.isVoid) {
return const VoidType();
} else if (type.isDynamic) {
return const DynamicType();
} else if (type.isBottom) {
return const BottomType();
} else if (type is a.TypeParameterType) {
return TypeParameterType(visitTypeParameterElement(type.element));
}
visit(a.DartType t) => _visitDartType(t, ensureNode: ensureNode);
if (type is a.InterfaceType) {
var ref = ensureNode
? visitClassElement(type.element).reference
: _reference(type.element);
var typeArgs = type.typeArguments;
var newTypeArgs = typeArgs.isNotEmpty
? typeArgs.map(visit).toList()
: const <DartType>[];
return InterfaceType.byReference(ref, newTypeArgs);
}
var f = type as a.FunctionType;
if (f.name != null && f.name != '') {
var ref = ensureNode
? visitFunctionTypeAliasElement(
f.element as a.FunctionTypeAliasElement)
.reference
: _reference(f.element);
return TypedefType.byReference(ref, f.typeArguments.map(visit).toList());
}
var params = f.parameters;
var positional = f.normalParameterTypes.map(visit).toList();
positional.addAll(f.optionalParameterTypes.map(visit));
var named = <NamedType>[];
f.namedParameterTypes.forEach((name, type) {
named.add(NamedType(name, visit(type)));
});
return FunctionType(positional, visit(f.returnType),
typeParameters: f.typeFormals.map(visitTypeParameterElement).toList(),
namedParameters: named,
requiredParameterCount: params.where((p) => !p.isOptional).length,
typedefType: originTypedef);
}
Supertype _typeToSupertype(a.InterfaceType t) {
if (t == null) return null;
return Supertype(
visitClassElement(t.element),
t.typeArguments
.map((a) => _visitDartType(a, ensureNode: true))
.toList());
}
Combinator _visitCombinator(a.NamespaceCombinator combinator) {
bool isShow;
List<String> names;
if (combinator is a.ShowElementCombinator) {
isShow = true;
names = combinator.shownNames;
} else {
isShow = false;
names = (combinator as a.HideElementCombinator).hiddenNames;
}
return Combinator(isShow, names);
}
/// Creates a function node for the executable element [e], optionally using
/// the supplied [typeParameters] and calling [visitType] so it can perform
/// any necessary substitutions.
FunctionNode _createFunction(a.ExecutableElement e,
[List<TypeParameter> typeParameters,
DartType Function(a.DartType) visitType]) {
visitType ??= _visitDartType;
var enclosingElement = e.enclosingElement;
var class_ = enclosingElement is a.ClassElement ? enclosingElement : null;
visitParameter(a.ParameterElement e) {
var result = VariableDeclaration(e.name,
type: visitType(e.type),
isFinal: e.isFinal,
isFieldFormal: e.isInitializingFormal,
isCovariant: e.isCovariant,
initializer:
e.isOptional ? _visitConstant(e.computeConstantValue()) : null);
if (class_ != null && class_.typeParameters.isNotEmpty) {
result.isGenericCovariantImpl = _isGenericCovariant(class_, e.type);
}
return result;
}
var params = e.parameters;
var asyncMarker = _getAsyncMarker(e);
return FunctionNode(null,
typeParameters: typeParameters ??
e.typeParameters.map(visitTypeParameterElement).toList(),
positionalParameters:
params.where((p) => !p.isNamed).map(visitParameter).toList(),
namedParameters:
params.where((p) => p.isNamed).map(visitParameter).toList(),
requiredParameterCount: params.where((p) => !p.isOptional).length,
returnType: visitType(e.returnType),
asyncMarker: asyncMarker,
dartAsyncMarker: asyncMarker);
}
Reference _reference(a.Element e) {
if (e == null) throw ArgumentError('null element');
return _references.putIfAbsent(e, () => Reference());
}
bool _isGenericCovariant(a.ClassElement c, a.DartType type) {
var classUpperBound =
rules.instantiateToBounds(getLegacyRawClassType(c)) as a.InterfaceType;
var typeUpperBound = type.substitute2(classUpperBound.typeArguments,
a.TypeParameterTypeImpl.getTypes(classUpperBound.typeParameters));
// Is it safe to assign the upper bound of the field/parameter to it?
// If not then we'll need a runtime check.
return !rules.isSubtypeOf(typeUpperBound, type);
}
/// Transforms a metadata annotation from Analyzer to Kernel format.
///
/// If needed this uses Analyzer's constant evaluation to evaluate the AST,
/// and then converts the resulting constant value into a Kernel tree.
/// By first computing the expression's constant value, we avoid having to
/// convert a bunch of Analyzer ASTs nodes. Instead we can convert the more
/// limited set of constant values allowed in Dart (see [_visitConstant]).
void _visitAnnotations(List<a.ElementAnnotation> metadata,
void Function(Expression) addAnnotation) {
if (metadata.isEmpty) return;
for (a.ElementAnnotation annotation in metadata) {
var ast = (annotation as a.ElementAnnotationImpl).annotationAst;
var arguments = ast.arguments;
if (arguments == null) {
var e = ast.element;
e = e is a.PropertyAccessorElement && e.isSynthetic ? e.variable : e;
addAnnotation(StaticGet.byReference(_reference(e)));
} else {
// Use Analyzer's constant evaluation to produce the constant, then
// emit the resulting value. We do this to avoid handling all of the
// AST nodes that might be needed for constant evaluation. Instead we
// just serialize the resulting value to a Kernel expression that will
// reproduce it.
addAnnotation(_visitConstant(annotation.computeConstantValue()));
}
}
}
/// Converts an Analyzer constant value in [obj] to a Kernel expression
/// (usually a Literal or ConstructorInvocation) that will recreate that
/// constant value.
Expression _visitConstant(a.DartObject obj) {
if (obj == null || obj.isNull || !obj.hasKnownValue) return NullLiteral();
var type = obj.type;
if (identical(type, types.boolType)) {
var value = obj.toBoolValue();
return value != null ? BoolLiteral(value) : NullLiteral();
}
if (identical(type, types.intType)) {
return IntLiteral(obj.toIntValue());
}
if (identical(type, types.doubleType)) {
return DoubleLiteral(obj.toDoubleValue());
}
if (identical(type, types.stringType)) {
return StringLiteral(obj.toStringValue());
}
if (identical(type, types.symbolType)) {
return SymbolLiteral(obj.toSymbolValue());
}
if (identical(type, types.typeType)) {
return TypeLiteral(_visitDartType(obj.toTypeValue()));
}
if (type is a.InterfaceType) {
if (type.element == types.listElement) {
return ListLiteral(obj.toListValue().map(_visitConstant).toList(),
typeArgument: _visitDartType(type.typeArguments[0]), isConst: true);
}
if (type.element == types.mapElement) {
var entries = obj
.toMapValue()
.entries
.map(
(e) => MapEntry(_visitConstant(e.key), _visitConstant(e.value)))
.toList();
return MapLiteral(entries,
keyType: _visitDartType(type.typeArguments[0]),
valueType: _visitDartType(type.typeArguments[1]),
isConst: true);
}
if (obj is a.DartObjectImpl && obj.isUserDefinedObject) {
var classElem = type.element;
if (classElem.isEnum) {
// TODO(jmesserly): we should be able to use `getField('index')` but
// in some cases Analyzer uses the name of the static field that
// contains the enum, rather than the `index` field, due to a bug.
//
// So we just grab the one instance field, regardless of its name.
var index = obj.fields.values.single.toIntValue();
var field =
classElem.fields.where((f) => f.type == type).elementAt(index);
return StaticGet.byReference(_reference(field));
}
var invocation = obj.getInvocation();
var constructor = invocation.constructor;
// For a redirecting const factory, the constant constructor will be
// from the original one, but the `type` will match the redirected type.
//
// This leads to mismatch in how we call this constructor. So we need to
// find the redirected one.
for (a.ConstructorElement rc;
(rc = constructor.redirectedConstructor) != null;) {
constructor = rc;
}
constructor = constructor is a.ConstructorMember
? constructor.baseElement
: constructor;
return ConstructorInvocation.byReference(
_reference(constructor),
Arguments(
invocation.positionalArguments.map(_visitConstant).toList(),
named: invocation.namedArguments.entries
.map((e) => NamedExpression(e.key, _visitConstant(e.value)))
.toList(),
types: type.typeArguments.map(_visitDartType).toList()),
isConst: true);
}
}
if (obj is a.DartObjectImpl && type is a.FunctionType) {
var e = obj.toFunctionValue();
e = e is a.PropertyAccessorElement && e.isSynthetic
? e.variable as a.ExecutableElement
: e;
// TODO(jmesserly): support generic tear-off implicit instantiation.
return StaticGet.byReference(_reference(e));
}
throw UnsupportedError('unknown constant type `$type`: $obj');
}
}
AsyncMarker _getAsyncMarker(a.ExecutableElement e) {
return e.isGenerator
? (e.isAsynchronous ? AsyncMarker.AsyncStar : AsyncMarker.SyncStar)
: (e.isAsynchronous ? AsyncMarker.Async : AsyncMarker.Sync);
}
a.LinkedElementFactory _createSummaryResynthesizer(
a.SummaryDataStore summaryData, String dartSdkPath) {
var context = _createContextForSummaries(summaryData, dartSdkPath);
var elementFactory = a.LinkedElementFactory(
context,
null,
a.Reference.root(),
);
for (var bundle in summaryData.bundles) {
elementFactory.addBundle(
a.LinkedBundleContext(elementFactory, bundle.bundle2),
);
}
return elementFactory;
}
/// Creates a dummy Analyzer context so we can use summary resynthesizer.
///
/// This is similar to Analyzer's `LibraryContext._createResynthesizingContext`.
a.AnalysisContextImpl _createContextForSummaries(
a.SummaryDataStore summaryData, String dartSdkPath) {
var sdk = a.SummaryBasedDartSdk(dartSdkPath, true,
resourceProvider: a.PhysicalResourceProvider.INSTANCE);
var sdkSummaryBundle = sdk.getLinkedBundle();
if (sdkSummaryBundle != null) {
summaryData.addBundle(null, sdkSummaryBundle);
}
// TODO(jmesserly): use RestrictedAnalysisContext.
var context = a.AnalysisEngine.instance.createAnalysisContext()
as a.AnalysisContextImpl;
context.sourceFactory = a.SourceFactory(
[a.DartUriResolver(sdk), a.InSummaryUriResolver(null, summaryData)]);
// TODO(jmesserly): do we need to set analysisOptions or declaredVariables?
return context;
}

View file

@ -25,7 +25,6 @@ import '../js_ast/js_ast.dart' as js_ast;
import '../js_ast/js_ast.dart' show js;
import '../js_ast/source_map_printer.dart' show SourceMapPrintingContext;
import 'analyzer_to_kernel.dart';
import 'compiler.dart';
import 'target.dart';
@ -179,14 +178,17 @@ Future<CompilerResult> _compile(List<String> args,
var summaryPaths = options.summaryModules.keys.toList();
var summaryModules = Map.fromIterables(
summaryPaths.map(sourcePathToUri), options.summaryModules.values);
var useAnalyzer = summaryPaths.any((s) => !s.endsWith('.dill'));
var sdkSummaryPath = argResults['dart-sdk-summary'] as String;
var librarySpecPath = argResults['libraries-file'] as String;
if (sdkSummaryPath == null) {
sdkSummaryPath =
useAnalyzer ? defaultAnalyzerSdkSummaryPath : defaultSdkSummaryPath;
sdkSummaryPath = defaultSdkSummaryPath;
librarySpecPath ??= defaultLibrarySpecPath;
}
var invalidSummary = summaryPaths.any((s) => !s.endsWith('.dill')) ||
!sdkSummaryPath.endsWith('.dill');
if (invalidSummary) {
throw StateError("Non-dill file detected in input: $summaryPaths");
}
if (librarySpecPath == null) {
// TODO(jmesserly): the `isSupported` bit should be included in the SDK
@ -205,14 +207,12 @@ Future<CompilerResult> _compile(List<String> args,
}
}
useAnalyzer = useAnalyzer || !sdkSummaryPath.endsWith('.dill');
/// The .packages file path provided by the user.
//
// TODO(jmesserly): the default location is based on the current working
// directory, to match the behavior of dartanalyzer/dartdevc. However the
// Dart VM, CFE (and dart2js?) use the script file location instead. The
// difference may be due to the lack of a single entry point for DDC/Analyzer.
// difference may be due to the lack of a single entry point for Analyzer.
// Ultimately this is just the default behavior; in practice users call DDC
// through a build tool, which generally passes in `--packages=`.
//
@ -244,7 +244,7 @@ Future<CompilerResult> _compile(List<String> args,
fe.WorkerInputComponent cachedSdkInput;
bool recordUsedInputs = argResults['used-inputs-file'] != null;
List<Uri> inputSummaries = summaryModules.keys.toList();
if (useAnalyzer || !useIncrementalCompiler) {
if (!useIncrementalCompiler) {
compilerState = await fe.initializeCompiler(
oldCompilerState,
compileSdk,
@ -306,15 +306,8 @@ Future<CompilerResult> _compile(List<String> args,
// `initializeCompiler`. Also we should be able to pass down Components for
// SDK and summaries.
//
if (useAnalyzer && !identical(oldCompilerState, compilerState)) {
var opts = compilerState.processedOpts;
var converter = AnalyzerToKernel(sdkSummaryPath, summaryPaths);
opts.sdkSummaryComponent = converter.convertSdk();
opts.inputSummariesComponents = converter.convertSummaries();
}
fe.DdcResult result;
if (useAnalyzer || !useIncrementalCompiler) {
if (!useIncrementalCompiler) {
result = await fe.compile(compilerState, inputs, diagnosticMessageHandler);
} else {
compilerState.options.onDiagnostic = diagnosticMessageHandler;
@ -411,7 +404,7 @@ Future<CompilerResult> _compile(List<String> args,
if (recordUsedInputs) {
Set<Uri> usedOutlines = Set<Uri>();
if (!useAnalyzer && useIncrementalCompiler) {
if (useIncrementalCompiler) {
compilerState.incrementalCompiler
.updateNeededDillLibrariesWithHierarchy(result.classHierarchy, null);
for (Library lib
@ -537,9 +530,6 @@ final defaultSdkSummaryPath =
final defaultLibrarySpecPath = p.join(getSdkPath(), 'lib', 'libraries.json');
final defaultAnalyzerSdkSummaryPath =
p.join(getSdkPath(), 'lib', '_internal', 'ddc_sdk.sum');
bool _checkForDartMirrorsImport(Component component) {
for (var library in component.libraries) {
if (library.isExternal || library.importUri.scheme == 'dart') continue;

View file

@ -45,7 +45,7 @@ class ProgramCompiler extends ComputeOnceConstantVisitor<js_ast.Expression>
/// corresponding Kernel summary module we imported it with.
final _importToSummary = Map<Library, Component>.identity();
/// Maps a summary to the JS import name for the module.
/// Maps a Kernel summary to the JS import name for the module.
final _summaryToModule = Map<Component, String>.identity();
/// The variable for the current catch clause

View file

@ -252,8 +252,7 @@ Iterable<Member> getRedirectingFactories(Field f) {
///
/// This is used to ignore synthetic mixin application classes.
///
// TODO(jmesserly): consider replacing this with Kernel's mixin unrolling once
// we don't have the Analyzer backend to maintain.
// TODO(jmesserly): consider replacing this with Kernel's mixin unrolling
Class getSuperclassAndMixins(Class c, List<Class> mixins) {
assert(mixins.isEmpty);

View file

@ -1,10 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Dart Dev Compiler Console</title>
</head>
<body>
<script defer src="main.dart.js"></script>
</body>
</html>

View file

@ -1,86 +0,0 @@
#!/usr/bin/env dart
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
@JS()
library dev_compiler.web.main;
import 'dart:async';
import 'package:args/command_runner.dart';
import 'package:js/js.dart';
import 'web_command.dart';
@JS(r'$setUpDartDevCompilerInBrowser')
external set setUpCompilerInBrowser(Function function);
Future<dynamic> _setUpCompilerInBrowser;
void main() {
var args = ['compile'];
// Avoid race condition when users try to call $setUpDartDevCompilerInBrowser
// before it is ready by installing the method immediately and making the body
// of the method async.
setUpCompilerInBrowser = allowInterop((String sdkUrl,
JSMap<String, String> summaryMap,
Function onCompileReady,
Function onError,
[Function onProgress]) async {
(await _setUpCompilerInBrowser)(
sdkUrl, summaryMap, onCompileReady, onError, onProgress);
});
_runCommand(args);
}
/// Runs a single compile command, and returns an exit code.
_runCommand(List<String> args, {MessageHandler messageHandler}) {
try {
// TODO: Remove CommandRunner and args if possible. May run into issues
// with ArgResults or ArgParsers.
var runner = CommandRunner('dartdevc', 'Dart Development Compiler');
runner.addCommand(WebCompileCommand(messageHandler: messageHandler));
_setUpCompilerInBrowser = runner.run(args);
} catch (e, s) {
_handleError(e, s, args, messageHandler: messageHandler);
}
}
/// Handles [error] in a uniform fashion. Calls [messageHandler] with messages.
_handleError(dynamic error, dynamic stackTrace, List<String> args,
{MessageHandler messageHandler}) {
messageHandler ??= print;
if (error is UsageException) {
// Incorrect usage, input file not found, etc.
messageHandler(error);
} else if (error is CompileErrorException) {
// Code has error(s) and failed to compile.
messageHandler(error);
} else {
// Anything else is likely a compiler bug.
//
// --unsafe-force-compile is a bit of a grey area, but it's nice not to
// crash while compiling
// (of course, output code may crash, if it had errors).
//
messageHandler("");
messageHandler("We're sorry, you've found a bug in our compiler.");
messageHandler("You can report this bug at:");
messageHandler(
" https://github.com/dart-lang/sdk/issues/labels/web-dev-compiler");
messageHandler("");
messageHandler(
"Please include the information below in your report, along with");
messageHandler(
"any other information that may help us track it down. Thanks!");
messageHandler("");
messageHandler(" dartdevc arguments: " + args.join(' '));
messageHandler("");
messageHandler("```");
messageHandler(error);
messageHandler(stackTrace);
messageHandler("```");
}
}

View file

@ -1,313 +0,0 @@
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
@JS()
library dev_compiler.web.web_command;
import 'dart:async';
import 'dart:convert';
import 'dart:math' as math;
import 'dart:html' show HttpRequest;
import 'dart:typed_data';
import 'package:analyzer/file_system/file_system.dart' show ResourceUriResolver;
import 'package:analyzer/file_system/memory_file_system.dart'
show MemoryResourceProvider;
import 'package:analyzer/src/summary/idl.dart' show PackageBundle;
import 'package:analyzer/src/summary/package_bundle_reader.dart'
show SummaryDataStore;
import 'package:analyzer/src/dart/resolver/scope.dart' show Scope;
import 'package:args/command_runner.dart';
import 'package:dev_compiler/src/analyzer/context.dart' show AnalyzerOptions;
import 'package:dev_compiler/src/analyzer/command.dart';
import 'package:dev_compiler/src/analyzer/driver.dart';
import 'package:dev_compiler/src/analyzer/module_compiler.dart';
import 'package:dev_compiler/src/compiler/module_builder.dart';
import 'package:js/js.dart';
import 'package:path/path.dart' as p;
typedef void MessageHandler(Object message);
@JS()
@anonymous
class JSIterator<V> {}
@JS('Map')
class JSMap<K, V> {
external V get(K v);
external set(K k, V v);
external JSIterator<K> keys();
external JSIterator<V> values();
external int get size;
}
@JS('Array.from')
external List<V> iteratorToList<V>(JSIterator<V> iterator);
@JS()
@anonymous
class CompileResult {
external factory CompileResult(
{String code, List<String> errors, bool isValid});
}
typedef CompileModule(String imports, String body, String libraryName,
String existingLibrary, String fileName);
/// The command for invoking the modular compiler.
class WebCompileCommand extends Command {
@override
get name => 'compile';
@override
get description => 'Compile a set of Dart files into a JavaScript module.';
final MessageHandler messageHandler;
WebCompileCommand({MessageHandler messageHandler})
: this.messageHandler = messageHandler ?? print {
ddcArgParser(argParser: argParser, help: false);
}
@override
Function run() {
return requestSummaries;
}
Future<Null> requestSummaries(String sdkUrl, JSMap<String, String> summaryMap,
Function onCompileReady, Function onError, Function onProgress) async {
var sdkRequest;
var progress = 0;
// Add 1 to the count for the SDK summary.
var total = summaryMap.size + 1;
// No need to report after every summary is loaded. Posting about 100
// progress updates should be more than sufficient for users to understand
// how long loading will take.
num progressDelta = math.max(total / 100, 1);
num nextProgressToReport = 0;
maybeReportProgress() {
if (nextProgressToReport > progress && progress != total) return;
nextProgressToReport += progressDelta;
if (onProgress != null) onProgress(progress, total);
}
try {
sdkRequest = await HttpRequest.request(sdkUrl,
responseType: "arraybuffer",
mimeType: "application/octet-stream",
withCredentials: true);
} catch (error) {
onError('Dart sdk summaries failed to load: $error. url: $sdkUrl');
return null;
}
progress++;
maybeReportProgress();
var sdkBytes = (sdkRequest.response as ByteBuffer).asUint8List();
// Map summary URLs to HttpRequests.
var summaryRequests =
iteratorToList(summaryMap.values()).map((String summaryUrl) async {
var request = await HttpRequest.request(summaryUrl,
responseType: "arraybuffer", mimeType: "application/octet-stream");
progress++;
maybeReportProgress();
return request;
}).toList();
try {
var summaryResponses = await Future.wait(summaryRequests);
// Map summary responses to summary bytes.
List<List<int>> summaryBytes = summaryResponses
.map((response) => (response.response as ByteBuffer).asUint8List())
.toList();
onCompileReady(setUpCompile(
sdkBytes, summaryBytes, iteratorToList(summaryMap.keys())));
} catch (error) {
onError('Summaries failed to load: $error');
}
}
List<Function> setUpCompile(List<int> sdkBytes, List<List<int>> summaryBytes,
List<String> moduleIds) {
var dartSdkSummaryPath = '/dart-sdk/lib/_internal/web_sdk.sum';
var resources = MemoryResourceProvider()
..newFileWithBytes(dartSdkSummaryPath, sdkBytes);
var options = AnalyzerOptions.basic(
dartSdkPath: '/dart-sdk', dartSdkSummaryPath: dartSdkSummaryPath);
var summaryData = SummaryDataStore([], resourceProvider: resources);
var compilerOptions = CompilerOptions.fromArguments(argResults);
compilerOptions.replCompile = true;
compilerOptions.libraryRoot = '/';
for (var i = 0; i < summaryBytes.length; i++) {
var bytes = summaryBytes[i];
// Packages with no dart source files will have empty invalid summaries.
if (bytes.isEmpty) continue;
var moduleId = moduleIds[i];
var url = '/$moduleId.api.ds';
summaryData.addBundle(url, PackageBundle.fromBuffer(bytes));
compilerOptions.summaryModules[url] = moduleId;
}
options.analysisRoot = '/web-compile-root';
options.fileResolvers = [ResourceUriResolver(resources)];
options.resourceProvider = resources;
var driver = CompilerAnalysisDriver(options, summaryData: summaryData);
var resolveFn = (String url) {
var packagePrefix = 'package:';
var uri = Uri.parse(url);
var base = p.basename(url);
var parts = uri.pathSegments;
var match;
int bestScore = 0;
for (var candidate in summaryData.uriToSummaryPath.keys) {
if (p.basename(candidate) != base) continue;
List<String> candidateParts = p.dirname(candidate).split('/');
var first = candidateParts.first;
// Process and strip "package:" prefix.
if (first.startsWith(packagePrefix)) {
first = first.substring(packagePrefix.length);
candidateParts[0] = first;
// Handle convention that directory foo/bar/baz is given package name
// foo.bar.baz
if (first.contains('.')) {
candidateParts = (first.split('.'))..addAll(candidateParts.skip(1));
}
}
// If file name and extension don't match... give up.
int i = parts.length - 1;
int j = candidateParts.length - 1;
int score = 1;
// Greedy algorithm finding matching path segments from right to left
// skipping segments on the candidate path unless the target path
// segment is named lib.
while (i >= 0 && j >= 0) {
if (parts[i] == candidateParts[j]) {
i--;
j--;
score++;
if (j == 0 && i == 0) {
// Arbitrary bonus if we matched all parts of the input
// and used up all parts of the output.
score += 10;
}
} else {
// skip unmatched lib directories from the input
// otherwise skip unmatched parts of the candidate.
if (parts[i] == 'lib') {
i--;
} else {
j--;
}
}
}
if (score > bestScore) {
match = candidate;
}
}
return match;
};
CompileModule compileFn = (String imports, String body, String libraryName,
String existingLibrary, String fileName) {
// Instead of returning a single function, return a pair of functions.
// Create a new virtual File that contains the given Dart source.
String sourceCode;
if (existingLibrary == null) {
sourceCode = imports + body;
} else {
var dir = p.dirname(existingLibrary);
// Need to pull in all the imports from the existing library and
// re-export all privates as privates in this library.
// Assumption: summaries are available for all libraries, including any
// source files that were compiled; we do not need to reconstruct any
// summary data here.
var unlinked = driver.summaryData.unlinkedMap[existingLibrary];
if (unlinked == null) {
throw "Unable to get library element for `$existingLibrary`.";
}
var sb = StringBuffer(imports);
sb.write('\n');
// TODO(jacobr): we need to add a proper Analyzer flag specifing that
// cross-library privates should be in scope instead of this hack.
// We set the private name prefix for scope resolution to an invalid
// character code so that the analyzer ignores normal Dart private
// scoping rules for top level names allowing REPL users to access
// privates in arbitrary libraries. The downside of this scheme is it is
// possible to get errors if privates in the current library and
// imported libraries happen to have exactly the same name.
Scope.PRIVATE_NAME_PREFIX = -1;
// We emulate running code in the context of an existing library by
// importing that library and all libraries it imports.
sb.write('import ${json.encode(existingLibrary)};\n');
for (var import in unlinked.imports) {
if (import.uri == null || import.isImplicit) continue;
var uri = import.uri;
// dart: and package: uris are not relative but the path package
// thinks they are. We have to provide absolute uris as our library
// has a different directory than the library we are pretending to be.
if (p.isRelative(uri) &&
!uri.startsWith('package:') &&
!uri.startsWith('dart:')) {
uri = p.normalize(p.join(dir, uri));
}
sb.write('import ${json.encode(uri)}');
if (import.prefixReference != 0) {
var prefix = unlinked.references[import.prefixReference].name;
sb.write(' as $prefix');
}
for (var combinator in import.combinators) {
if (combinator.shows.isNotEmpty) {
sb.write(' show ${combinator.shows.join(', ')}');
} else if (combinator.hides.isNotEmpty) {
sb.write(' hide ${combinator.hides.join(', ')}');
} else {
throw 'Unexpected element combinator';
}
}
sb.write(';\n');
}
sb.write(body);
sourceCode = sb.toString();
}
resources.newFile(fileName, sourceCode);
var name = p.toUri(libraryName).toString();
compilerOptions.moduleName = name;
JSModuleFile module =
compileWithAnalyzer(driver, [fileName], options, compilerOptions);
var moduleCode = '';
if (module.isValid) {
moduleCode =
module.getCode(ModuleFormat.legacyConcat, name, name + '.map').code;
}
return CompileResult(
code: moduleCode, isValid: module.isValid, errors: module.errors);
};
return [allowInterop(compileFn), allowInterop(resolveFn)];
}
}
/// Thrown when the input source code has errors.
class CompileErrorException implements Exception {
@override
toString() => '\nPlease fix all errors before compiling (warnings are okay).';
}

View file

@ -804,13 +804,12 @@ copy("copy_dev_compiler_tools") {
visibility = [ ":copy_dev_compiler_sdk" ]
deps = [
":copy_dev_compiler_js",
"../utils/dartdevc:dartdevc_web",
"../utils/dartdevc:stack_trace_mapper",
]
dart_out = get_label_info("../utils/dartdevc:dartdevc_web", "root_out_dir")
dart_out =
get_label_info("../utils/dartdevc:stack_trace_mapper", "root_out_dir")
sources = [
"$dart_out/dev_compiler/build/web/dart_stack_trace_mapper.js",
"$dart_out/dev_compiler/build/web/ddc_web_compiler.js",
]
outputs = [
"$root_out_dir/dart-sdk/lib/dev_compiler/web/{{source_file_part}}",

View file

@ -804,13 +804,12 @@ copy("copy_dev_compiler_tools") {
visibility = [ ":copy_dev_compiler_sdk" ]
deps = [
":copy_dev_compiler_js",
"../utils/dartdevc:dartdevc_web",
"../utils/dartdevc:stack_trace_mapper",
]
dart_out = get_label_info("../utils/dartdevc:dartdevc_web", "root_out_dir")
dart_out =
get_label_info("../utils/dartdevc:stack_trace_mapper", "root_out_dir")
sources = [
"$dart_out/dev_compiler/build/web/dart_stack_trace_mapper.js",
"$dart_out/dev_compiler/build/web/ddc_web_compiler.js",
]
outputs = [
"$root_out_dir/dart-sdk/lib/dev_compiler/web/{{source_file_part}}",

View file

@ -91,11 +91,6 @@ template("dart2js_compile") {
}
}
dart2js_compile("dartdevc_web") {
main = rebase_path("../../pkg/dev_compiler/web/main.dart")
out = "$root_out_dir/dev_compiler/build/web/ddc_web_compiler.js"
}
dart2js_compile("stack_trace_mapper") {
main = rebase_path("../../pkg/dev_compiler/web/stack_trace_mapper.dart")
out = "$root_out_dir/dev_compiler/build/web/dart_stack_trace_mapper.js"