mirror of
https://github.com/godotengine/godot
synced 2024-11-05 16:53:09 +00:00
628 lines
13 KiB
C++
628 lines
13 KiB
C++
/*************************************************************************/
|
|
/* bsp_tree.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "bsp_tree.h"
|
|
#include "error_macros.h"
|
|
#include "print_string.h"
|
|
|
|
|
|
void BSP_Tree::from_aabb(const AABB& p_aabb) {
|
|
|
|
planes.clear();
|
|
|
|
for(int i=0;i<3;i++) {
|
|
|
|
Vector3 n;
|
|
n[i]=1;
|
|
planes.push_back(Plane(n,p_aabb.pos[i]+p_aabb.size[i]));
|
|
planes.push_back(Plane(-n,-p_aabb.pos[i]));
|
|
}
|
|
|
|
nodes.clear();
|
|
|
|
for(int i=0;i<6;i++) {
|
|
|
|
Node n;
|
|
n.plane=i;
|
|
n.under=(i==0)?UNDER_LEAF:i-1;
|
|
n.over=OVER_LEAF;
|
|
nodes.push_back(n);
|
|
}
|
|
|
|
aabb=p_aabb;
|
|
error_radius=0;
|
|
}
|
|
|
|
Vector<BSP_Tree::Node> BSP_Tree::get_nodes() const {
|
|
|
|
return nodes;
|
|
}
|
|
Vector<Plane> BSP_Tree::get_planes() const {
|
|
|
|
return planes;
|
|
}
|
|
|
|
AABB BSP_Tree::get_aabb() const {
|
|
|
|
return aabb;
|
|
}
|
|
|
|
int BSP_Tree::_get_points_inside(int p_node,const Vector3* p_points,int *p_indices, const Vector3& p_center,const Vector3& p_half_extents,int p_indices_count) const {
|
|
|
|
|
|
const Node *node =&nodes[p_node];
|
|
const Plane &p = planes[node->plane];
|
|
|
|
Vector3 min(
|
|
(p.normal.x>0) ? -p_half_extents.x : p_half_extents.x,
|
|
(p.normal.y>0) ? -p_half_extents.y : p_half_extents.y,
|
|
(p.normal.z>0) ? -p_half_extents.z : p_half_extents.z
|
|
);
|
|
Vector3 max=-min;
|
|
max+=p_center;
|
|
min+=p_center;
|
|
|
|
float dist_min = p.distance_to(min);
|
|
float dist_max = p.distance_to(max);
|
|
|
|
if ((dist_min * dist_max) < CMP_EPSILON ) { //intersection, test point by point
|
|
|
|
|
|
int under_count=0;
|
|
|
|
//sort points, so the are under first, over last
|
|
for(int i=0;i<p_indices_count;i++) {
|
|
|
|
int index=p_indices[i];
|
|
|
|
if (p.is_point_over(p_points[index])) {
|
|
|
|
// kind of slow (but cache friendly), should try something else,
|
|
// but this is a corner case most of the time
|
|
|
|
for(int j=index;j<p_indices_count-1;j++)
|
|
p_indices[j]=p_indices[j+1];
|
|
|
|
p_indices[p_indices_count-1]=index;
|
|
|
|
} else {
|
|
under_count++;
|
|
}
|
|
|
|
}
|
|
|
|
int total=0;
|
|
|
|
if (under_count>0) {
|
|
if (node->under==UNDER_LEAF) {
|
|
total+=under_count;
|
|
} else {
|
|
total+=_get_points_inside(node->under,p_points,p_indices,p_center,p_half_extents,under_count);
|
|
}
|
|
}
|
|
|
|
if (under_count!=p_indices_count) {
|
|
if (node->over==OVER_LEAF) {
|
|
//total+=0 //if they are over an OVER_LEAF, they are outside the model
|
|
} else {
|
|
total+=_get_points_inside(node->over,p_points,&p_indices[under_count],p_center,p_half_extents,p_indices_count-under_count);
|
|
}
|
|
}
|
|
|
|
return total;
|
|
|
|
} else if (dist_min > 0 ) { //all points over plane
|
|
|
|
if (node->over==OVER_LEAF) {
|
|
|
|
return 0; // all these points are not visible
|
|
}
|
|
|
|
|
|
return _get_points_inside(node->over,p_points,p_indices,p_center,p_half_extents,p_indices_count);
|
|
} else if (dist_min <= 0 ) { //all points behind plane
|
|
|
|
if (node->under==UNDER_LEAF) {
|
|
|
|
return p_indices_count; // all these points are visible
|
|
}
|
|
return _get_points_inside(node->under,p_points,p_indices,p_center,p_half_extents,p_indices_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int BSP_Tree::get_points_inside(const Vector3* p_points,int p_point_count) const {
|
|
|
|
|
|
if (nodes.size()==0)
|
|
return 0;
|
|
|
|
#if 1
|
|
//this version is easier to debug, and and MUCH faster in real world cases
|
|
|
|
int pass_count = 0;
|
|
const Node *nodesptr=&nodes[0];
|
|
const Plane *planesptr=&planes[0];
|
|
int plane_count=planes.size();
|
|
int node_count=nodes.size();
|
|
|
|
if (node_count==0) // no nodes!
|
|
return 0;
|
|
|
|
for(int i=0;i<p_point_count;i++) {
|
|
|
|
const Vector3& point = p_points[i];
|
|
if (!aabb.has_point(point)) {
|
|
continue;
|
|
}
|
|
|
|
int idx=node_count-1;
|
|
|
|
bool pass=false;
|
|
|
|
while(true) {
|
|
|
|
if (idx==OVER_LEAF) {
|
|
pass=false;
|
|
break;
|
|
} else if (idx==UNDER_LEAF) {
|
|
pass=true;
|
|
break;
|
|
}
|
|
|
|
uint16_t plane=nodesptr[ idx ].plane;
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
ERR_FAIL_INDEX_V( plane, plane_count, false );
|
|
#endif
|
|
|
|
idx = planesptr[ nodesptr[ idx ].plane ].is_point_over(point) ? nodes[ idx ].over : nodes[ idx ].under;
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
ERR_FAIL_COND_V( idx<MAX_NODES && idx>=node_count, false );
|
|
#endif
|
|
|
|
}
|
|
|
|
if (pass)
|
|
pass_count++;
|
|
}
|
|
|
|
return pass_count;
|
|
|
|
#else
|
|
//this version scales better but it's slower for real world cases
|
|
|
|
int *indices = (int*)alloca(p_point_count*sizeof(int));
|
|
AABB bounds;
|
|
|
|
for(int i=0;i<p_point_count;i++) {
|
|
|
|
indices[i]=i;
|
|
if (i==0)
|
|
bounds.pos=p_points[i];
|
|
else
|
|
bounds.expand_to(p_points[i]);
|
|
|
|
}
|
|
|
|
Vector3 half_extents = bounds.size/2.0;
|
|
return _get_points_inside(nodes.size()+1,p_points,indices,bounds.pos+half_extents,half_extents,p_point_count);
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
bool BSP_Tree::point_is_inside(const Vector3& p_point) const {
|
|
|
|
if (!aabb.has_point(p_point)) {
|
|
return false;
|
|
}
|
|
|
|
int node_count=nodes.size();
|
|
|
|
if (node_count==0) // no nodes!
|
|
return false;
|
|
|
|
|
|
const Node *nodesptr=&nodes[0];
|
|
const Plane *planesptr=&planes[0];
|
|
int plane_count=planes.size();
|
|
|
|
int idx=node_count-1;
|
|
int steps=0;
|
|
|
|
while(true) {
|
|
|
|
if (idx==OVER_LEAF) {
|
|
return false;
|
|
}
|
|
if (idx==UNDER_LEAF) {
|
|
|
|
return true;
|
|
}
|
|
|
|
uint16_t plane=nodesptr[ idx ].plane;
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
ERR_FAIL_INDEX_V( plane, plane_count, false );
|
|
#endif
|
|
bool over = planesptr[ nodesptr[ idx ].plane ].is_point_over(p_point);
|
|
|
|
idx = over ? nodes[ idx ].over : nodes[ idx ].under;
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
ERR_FAIL_COND_V( idx<MAX_NODES && idx>=node_count, false );
|
|
#endif
|
|
|
|
steps++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static int _bsp_find_best_half_plane(const Face3* p_faces,const Vector<int>& p_indices,float p_tolerance) {
|
|
|
|
int ic = p_indices.size();
|
|
const int*indices=p_indices.ptr();
|
|
|
|
int best_plane = -1;
|
|
float best_plane_cost = 1e20;
|
|
|
|
// Loop to find the polygon that best divides the set.
|
|
|
|
for (int i=0;i<ic;i++) {
|
|
|
|
const Face3& f=p_faces[ indices[i] ];
|
|
Plane p = f.get_plane();
|
|
|
|
int num_over=0,num_under=0,num_spanning=0;
|
|
|
|
for(int j=0;j<ic;j++) {
|
|
|
|
if (i==j)
|
|
continue;
|
|
|
|
const Face3& g=p_faces[ indices[j] ];
|
|
int over=0,under=0;
|
|
|
|
for(int k=0;k<3;k++) {
|
|
|
|
float d = p.distance_to(g.vertex[j]);
|
|
|
|
if (Math::abs(d)>p_tolerance) {
|
|
|
|
if (d > 0)
|
|
over++;
|
|
else
|
|
under++;
|
|
}
|
|
|
|
}
|
|
|
|
if (over && under)
|
|
num_spanning++;
|
|
else if (over)
|
|
num_over++;
|
|
else
|
|
num_under++;
|
|
|
|
}
|
|
|
|
|
|
|
|
//double split_cost = num_spanning / (double) face_count;
|
|
double relation = Math::abs(num_over-num_under) / (double) ic;
|
|
|
|
// being honest, i never found a way to add split cost to the mix in a meaninguful way
|
|
// in this engine, also, will likely be ignored anyway
|
|
|
|
double plane_cost = /*split_cost +*/ relation;
|
|
|
|
//printf("plane %i, %i over, %i under, %i spanning, cost is %g\n",i,num_over,num_under,num_spanning,plane_cost);
|
|
if (plane_cost<best_plane_cost) {
|
|
|
|
best_plane=i;
|
|
best_plane_cost=plane_cost;
|
|
}
|
|
|
|
}
|
|
|
|
return best_plane;
|
|
|
|
}
|
|
|
|
|
|
static int _bsp_create_node(const Face3 *p_faces,const Vector<int>& p_indices,Vector<Plane> &p_planes, Vector<BSP_Tree::Node> &p_nodes,float p_tolerance) {
|
|
|
|
ERR_FAIL_COND_V( p_nodes.size() == BSP_Tree::MAX_NODES, -1 );
|
|
|
|
// should not reach here
|
|
ERR_FAIL_COND_V( p_indices.size() == 0, -1 )
|
|
|
|
int ic = p_indices.size();
|
|
const int*indices=p_indices.ptr();
|
|
|
|
int divisor_idx = _bsp_find_best_half_plane(p_faces,p_indices,p_tolerance);
|
|
|
|
// returned error
|
|
ERR_FAIL_COND_V( divisor_idx<0 , -1 );
|
|
|
|
|
|
Vector<int> faces_over;
|
|
Vector<int> faces_under;
|
|
|
|
Plane divisor_plane=p_faces[ indices[divisor_idx] ].get_plane();
|
|
|
|
for (int i=0;i<ic;i++) {
|
|
|
|
if (i==divisor_idx)
|
|
continue;
|
|
|
|
const Face3& f=p_faces[ indices[i] ];
|
|
|
|
//if (f.get_plane().is_almost_like(divisor_plane))
|
|
// continue;
|
|
|
|
int over_count=0;
|
|
int under_count=0;
|
|
|
|
for(int j=0;j<3;j++) {
|
|
|
|
float d = divisor_plane.distance_to(f.vertex[j]);
|
|
if (Math::abs(d)>p_tolerance) {
|
|
|
|
if (d > 0)
|
|
over_count++;
|
|
else
|
|
under_count++;
|
|
}
|
|
}
|
|
|
|
if (over_count)
|
|
faces_over.push_back( indices[i] );
|
|
if (under_count)
|
|
faces_under.push_back( indices[i] );
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t over_idx=BSP_Tree::OVER_LEAF,under_idx=BSP_Tree::UNDER_LEAF;
|
|
|
|
if (faces_over.size()>0) { //have facess above?
|
|
|
|
int idx = _bsp_create_node( p_faces, faces_over, p_planes, p_nodes,p_tolerance );
|
|
if (idx>=0)
|
|
over_idx=idx;
|
|
}
|
|
|
|
if (faces_under.size()>0) { //have facess above?
|
|
|
|
int idx = _bsp_create_node( p_faces,faces_under, p_planes, p_nodes,p_tolerance );
|
|
if (idx>=0)
|
|
under_idx=idx;
|
|
}
|
|
|
|
/* Create the node */
|
|
|
|
// find existing divisor plane
|
|
int divisor_plane_idx=-1;
|
|
|
|
|
|
for (int i=0;i<p_planes.size();i++) {
|
|
|
|
if (p_planes[i].is_almost_like( divisor_plane )) {
|
|
divisor_plane_idx=i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (divisor_plane_idx==-1) {
|
|
|
|
ERR_FAIL_COND_V( p_planes.size() == BSP_Tree::MAX_PLANES, -1 );
|
|
divisor_plane_idx=p_planes.size();
|
|
p_planes.push_back( divisor_plane );
|
|
}
|
|
|
|
BSP_Tree::Node node;
|
|
node.plane=divisor_plane_idx;
|
|
node.under=under_idx;
|
|
node.over=over_idx;
|
|
|
|
p_nodes.push_back(node);
|
|
|
|
return p_nodes.size()-1;
|
|
}
|
|
|
|
|
|
BSP_Tree::operator Variant() const {
|
|
|
|
|
|
Dictionary d;
|
|
d["error_radius"]=error_radius;
|
|
|
|
Vector<float> plane_values;
|
|
plane_values.resize(planes.size()*4);
|
|
|
|
for(int i=0;i<planes.size();i++) {
|
|
|
|
plane_values[i*4+0]=planes[i].normal.x;
|
|
plane_values[i*4+1]=planes[i].normal.y;
|
|
plane_values[i*4+2]=planes[i].normal.z;
|
|
plane_values[i*4+3]=planes[i].d;
|
|
}
|
|
|
|
d["planes"]=plane_values;
|
|
|
|
DVector<int> dst_nodes;
|
|
dst_nodes.resize(nodes.size()*3);
|
|
|
|
for(int i=0;i<nodes.size();i++) {
|
|
|
|
dst_nodes.set(i*3+0,nodes[i].over);
|
|
dst_nodes.set(i*3+1,nodes[i].under);
|
|
dst_nodes.set(i*3+2,nodes[i].plane);
|
|
}
|
|
|
|
|
|
d["nodes"]=dst_nodes;
|
|
d["aabb"] = aabb;
|
|
|
|
return Variant(d);
|
|
}
|
|
|
|
BSP_Tree::BSP_Tree() {
|
|
|
|
}
|
|
|
|
|
|
BSP_Tree::BSP_Tree(const Variant& p_variant) {
|
|
|
|
Dictionary d=p_variant;
|
|
ERR_FAIL_COND(!d.has("nodes"));
|
|
ERR_FAIL_COND(!d.has("planes"));
|
|
ERR_FAIL_COND(!d.has("aabb"));
|
|
ERR_FAIL_COND(!d.has("error_radius"));
|
|
|
|
DVector<int> src_nodes = d["nodes"];
|
|
ERR_FAIL_COND(src_nodes.size()%3);
|
|
|
|
|
|
if (d["planes"].get_type()==Variant::REAL_ARRAY) {
|
|
|
|
DVector<float> src_planes=d["planes"];
|
|
int plane_count=src_planes.size();
|
|
ERR_FAIL_COND(plane_count%4);
|
|
planes.resize(plane_count/4);
|
|
|
|
if (plane_count) {
|
|
DVector<float>::Read r = src_planes.read();
|
|
for(int i=0;i<plane_count/4;i++) {
|
|
|
|
planes[i].normal.x=r[i*4+0];
|
|
planes[i].normal.y=r[i*4+1];
|
|
planes[i].normal.z=r[i*4+2];
|
|
planes[i].d=r[i*4+3];
|
|
}
|
|
}
|
|
|
|
|
|
} else {
|
|
|
|
planes = d["planes"];
|
|
}
|
|
|
|
|
|
error_radius = d["error"];
|
|
aabb = d["aabb"];
|
|
|
|
// int node_count = src_nodes.size();
|
|
nodes.resize(src_nodes.size()/3);
|
|
|
|
DVector<int>::Read r = src_nodes.read();
|
|
|
|
for(int i=0;i<nodes.size();i++) {
|
|
|
|
nodes[i].over=r[i*3+0];
|
|
nodes[i].under=r[i*3+1];
|
|
nodes[i].plane=r[i*3+2];
|
|
}
|
|
|
|
}
|
|
|
|
BSP_Tree::BSP_Tree(const DVector<Face3>& p_faces,float p_error_radius) {
|
|
|
|
// compute aabb
|
|
|
|
int face_count=p_faces.size();
|
|
DVector<Face3>::Read faces_r=p_faces.read();
|
|
const Face3 *facesptr = faces_r.ptr();
|
|
|
|
|
|
bool first=true;
|
|
|
|
Vector<int> indices;
|
|
|
|
for (int i=0;i<face_count;i++) {
|
|
|
|
const Face3& f=facesptr[i];
|
|
|
|
if (f.is_degenerate())
|
|
continue;
|
|
|
|
for (int j=0;j<3;j++) {
|
|
|
|
if (first) {
|
|
|
|
aabb.pos=f.vertex[0];
|
|
first=false;
|
|
} else {
|
|
|
|
aabb.expand_to(f.vertex[j]);
|
|
}
|
|
}
|
|
|
|
indices.push_back(i);
|
|
|
|
}
|
|
|
|
ERR_FAIL_COND( aabb.has_no_area() );
|
|
|
|
int top = _bsp_create_node(faces_r.ptr(),indices,planes,nodes,aabb.get_longest_axis_size()*0.0001);
|
|
|
|
if (top<0) {
|
|
|
|
nodes.clear();
|
|
planes.clear();
|
|
ERR_FAIL_COND( top < 0 );
|
|
}
|
|
|
|
|
|
|
|
|
|
error_radius=p_error_radius;
|
|
}
|
|
|
|
BSP_Tree::BSP_Tree(const Vector<Node> &p_nodes, const Vector<Plane> &p_planes, const AABB& p_aabb,float p_error_radius) {
|
|
|
|
nodes=p_nodes;
|
|
planes=p_planes;
|
|
aabb=p_aabb;
|
|
error_radius=p_error_radius;
|
|
|
|
}
|
|
|
|
BSP_Tree::~BSP_Tree() {
|
|
|
|
|
|
}
|