No description
Find a file
2017-10-07 15:15:30 +02:00
src Update long help text 2017-10-07 15:15:30 +02:00
tests Enhanced Windows support, see #70 2017-10-07 09:40:44 +02:00
.gitignore Re-write in rust 2017-05-12 11:50:54 +02:00
.travis.yml Re-write integration tests in Rust (#67) 2017-10-04 23:19:30 +02:00
appveyor.yml Include PowerShell completion script in release 2017-10-04 20:48:43 +02:00
build.rs cargo update 2017-10-05 00:01:56 +02:00
Cargo.lock Update help text 2017-10-05 21:35:22 +02:00
Cargo.toml cargo update 2017-10-05 00:01:56 +02:00
LICENSE Initial commit 2017-05-09 23:27:10 +02:00
README.md Update long help text 2017-10-07 15:15:30 +02:00

fd

Build Status Build status Version info

fd is a simple, fast and user-friendly alternative to find.

While it does not seek to mirror all of find's powerful functionality, it provides sensible (opinionated) defaults for 80% of the use cases.

Features

  • Convenient syntax: fd PATTERN instead of find -iname '*PATTERN*'.
  • Colorized terminal output (similar to ls).
  • It's fast (see benchmarks below).
  • Smart case: the search is case-insensitive by default. It switches to case-sensitive if the pattern contains an uppercase character*.
  • Ignores hidden directories and files, by default.
  • Ignores patterns from your .gitignore, by default.
  • Regular expressions.
  • Unicode-awareness.
  • The command name is 50% shorter* than find :-).

Demo

Demo

Colorized output

fd can colorize files by extension, just like ls. In order for this to work, the environment variable LS_COLORS has to be set. Typically, the value of this variable is set by the dircolors command which provides a convenient configuration format to define colors for different file formats. On most distributions, LS_COLORS should be set already. If you are looking for alternative, more complete (and more colorful) variants, see here or here.

Benchmark

Let's search my home folder for files that end in [0-9].jpg. It contains ~150.000 subdirectories and about a million files. For averaging and statistical analysis, I'm using bench. All benchmarks are performed for a "warm cache". Results for a cold cache are similar.

Let's start with find:

find ~ -iregex '.*[0-9]\.jpg$'

time                 6.265 s    (6.127 s .. NaN s)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 6.162 s    (6.140 s .. 6.181 s)
std dev              31.73 ms   (0.0 s .. 33.48 ms)

find is much faster if it does not need to perform a regular-expression search:

find ~ -iname '*[0-9].jpg'

time                 2.866 s    (2.754 s .. 2.964 s)
                     1.000 R²   (0.999 R² .. 1.000 R²)
mean                 2.860 s    (2.834 s .. 2.875 s)
std dev              23.11 ms   (0.0 s .. 25.09 ms)

Now let's try the same for fd. Note that fd always performs a regular expression search. The options --hidden and --no-ignore are needed for a fair comparison, otherwise fd does not have to traverse hidden folders and ignored paths (see below):

fd --hidden --no-ignore '.*[0-9]\.jpg$' ~

time                 892.6 ms   (839.0 ms .. 915.4 ms)
                     0.999 R²   (0.997 R² .. 1.000 R²)
mean                 871.2 ms   (857.9 ms .. 881.3 ms)
std dev              15.50 ms   (0.0 s .. 17.49 ms)

For this particular example, fd is approximately seven times faster than find -iregex and about three times faster than find -iname. By the way, both tools found the exact same 14030 files 😄.

Finally, let's run fd without --hidden and --no-ignore (this can lead to different search results, of course):

fd '[0-9]\.jpg$' ~

time                 159.5 ms   (155.8 ms .. 165.3 ms)
                     0.999 R²   (0.996 R² .. 1.000 R²)
mean                 158.7 ms   (156.5 ms .. 161.6 ms)
std dev              3.263 ms   (2.401 ms .. 4.298 ms)

Note: This is one particular benchmark on one particular machine. While I have performed quite a lot of different tests (and found consistent results), things might be different for you! I encourage everyone to try it out on their own.

Concerning fd's speed, the main credit goes to the regex and ignore crates that are also used in ripgrep (check it out!).

Install

With Rust's package manager cargo, you can install fd via:

cargo install fd-find

Note that rust version 1.16.0 or later is required. The release page of this repository also includes precompiled binaries for Linux.

On macOS, you can use Homebrew:

brew install fd

On Arch Linux, you can install the AUR package fd-rs via yaourt, or manually:

git clone https://aur.archlinux.org/fd-rs.git
cd fd-rs
makepkg -si

Development

git clone https://github.com/sharkdp/fd

# Build
cd fd
cargo build

# Run unit tests
cargo test

# Run integration tests
cd tests
bash test.sh

# Install
cargo install

Command-line options

USAGE:
    fd [FLAGS/OPTIONS] [<pattern>] [<path>]

FLAGS:
    -H, --hidden            Search hidden files and directories
    -I, --no-ignore         Do not respect .(git)ignore files
    -s, --case-sensitive    Case-sensitive search (default: smart case)
    -a, --absolute-path     Show absolute instead of relative paths
    -L, --follow            Follow symbolic links
    -p, --full-path         Search full path (default: file-/dirname only)
    -0, --print0            Separate results by the null character
    -h, --help              Prints help information
    -V, --version           Prints version information

OPTIONS:
    -d, --max-depth <depth>    Set maximum search depth (default: none)
    -t, --type <filetype>      Filter by type: f(ile), d(irectory), s(ymlink)
    -e, --extension <ext>      Filter by file extension
    -c, --color <when>         When to use color in the output:
                               never, auto, always (default: auto)
    -j, --threads <num>        Set number of threads to use for searching:
                               (default: number of available CPU cores)

ARGS:
    <pattern>    the search pattern, a regular expression (optional)
    <path>       the root directory for the filesystem search (optional)

Tutorial

First, to see all command line options, you can get fd's help text by running:

fd --help

For the sake of this tutorial, let's assume we have a directory with the following file structure:

fd_examples
├── .gitignore
├── desub_dir
│   └── old_test.txt
├── not_file
├── sub_dir
│   ├── .here_be_tests
│   ├── more_dir
│   │   ├── .not_here
│   │   ├── even_further_down
│   │   │   ├── not_me.sh
│   │   │   ├── test_seven
│   │   │   └── testing_eight
│   │   ├── not_file -> /Users/fd_user/Desktop/fd_examples/not_file
│   │   └── test_file_six
│   ├── new_test.txt
│   ├── test_file_five
│   ├── test_file_four
│   └── test_file_three
├── test_file_one
├── test_file_two
├── test_one
└── this_is_a_test

If fd is called with a single argument (the search pattern), it will perform a recursive search through the current directory. To search for all files that include the string "test", we can simply run:

> fd test
sub_dir/more_dir/even_further_down/test_seven
sub_dir/more_dir/even_further_down/testing_eight
sub_dir/more_dir/test_file_six
sub_dir/test_file_five
sub_dir/test_file_three
sub_dir/test_four
test_file_one
test_file_two
test_one
this_is_a_test

The search pattern is treated as a regular expression. To show only entries that start with "test", we can simply run:

> fd '^test'
sub_dir/more_dir/even_further_down/test_seven
sub_dir/more_dir/even_further_down/testing_eight
sub_dir/more_dir/test_file_six
sub_dir/test_file_five
sub_dir/test_file_three
sub_dir/test_four
test_file_one
test_file_two
test_one

Note that fd does not show hidden files (.here_be_tests) by default. To change this, we can use the -H (or --hidden) option:

> fd -H test
sub_dir/.here_be_tests
sub_dir/more_dir/even_further_down/test_seven
sub_dir/more_dir/even_further_down/testing_eight
sub_dir/more_dir/test_file_six
sub_dir/test_file_five
sub_dir/test_file_four
sub_dir/test_file_three
test_file_one
test_file_two
test_one
this_is_a_test

If we are interested in showing the results from a particular directory, we can specify the root of the search as a second argument:

> fd test sub_dir
sub_dir/more_dir/even_further_down/test_seven
sub_dir/more_dir/even_further_down/testing_eight
sub_dir/more_dir/test_file_six
sub_dir/test_file_five
sub_dir/test_file_three
sub_dir/test_four

If we don't give any arguments to fd, it simply shows all entries in the current directory, recursively (like ls -R):

> fd
not_file
sub_dir
sub_dir/more_dir
sub_dir/more_dir/even_further_down
sub_dir/more_dir/even_further_down/test_seven
sub_dir/more_dir/even_further_down/testing_eight
sub_dir/more_dir/not_file
sub_dir/more_dir/test_file_six
sub_dir/test_file_five
sub_dir/test_file_three
sub_dir/test_four
test_file_one
test_file_two
test_one
this_is_a_test

If we work in a directory that is a Git repository (or includes several Git repositories), fd does not search folders (and does not show files) that match the .gitignore pattern. For example, imagine we had a .gitignore file with the following content:

*.sh

In this case, fd would not show any files that end in .sh. To disable this behavior, we can use the -I (or --ignore) option:

> fd -I me
sub_dir/more_dir/even_further_down/not_me.sh

To really search all files and directories, we can combine the hidden and ignore features to show everything (-HI):

fd -HI 'not|here'
not_file
sub_dir/.here_be_tests
sub_dir/more_dir/.not_here
sub_dir/more_dir/even_further_down/not_me.sh
sub_dir/more_dir/not_file

Searching for a file extension is easy too, using the -e (or --file-extensions) switch for file extensions:

> fd -e sh
sub_dir/more_dir/even_further_down/not_me.sh

Next, we can even use a pattern in combination with -e to search for a regex pattern over the files that end in the specified extension.

> fd -e txt test
fd_examples/desub_dir/old_test.txt
fd_examples/sub_dir/new_test.txt

What if we wanted to run a command for each of the search results? We can use xargs to do that: fd -0 'test' | xargs -0 -I {} cp {} {}.new

In this example there are a couple things to take note:

  • First we are telling fd we want a null character to seperate the files -0, this is important when passing to xargs.
  • Second, we are piping the output to xargs and telling this program to expect input null terminated with -0 (the same syntax that fd was built with).
  • Then for fun we are using -I to replace a string {} and lauching cp to copy the file {} to a file ending in {}.new.

fd can also show us the absolute path vs. the full path with -a (--absolute-path):

> fd -a new
/Users/fd_user/fd_examples/sub_dir/more_dir/even_further_down/test_seven.new
/Users/fd_user/fd_examples/sub_dir/more_dir/even_further_down/testing_eight.new
/Users/fd_user/fd_examples/sub_dir/more_dir/test_file_six.new
/Users/fd_user/fd_examples/sub_dir/test_file_five.new
/Users/fd_user/fd_examples/sub_dir/test_file_four.new
/Users/fd_user/fd_examples/sub_dir/test_file_three.new
/Users/fd_user/fd_examples/test_file_one.new
/Users/fd_user/fd_examples/test_file_two.new
/Users/fd_user/fd_examples/test_one.new
/Users/fd_user/fd_examples/this_is_a_test.new