mirror of
git://source.winehq.org/git/wine.git
synced 2024-10-31 14:24:45 +00:00
d5249c0f6d
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
690 lines
21 KiB
C
690 lines
21 KiB
C
/*
|
|
* Copyright 2001 Nikos Mavroyanopoulos
|
|
* Copyright 2004 Hans Leidekker
|
|
* Copyright 2004 Filip Navara
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include "windef.h"
|
|
|
|
/* SHA1 algorithm
|
|
*
|
|
* Based on public domain SHA code by Steve Reid <steve@edmweb.com>
|
|
*/
|
|
|
|
typedef struct {
|
|
ULONG Unknown[6];
|
|
ULONG State[5];
|
|
ULONG Count[2];
|
|
UCHAR Buffer[64];
|
|
} SHA_CTX, *PSHA_CTX;
|
|
|
|
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
|
/* FIXME: This definition of DWORD2BE is little endian specific! */
|
|
#define DWORD2BE(x) (((x) >> 24) & 0xff) | (((x) >> 8) & 0xff00) | (((x) << 8) & 0xff0000) | (((x) << 24) & 0xff000000);
|
|
/* FIXME: This definition of blk0 is little endian specific! */
|
|
#define blk0(i) (Block[i] = (rol(Block[i],24)&0xFF00FF00)|(rol(Block[i],8)&0x00FF00FF))
|
|
#define blk1(i) (Block[i&15] = rol(Block[(i+13)&15]^Block[(i+8)&15]^Block[(i+2)&15]^Block[i&15],1))
|
|
#define f1(x,y,z) (z^(x&(y^z)))
|
|
#define f2(x,y,z) (x^y^z)
|
|
#define f3(x,y,z) ((x&y)|(z&(x|y)))
|
|
#define f4(x,y,z) (x^y^z)
|
|
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
|
|
#define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
|
|
#define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rol(v,5);w=rol(w,30);
|
|
#define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
|
|
#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
|
|
#define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
|
|
|
|
/* Hash a single 512-bit block. This is the core of the algorithm. */
|
|
static void SHA1Transform(ULONG State[5], UCHAR Buffer[64])
|
|
{
|
|
ULONG a, b, c, d, e;
|
|
ULONG *Block;
|
|
|
|
Block = (ULONG*)Buffer;
|
|
|
|
/* Copy Context->State[] to working variables */
|
|
a = State[0];
|
|
b = State[1];
|
|
c = State[2];
|
|
d = State[3];
|
|
e = State[4];
|
|
|
|
/* 4 rounds of 20 operations each. Loop unrolled. */
|
|
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
|
|
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
|
|
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
|
|
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
|
|
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
|
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
|
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
|
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
|
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
|
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
|
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
|
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
|
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
|
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
|
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
|
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
|
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
|
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
|
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
|
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
|
|
|
/* Add the working variables back into Context->State[] */
|
|
State[0] += a;
|
|
State[1] += b;
|
|
State[2] += c;
|
|
State[3] += d;
|
|
State[4] += e;
|
|
|
|
/* Wipe variables */
|
|
a = b = c = d = e = 0;
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
* A_SHAInit (ntdll.@)
|
|
*
|
|
* Initialize a SHA context structure.
|
|
*
|
|
* PARAMS
|
|
* Context [O] SHA context
|
|
*
|
|
* RETURNS
|
|
* Nothing
|
|
*/
|
|
void WINAPI A_SHAInit(PSHA_CTX Context)
|
|
{
|
|
/* SHA1 initialization constants */
|
|
Context->State[0] = 0x67452301;
|
|
Context->State[1] = 0xEFCDAB89;
|
|
Context->State[2] = 0x98BADCFE;
|
|
Context->State[3] = 0x10325476;
|
|
Context->State[4] = 0xC3D2E1F0;
|
|
Context->Count[0] =
|
|
Context->Count[1] = 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* A_SHAUpdate (ntdll.@)
|
|
*
|
|
* Update a SHA context with a hashed data from supplied buffer.
|
|
*
|
|
* PARAMS
|
|
* Context [O] SHA context
|
|
* Buffer [I] hashed data
|
|
* BufferSize [I] hashed data size
|
|
*
|
|
* RETURNS
|
|
* Nothing
|
|
*/
|
|
void WINAPI A_SHAUpdate(PSHA_CTX Context, const unsigned char *Buffer, UINT BufferSize)
|
|
{
|
|
ULONG BufferContentSize;
|
|
|
|
BufferContentSize = Context->Count[1] & 63;
|
|
Context->Count[1] += BufferSize;
|
|
if (Context->Count[1] < BufferSize)
|
|
Context->Count[0]++;
|
|
Context->Count[0] += (BufferSize >> 29);
|
|
|
|
if (BufferContentSize + BufferSize < 64)
|
|
{
|
|
RtlCopyMemory(&Context->Buffer[BufferContentSize], Buffer,
|
|
BufferSize);
|
|
}
|
|
else
|
|
{
|
|
while (BufferContentSize + BufferSize >= 64)
|
|
{
|
|
RtlCopyMemory(Context->Buffer + BufferContentSize, Buffer,
|
|
64 - BufferContentSize);
|
|
Buffer += 64 - BufferContentSize;
|
|
BufferSize -= 64 - BufferContentSize;
|
|
SHA1Transform(Context->State, Context->Buffer);
|
|
BufferContentSize = 0;
|
|
}
|
|
RtlCopyMemory(Context->Buffer + BufferContentSize, Buffer, BufferSize);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* A_SHAFinal (ntdll.@)
|
|
*
|
|
* Finalize SHA context and return the resulting hash.
|
|
*
|
|
* PARAMS
|
|
* Context [I/O] SHA context
|
|
* Result [O] resulting hash
|
|
*
|
|
* RETURNS
|
|
* Nothing
|
|
*/
|
|
void WINAPI A_SHAFinal(PSHA_CTX Context, PULONG Result)
|
|
{
|
|
INT Pad, Index;
|
|
UCHAR Buffer[72];
|
|
ULONG *Count;
|
|
ULONG BufferContentSize, LengthHi, LengthLo;
|
|
|
|
BufferContentSize = Context->Count[1] & 63;
|
|
if (BufferContentSize >= 56)
|
|
Pad = 56 + 64 - BufferContentSize;
|
|
else
|
|
Pad = 56 - BufferContentSize;
|
|
|
|
LengthHi = (Context->Count[0] << 3) | (Context->Count[1] >> (32 - 3));
|
|
LengthLo = (Context->Count[1] << 3);
|
|
|
|
RtlZeroMemory(Buffer + 1, Pad - 1);
|
|
Buffer[0] = 0x80;
|
|
Count = (ULONG*)(Buffer + Pad);
|
|
Count[0] = DWORD2BE(LengthHi);
|
|
Count[1] = DWORD2BE(LengthLo);
|
|
A_SHAUpdate(Context, Buffer, Pad + 8);
|
|
|
|
for (Index = 0; Index < 5; Index++)
|
|
Result[Index] = DWORD2BE(Context->State[Index]);
|
|
|
|
A_SHAInit(Context);
|
|
}
|
|
|
|
|
|
/* MD4 algorithm
|
|
*
|
|
* This code implements the MD4 message-digest algorithm.
|
|
* It is based on code in the public domain written by Colin
|
|
* Plumb in 1993. The algorithm is due to Ron Rivest.
|
|
*
|
|
* Equivalent code is available from RSA Data Security, Inc.
|
|
* This code has been tested against that, and is equivalent,
|
|
* except that you don't need to include two pages of legalese
|
|
* with every copy.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
unsigned int buf[4];
|
|
unsigned int i[2];
|
|
unsigned char in[64];
|
|
unsigned char digest[16];
|
|
} MD4_CTX;
|
|
|
|
|
|
#define F( x, y, z ) (((x) & (y)) | ((~x) & (z)))
|
|
#define G( x, y, z ) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
|
|
#define H( x, y, z ) ((x) ^ (y) ^ (z))
|
|
|
|
#define FF( a, b, c, d, x, s ) { \
|
|
(a) += F( (b), (c), (d) ) + (x); \
|
|
(a) = rol( (a), (s) ); \
|
|
}
|
|
#define GG( a, b, c, d, x, s ) { \
|
|
(a) += G( (b), (c), (d) ) + (x) + (unsigned int)0x5a827999; \
|
|
(a) = rol( (a), (s) ); \
|
|
}
|
|
#define HH( a, b, c, d, x, s ) { \
|
|
(a) += H( (b), (c), (d) ) + (x) + (unsigned int)0x6ed9eba1; \
|
|
(a) = rol( (a), (s) ); \
|
|
}
|
|
|
|
static void MD4Transform( unsigned int buf[4], const unsigned int in[16] )
|
|
{
|
|
unsigned int a, b, c, d;
|
|
|
|
a = buf[0];
|
|
b = buf[1];
|
|
c = buf[2];
|
|
d = buf[3];
|
|
|
|
FF( a, b, c, d, in[0], 3 );
|
|
FF( d, a, b, c, in[1], 7 );
|
|
FF( c, d, a, b, in[2], 11 );
|
|
FF( b, c, d, a, in[3], 19 );
|
|
FF( a, b, c, d, in[4], 3 );
|
|
FF( d, a, b, c, in[5], 7 );
|
|
FF( c, d, a, b, in[6], 11 );
|
|
FF( b, c, d, a, in[7], 19 );
|
|
FF( a, b, c, d, in[8], 3 );
|
|
FF( d, a, b, c, in[9], 7 );
|
|
FF( c, d, a, b, in[10], 11 );
|
|
FF( b, c, d, a, in[11], 19 );
|
|
FF( a, b, c, d, in[12], 3 );
|
|
FF( d, a, b, c, in[13], 7 );
|
|
FF( c, d, a, b, in[14], 11 );
|
|
FF( b, c, d, a, in[15], 19 );
|
|
|
|
GG( a, b, c, d, in[0], 3 );
|
|
GG( d, a, b, c, in[4], 5 );
|
|
GG( c, d, a, b, in[8], 9 );
|
|
GG( b, c, d, a, in[12], 13 );
|
|
GG( a, b, c, d, in[1], 3 );
|
|
GG( d, a, b, c, in[5], 5 );
|
|
GG( c, d, a, b, in[9], 9 );
|
|
GG( b, c, d, a, in[13], 13 );
|
|
GG( a, b, c, d, in[2], 3 );
|
|
GG( d, a, b, c, in[6], 5 );
|
|
GG( c, d, a, b, in[10], 9 );
|
|
GG( b, c, d, a, in[14], 13 );
|
|
GG( a, b, c, d, in[3], 3 );
|
|
GG( d, a, b, c, in[7], 5 );
|
|
GG( c, d, a, b, in[11], 9 );
|
|
GG( b, c, d, a, in[15], 13 );
|
|
|
|
HH( a, b, c, d, in[0], 3 );
|
|
HH( d, a, b, c, in[8], 9 );
|
|
HH( c, d, a, b, in[4], 11 );
|
|
HH( b, c, d, a, in[12], 15 );
|
|
HH( a, b, c, d, in[2], 3 );
|
|
HH( d, a, b, c, in[10], 9 );
|
|
HH( c, d, a, b, in[6], 11 );
|
|
HH( b, c, d, a, in[14], 15 );
|
|
HH( a, b, c, d, in[1], 3 );
|
|
HH( d, a, b, c, in[9], 9 );
|
|
HH( c, d, a, b, in[5], 11 );
|
|
HH( b, c, d, a, in[13], 15 );
|
|
HH( a, b, c, d, in[3], 3 );
|
|
HH( d, a, b, c, in[11], 9 );
|
|
HH( c, d, a, b, in[7], 11 );
|
|
HH( b, c, d, a, in[15], 15 );
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
}
|
|
|
|
/*
|
|
* Note: this code is harmless on little-endian machines.
|
|
*/
|
|
static void byteReverse( unsigned char *buf, unsigned longs )
|
|
{
|
|
unsigned int t;
|
|
|
|
do {
|
|
t = ((unsigned)buf[3] << 8 | buf[2]) << 16 |
|
|
((unsigned)buf[1] << 8 | buf[0]);
|
|
*(unsigned int *)buf = t;
|
|
buf += 4;
|
|
} while (--longs);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MD4Init (ntdll.@)
|
|
*
|
|
* Start MD4 accumulation. Set bit count to 0 and buffer to mysterious
|
|
* initialization constants.
|
|
*/
|
|
void WINAPI MD4Init( MD4_CTX *ctx )
|
|
{
|
|
ctx->buf[0] = 0x67452301;
|
|
ctx->buf[1] = 0xefcdab89;
|
|
ctx->buf[2] = 0x98badcfe;
|
|
ctx->buf[3] = 0x10325476;
|
|
|
|
ctx->i[0] = ctx->i[1] = 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MD4Update (ntdll.@)
|
|
*
|
|
* Update context to reflect the concatenation of another buffer full
|
|
* of bytes.
|
|
*/
|
|
void WINAPI MD4Update( MD4_CTX *ctx, const unsigned char *buf, unsigned int len )
|
|
{
|
|
unsigned int t;
|
|
|
|
/* Update bitcount */
|
|
t = ctx->i[0];
|
|
|
|
if ((ctx->i[0] = t + (len << 3)) < t)
|
|
ctx->i[1]++; /* Carry from low to high */
|
|
|
|
ctx->i[1] += len >> 29;
|
|
t = (t >> 3) & 0x3f;
|
|
|
|
/* Handle any leading odd-sized chunks */
|
|
if (t)
|
|
{
|
|
unsigned char *p = (unsigned char *)ctx->in + t;
|
|
t = 64 - t;
|
|
|
|
if (len < t)
|
|
{
|
|
memcpy( p, buf, len );
|
|
return;
|
|
}
|
|
|
|
memcpy( p, buf, t );
|
|
byteReverse( ctx->in, 16 );
|
|
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
buf += t;
|
|
len -= t;
|
|
}
|
|
|
|
/* Process data in 64-byte chunks */
|
|
while (len >= 64)
|
|
{
|
|
memcpy( ctx->in, buf, 64 );
|
|
byteReverse( ctx->in, 16 );
|
|
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
buf += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Handle any remaining bytes of data. */
|
|
memcpy( ctx->in, buf, len );
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MD4Final (ntdll.@)
|
|
*
|
|
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
|
*/
|
|
void WINAPI MD4Final( MD4_CTX *ctx )
|
|
{
|
|
unsigned int count;
|
|
unsigned char *p;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
count = (ctx->i[0] >> 3) & 0x3F;
|
|
|
|
/* Set the first char of padding to 0x80. This is safe since there is
|
|
always at least one byte free */
|
|
p = ctx->in + count;
|
|
*p++ = 0x80;
|
|
|
|
/* Bytes of padding needed to make 64 bytes */
|
|
count = 64 - 1 - count;
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
if (count < 8)
|
|
{
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
|
memset( p, 0, count );
|
|
byteReverse( ctx->in, 16 );
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
/* Now fill the next block with 56 bytes */
|
|
memset( ctx->in, 0, 56 );
|
|
}
|
|
else
|
|
{
|
|
/* Pad block to 56 bytes */
|
|
memset( p, 0, count - 8 );
|
|
}
|
|
|
|
byteReverse( ctx->in, 14 );
|
|
|
|
/* Append length in bits and transform */
|
|
((unsigned int *)ctx->in)[14] = ctx->i[0];
|
|
((unsigned int *)ctx->in)[15] = ctx->i[1];
|
|
|
|
MD4Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
byteReverse( (unsigned char *)ctx->buf, 4 );
|
|
memcpy( ctx->digest, ctx->buf, 16 );
|
|
}
|
|
|
|
|
|
/* MD5 algorithm
|
|
*
|
|
* This code implements the MD5 message-digest algorithm.
|
|
* It is based on code in the public domain written by Colin
|
|
* Plumb in 1993. The algorithm is due to Ron Rivest.
|
|
*
|
|
* Equivalent code is available from RSA Data Security, Inc.
|
|
* This code has been tested against that, and is equivalent,
|
|
* except that you don't need to include two pages of legalese
|
|
* with every copy.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
unsigned int i[2];
|
|
unsigned int buf[4];
|
|
unsigned char in[64];
|
|
unsigned char digest[16];
|
|
} MD5_CTX;
|
|
|
|
/* #define F1( x, y, z ) (x & y | ~x & z) */
|
|
#define F1( x, y, z ) (z ^ (x & (y ^ z)))
|
|
#define F2( x, y, z ) F1( z, x, y )
|
|
#define F3( x, y, z ) (x ^ y ^ z)
|
|
#define F4( x, y, z ) (y ^ (x | ~z))
|
|
|
|
/* This is the central step in the MD5 algorithm. */
|
|
#define MD5STEP( f, w, x, y, z, data, s ) \
|
|
( w += f( x, y, z ) + data, w = w << s | w >> (32 - s), w += x )
|
|
|
|
/*
|
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
|
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
|
* the data and converts bytes into longwords for this routine.
|
|
*/
|
|
static void MD5Transform( unsigned int buf[4], const unsigned int in[16] )
|
|
{
|
|
unsigned int a, b, c, d;
|
|
|
|
a = buf[0];
|
|
b = buf[1];
|
|
c = buf[2];
|
|
d = buf[3];
|
|
|
|
MD5STEP( F1, a, b, c, d, in[0] + 0xd76aa478, 7 );
|
|
MD5STEP( F1, d, a, b, c, in[1] + 0xe8c7b756, 12 );
|
|
MD5STEP( F1, c, d, a, b, in[2] + 0x242070db, 17 );
|
|
MD5STEP( F1, b, c, d, a, in[3] + 0xc1bdceee, 22 );
|
|
MD5STEP( F1, a, b, c, d, in[4] + 0xf57c0faf, 7 );
|
|
MD5STEP( F1, d, a, b, c, in[5] + 0x4787c62a, 12 );
|
|
MD5STEP( F1, c, d, a, b, in[6] + 0xa8304613, 17 );
|
|
MD5STEP( F1, b, c, d, a, in[7] + 0xfd469501, 22 );
|
|
MD5STEP( F1, a, b, c, d, in[8] + 0x698098d8, 7 );
|
|
MD5STEP( F1, d, a, b, c, in[9] + 0x8b44f7af, 12 );
|
|
MD5STEP( F1, c, d, a, b, in[10] + 0xffff5bb1, 17 );
|
|
MD5STEP( F1, b, c, d, a, in[11] + 0x895cd7be, 22 );
|
|
MD5STEP( F1, a, b, c, d, in[12] + 0x6b901122, 7 );
|
|
MD5STEP( F1, d, a, b, c, in[13] + 0xfd987193, 12 );
|
|
MD5STEP( F1, c, d, a, b, in[14] + 0xa679438e, 17 );
|
|
MD5STEP( F1, b, c, d, a, in[15] + 0x49b40821, 22 );
|
|
|
|
MD5STEP( F2, a, b, c, d, in[1] + 0xf61e2562, 5 );
|
|
MD5STEP( F2, d, a, b, c, in[6] + 0xc040b340, 9 );
|
|
MD5STEP( F2, c, d, a, b, in[11] + 0x265e5a51, 14 );
|
|
MD5STEP( F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20 );
|
|
MD5STEP( F2, a, b, c, d, in[5] + 0xd62f105d, 5 );
|
|
MD5STEP( F2, d, a, b, c, in[10] + 0x02441453, 9 );
|
|
MD5STEP( F2, c, d, a, b, in[15] + 0xd8a1e681, 14 );
|
|
MD5STEP( F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20 );
|
|
MD5STEP( F2, a, b, c, d, in[9] + 0x21e1cde6, 5 );
|
|
MD5STEP( F2, d, a, b, c, in[14] + 0xc33707d6, 9 );
|
|
MD5STEP( F2, c, d, a, b, in[3] + 0xf4d50d87, 14 );
|
|
MD5STEP( F2, b, c, d, a, in[8] + 0x455a14ed, 20 );
|
|
MD5STEP( F2, a, b, c, d, in[13] + 0xa9e3e905, 5 );
|
|
MD5STEP( F2, d, a, b, c, in[2] + 0xfcefa3f8, 9 );
|
|
MD5STEP( F2, c, d, a, b, in[7] + 0x676f02d9, 14 );
|
|
MD5STEP( F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20 );
|
|
|
|
MD5STEP( F3, a, b, c, d, in[5] + 0xfffa3942, 4 );
|
|
MD5STEP( F3, d, a, b, c, in[8] + 0x8771f681, 11 );
|
|
MD5STEP( F3, c, d, a, b, in[11] + 0x6d9d6122, 16 );
|
|
MD5STEP( F3, b, c, d, a, in[14] + 0xfde5380c, 23 );
|
|
MD5STEP( F3, a, b, c, d, in[1] + 0xa4beea44, 4 );
|
|
MD5STEP( F3, d, a, b, c, in[4] + 0x4bdecfa9, 11 );
|
|
MD5STEP( F3, c, d, a, b, in[7] + 0xf6bb4b60, 16 );
|
|
MD5STEP( F3, b, c, d, a, in[10] + 0xbebfbc70, 23 );
|
|
MD5STEP( F3, a, b, c, d, in[13] + 0x289b7ec6, 4 );
|
|
MD5STEP( F3, d, a, b, c, in[0] + 0xeaa127fa, 11 );
|
|
MD5STEP( F3, c, d, a, b, in[3] + 0xd4ef3085, 16 );
|
|
MD5STEP( F3, b, c, d, a, in[6] + 0x04881d05, 23 );
|
|
MD5STEP( F3, a, b, c, d, in[9] + 0xd9d4d039, 4 );
|
|
MD5STEP( F3, d, a, b, c, in[12] + 0xe6db99e5, 11 );
|
|
MD5STEP( F3, c, d, a, b, in[15] + 0x1fa27cf8, 16 );
|
|
MD5STEP( F3, b, c, d, a, in[2] + 0xc4ac5665, 23 );
|
|
|
|
MD5STEP( F4, a, b, c, d, in[0] + 0xf4292244, 6 );
|
|
MD5STEP( F4, d, a, b, c, in[7] + 0x432aff97, 10 );
|
|
MD5STEP( F4, c, d, a, b, in[14] + 0xab9423a7, 15 );
|
|
MD5STEP( F4, b, c, d, a, in[5] + 0xfc93a039, 21 );
|
|
MD5STEP( F4, a, b, c, d, in[12] + 0x655b59c3, 6 );
|
|
MD5STEP( F4, d, a, b, c, in[3] + 0x8f0ccc92, 10 );
|
|
MD5STEP( F4, c, d, a, b, in[10] + 0xffeff47d, 15 );
|
|
MD5STEP( F4, b, c, d, a, in[1] + 0x85845dd1, 21 );
|
|
MD5STEP( F4, a, b, c, d, in[8] + 0x6fa87e4f, 6 );
|
|
MD5STEP( F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10 );
|
|
MD5STEP( F4, c, d, a, b, in[6] + 0xa3014314, 15 );
|
|
MD5STEP( F4, b, c, d, a, in[13] + 0x4e0811a1, 21 );
|
|
MD5STEP( F4, a, b, c, d, in[4] + 0xf7537e82, 6 );
|
|
MD5STEP( F4, d, a, b, c, in[11] + 0xbd3af235, 10 );
|
|
MD5STEP( F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15 );
|
|
MD5STEP( F4, b, c, d, a, in[9] + 0xeb86d391, 21 );
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MD5Init (ntdll.@)
|
|
*
|
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
|
* initialization constants.
|
|
*/
|
|
void WINAPI MD5Init( MD5_CTX *ctx )
|
|
{
|
|
ctx->buf[0] = 0x67452301;
|
|
ctx->buf[1] = 0xefcdab89;
|
|
ctx->buf[2] = 0x98badcfe;
|
|
ctx->buf[3] = 0x10325476;
|
|
|
|
ctx->i[0] = ctx->i[1] = 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MD5Update (ntdll.@)
|
|
*
|
|
* Update context to reflect the concatenation of another buffer full
|
|
* of bytes.
|
|
*/
|
|
void WINAPI MD5Update( MD5_CTX *ctx, const unsigned char *buf, unsigned int len )
|
|
{
|
|
register unsigned int t;
|
|
|
|
/* Update bitcount */
|
|
t = ctx->i[0];
|
|
|
|
if ((ctx->i[0] = t + (len << 3)) < t)
|
|
ctx->i[1]++; /* Carry from low to high */
|
|
|
|
ctx->i[1] += len >> 29;
|
|
t = (t >> 3) & 0x3f;
|
|
|
|
/* Handle any leading odd-sized chunks */
|
|
if (t)
|
|
{
|
|
unsigned char *p = (unsigned char *)ctx->in + t;
|
|
t = 64 - t;
|
|
|
|
if (len < t)
|
|
{
|
|
memcpy( p, buf, len );
|
|
return;
|
|
}
|
|
|
|
memcpy( p, buf, t );
|
|
byteReverse( ctx->in, 16 );
|
|
|
|
MD5Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
buf += t;
|
|
len -= t;
|
|
}
|
|
|
|
/* Process data in 64-byte chunks */
|
|
while (len >= 64)
|
|
{
|
|
memcpy( ctx->in, buf, 64 );
|
|
byteReverse( ctx->in, 16 );
|
|
|
|
MD5Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
buf += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Handle any remaining bytes of data. */
|
|
memcpy( ctx->in, buf, len );
|
|
}
|
|
|
|
/******************************************************************************
|
|
* MD5Final (ntdll.@)
|
|
*
|
|
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
|
*/
|
|
void WINAPI MD5Final( MD5_CTX *ctx )
|
|
{
|
|
unsigned int count;
|
|
unsigned char *p;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
count = (ctx->i[0] >> 3) & 0x3F;
|
|
|
|
/* Set the first char of padding to 0x80. This is safe since there is
|
|
always at least one byte free */
|
|
p = ctx->in + count;
|
|
*p++ = 0x80;
|
|
|
|
/* Bytes of padding needed to make 64 bytes */
|
|
count = 64 - 1 - count;
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
if (count < 8)
|
|
{
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
|
memset( p, 0, count );
|
|
byteReverse( ctx->in, 16 );
|
|
MD5Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
|
|
/* Now fill the next block with 56 bytes */
|
|
memset( ctx->in, 0, 56 );
|
|
}
|
|
else
|
|
{
|
|
/* Pad block to 56 bytes */
|
|
memset( p, 0, count - 8 );
|
|
}
|
|
|
|
byteReverse( ctx->in, 14 );
|
|
|
|
/* Append length in bits and transform */
|
|
((unsigned int *)ctx->in)[14] = ctx->i[0];
|
|
((unsigned int *)ctx->in)[15] = ctx->i[1];
|
|
|
|
MD5Transform( ctx->buf, (unsigned int *)ctx->in );
|
|
byteReverse( (unsigned char *)ctx->buf, 4 );
|
|
memcpy( ctx->digest, ctx->buf, 16 );
|
|
}
|