wine/server/sock.c

4101 lines
126 KiB
C

/*
* Server-side socket management
*
* Copyright (C) 1999 Marcus Meissner, Ove Kåven
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
* FIXME: we use read|write access in all cases. Shouldn't we depend that
* on the access of the current handle?
*/
#include "config.h"
#include <assert.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#ifdef HAVE_IFADDRS_H
# include <ifaddrs.h>
#endif
#ifdef HAVE_NET_IF_H
# include <net/if.h>
#endif
#ifdef HAVE_NETINET_IN_H
# include <netinet/in.h>
#endif
#ifdef HAVE_NETINET_TCP_H
# include <netinet/tcp.h>
#endif
#include <poll.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#ifdef HAVE_SYS_FILIO_H
# include <sys/filio.h>
#endif
#include <time.h>
#include <unistd.h>
#include <limits.h>
#ifdef HAVE_LINUX_FILTER_H
# include <linux/filter.h>
#endif
#ifdef HAVE_LINUX_RTNETLINK_H
# include <linux/rtnetlink.h>
#endif
#ifdef HAVE_NETIPX_IPX_H
# include <netipx/ipx.h>
# define HAS_IPX
#elif defined(HAVE_LINUX_IPX_H)
# ifdef HAVE_ASM_TYPES_H
# include <asm/types.h>
# endif
# ifdef HAVE_LINUX_TYPES_H
# include <linux/types.h>
# endif
# include <linux/ipx.h>
# ifdef SOL_IPX
# define HAS_IPX
# endif
#endif
#ifdef HAVE_LINUX_IRDA_H
# ifdef HAVE_LINUX_TYPES_H
# include <linux/types.h>
# endif
# include <linux/irda.h>
# define HAS_IRDA
#endif
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winternl.h"
#include "winerror.h"
#define USE_WS_PREFIX
#include "winsock2.h"
#include "ws2tcpip.h"
#include "wsipx.h"
#include "af_irda.h"
#include "wine/afd.h"
#include "wine/rbtree.h"
#include "process.h"
#include "file.h"
#include "handle.h"
#include "thread.h"
#include "request.h"
#include "user.h"
#if defined(linux) && !defined(IP_UNICAST_IF)
#define IP_UNICAST_IF 50
#endif
static const char magic_loopback_addr[] = {127, 12, 34, 56};
union win_sockaddr
{
struct WS_sockaddr addr;
struct WS_sockaddr_in in;
struct WS_sockaddr_in6 in6;
struct WS_sockaddr_ipx ipx;
SOCKADDR_IRDA irda;
};
union unix_sockaddr
{
struct sockaddr addr;
struct sockaddr_in in;
struct sockaddr_in6 in6;
#ifdef HAS_IPX
struct sockaddr_ipx ipx;
#endif
#ifdef HAS_IRDA
struct sockaddr_irda irda;
#endif
};
static struct list poll_list = LIST_INIT( poll_list );
struct poll_req
{
struct list entry;
struct async *async;
struct iosb *iosb;
struct timeout_user *timeout;
timeout_t orig_timeout;
int exclusive;
int pending;
unsigned int count;
struct
{
struct sock *sock;
int mask;
obj_handle_t handle;
int flags;
unsigned int status;
} sockets[1];
};
struct accept_req
{
struct list entry;
struct async *async;
struct iosb *iosb;
struct sock *sock, *acceptsock;
int accepted;
unsigned int recv_len, local_len;
};
struct connect_req
{
struct async *async;
struct iosb *iosb;
struct sock *sock;
unsigned int addr_len, send_len, send_cursor;
};
struct send_req
{
struct iosb *iosb;
struct sock *sock;
};
enum connection_state
{
SOCK_LISTENING,
SOCK_UNCONNECTED,
SOCK_CONNECTING,
SOCK_CONNECTED,
SOCK_CONNECTIONLESS,
};
struct bound_addr
{
struct rb_entry entry;
union unix_sockaddr addr;
int match_any_addr;
int reuse_count;
};
#define MAX_ICMP_HISTORY_LENGTH 8
#define MIN_RCVBUF 65536
struct sock
{
struct object obj; /* object header */
struct fd *fd; /* socket file descriptor */
enum connection_state state; /* connection state */
unsigned int mask; /* event mask */
/* pending AFD_POLL_* events which have not yet been reported to the application */
unsigned int pending_events;
/* AFD_POLL_* events which have already been reported and should not be
* selected for again until reset by a relevant call.
*
* For example, if AFD_POLL_READ is set here and not in pending_events, it
* has already been reported and consumed, and we should not report it
* again, even if POLLIN is signaled, until it is reset by e.g recv().
*
* If an event has been signaled and not consumed yet, it will be set in
* both pending_events and reported_events (as we should only ever report
* any event once until it is reset.) */
unsigned int reported_events;
unsigned short proto; /* socket protocol */
unsigned short type; /* socket type */
unsigned short family; /* socket family */
struct event *event; /* event object */
user_handle_t window; /* window to send the message to */
unsigned int message; /* message to send */
obj_handle_t wparam; /* message wparam (socket handle) */
int errors[AFD_POLL_BIT_COUNT]; /* event errors */
timeout_t connect_time;/* time the socket was connected */
struct sock *deferred; /* socket that waits for a deferred accept */
struct async_queue read_q; /* queue for asynchronous reads */
struct async_queue write_q; /* queue for asynchronous writes */
struct async_queue ifchange_q; /* queue for interface change notifications */
struct async_queue accept_q; /* queue for asynchronous accepts */
struct async_queue connect_q; /* queue for asynchronous connects */
struct async_queue poll_q; /* queue for asynchronous polls */
struct object *ifchange_obj; /* the interface change notification object */
struct list ifchange_entry; /* entry in ifchange notification list */
struct list accept_list; /* list of pending accept requests */
struct accept_req *accept_recv_req; /* pending accept-into request which will recv on this socket */
struct connect_req *connect_req; /* pending connection request */
struct poll_req *main_poll; /* main poll */
union win_sockaddr addr; /* socket name */
int addr_len; /* socket name length */
union win_sockaddr peer_addr; /* peer name */
int peer_addr_len; /* peer name length */
unsigned int rcvbuf; /* advisory recv buffer size */
unsigned int sndbuf; /* advisory send buffer size */
unsigned int rcvtimeo; /* receive timeout in ms */
unsigned int sndtimeo; /* send timeout in ms */
struct
{
unsigned short icmp_id;
unsigned short icmp_seq;
}
icmp_fixup_data[MAX_ICMP_HISTORY_LENGTH]; /* Sent ICMP packets history used to fixup reply id. */
struct bound_addr *bound_addr[2]; /* Links to the entries in bound addresses tree. */
unsigned int icmp_fixup_data_len; /* Sent ICMP packets history length. */
unsigned int rd_shutdown : 1; /* is the read end shut down? */
unsigned int wr_shutdown : 1; /* is the write end shut down? */
unsigned int wr_shutdown_pending : 1; /* is a write shutdown pending? */
unsigned int hangup : 1; /* has the read end received a hangup? */
unsigned int aborted : 1; /* did we get a POLLERR or irregular POLLHUP? */
unsigned int nonblocking : 1; /* is the socket nonblocking? */
unsigned int bound : 1; /* is the socket bound? */
unsigned int reset : 1; /* did we get a TCP reset? */
unsigned int reuseaddr : 1; /* winsock SO_REUSEADDR option value */
unsigned int exclusiveaddruse : 1; /* winsock SO_EXCLUSIVEADDRUSE option value */
};
static int is_tcp_socket( struct sock *sock )
{
return sock->type == WS_SOCK_STREAM && (sock->family == WS_AF_INET || sock->family == WS_AF_INET6);
}
static int addr_compare( const void *key, const struct wine_rb_entry *entry )
{
const struct bound_addr *bound_addr = RB_ENTRY_VALUE(entry, struct bound_addr, entry);
const struct bound_addr *addr = key;
if (addr->addr.addr.sa_family != bound_addr->addr.addr.sa_family)
return addr->addr.addr.sa_family < bound_addr->addr.addr.sa_family ? -1 : 1;
if (addr->addr.addr.sa_family == AF_INET)
{
if (addr->addr.in.sin_port != bound_addr->addr.in.sin_port)
return addr->addr.in.sin_port < bound_addr->addr.in.sin_port ? -1 : 1;
if (bound_addr->match_any_addr || addr->match_any_addr
|| addr->addr.in.sin_addr.s_addr == bound_addr->addr.in.sin_addr.s_addr)
return 0;
return addr->addr.in.sin_addr.s_addr < bound_addr->addr.in.sin_addr.s_addr ? -1 : 1;
}
assert( addr->addr.addr.sa_family == AF_INET6 );
if (addr->addr.in6.sin6_port != bound_addr->addr.in6.sin6_port)
return addr->addr.in6.sin6_port < bound_addr->addr.in6.sin6_port ? -1 : 1;
if (bound_addr->match_any_addr || addr->match_any_addr) return 0;
return memcmp( &addr->addr.in6.sin6_addr, &bound_addr->addr.in6.sin6_addr, sizeof(addr->addr.in6.sin6_addr) );
}
static int ipv4addr_from_v6( union unix_sockaddr *v4addr, const struct sockaddr_in6 *in6, int map_unspecified )
{
v4addr->in.sin_family = AF_INET;
v4addr->in.sin_port = in6->sin6_port;
if (map_unspecified && IN6_IS_ADDR_UNSPECIFIED(&in6->sin6_addr))
{
v4addr->in.sin_addr.s_addr = htonl( INADDR_ANY );
return 1;
}
if (IN6_IS_ADDR_V4COMPAT(&in6->sin6_addr) || IN6_IS_ADDR_V4MAPPED(&in6->sin6_addr))
{
memcpy( &v4addr->in.sin_addr.s_addr, &in6->sin6_addr.s6_addr[12], sizeof(v4addr->in.sin_addr.s_addr) );
return 1;
}
return 0;
}
static struct rb_tree bound_addresses_tree = { addr_compare };
static int should_track_conflicts_for_addr( struct sock *sock, const union unix_sockaddr *addr )
{
if (!is_tcp_socket( sock )) return 0;
if (sock->family == WS_AF_INET && addr->addr.sa_family == AF_INET && addr->in.sin_port)
return 1;
else if (sock->family == WS_AF_INET6 && addr->addr.sa_family == AF_INET6 && addr->in6.sin6_port)
return 1;
return 0;
}
static int is_any_addr( const union unix_sockaddr *addr )
{
if (addr->addr.sa_family == AF_INET && addr->in.sin_addr.s_addr == htonl( INADDR_ANY ))
return 1;
if (addr->addr.sa_family == AF_INET6 && IN6_IS_ADDR_UNSPECIFIED(&addr->in6.sin6_addr))
return 1;
return 0;
}
static int check_addr_usage( struct sock *sock, const union unix_sockaddr *addr, int v6only )
{
struct bound_addr *bound_addr, search_addr;
struct rb_entry *entry;
if (!should_track_conflicts_for_addr( sock, addr )) return 0;
search_addr.addr = *addr;
search_addr.match_any_addr = sock->exclusiveaddruse && is_any_addr( addr );
if ((entry = rb_get( &bound_addresses_tree, &search_addr )))
{
bound_addr = WINE_RB_ENTRY_VALUE(entry, struct bound_addr, entry);
if (bound_addr->reuse_count == -1 || !sock->reuseaddr)
{
set_error( sock->reuseaddr || bound_addr->match_any_addr
? STATUS_ACCESS_DENIED : STATUS_SHARING_VIOLATION );
return 1;
}
}
if (sock->family != WS_AF_INET6 || v6only) return 0;
if (!ipv4addr_from_v6( &search_addr.addr, &addr->in6, sock->exclusiveaddruse )) return 0;
search_addr.match_any_addr = sock->exclusiveaddruse && is_any_addr( &search_addr.addr );
if ((entry = rb_get( &bound_addresses_tree, &search_addr )))
{
bound_addr = WINE_RB_ENTRY_VALUE(entry, struct bound_addr, entry);
if (bound_addr->reuse_count == -1 || !sock->reuseaddr)
{
set_error( sock->reuseaddr || bound_addr->match_any_addr
? STATUS_ACCESS_DENIED : STATUS_SHARING_VIOLATION );
return 1;
}
}
return 0;
}
static struct bound_addr *register_bound_address( struct sock *sock, const union unix_sockaddr *addr )
{
struct bound_addr *bound_addr, *temp;
if (!(bound_addr = mem_alloc( sizeof(*bound_addr) )))
return NULL;
bound_addr->addr = *addr;
bound_addr->match_any_addr = sock->exclusiveaddruse && is_any_addr( addr );
if (rb_put( &bound_addresses_tree, bound_addr, &bound_addr->entry ))
{
temp = bound_addr;
bound_addr = WINE_RB_ENTRY_VALUE(rb_get( &bound_addresses_tree, temp ), struct bound_addr, entry);
free( temp );
if (bound_addr->reuse_count == -1)
{
if (debug_level)
fprintf( stderr, "register_bound_address: address being updated is already exclusively bound\n" );
return NULL;
}
++bound_addr->reuse_count;
}
else
{
bound_addr->reuse_count = sock->reuseaddr ? 1 : -1;
}
return bound_addr;
}
static void update_addr_usage( struct sock *sock, const union unix_sockaddr *addr, int v6only )
{
union unix_sockaddr v4addr;
assert( !sock->bound_addr[0] && !sock->bound_addr[1] );
if (!should_track_conflicts_for_addr( sock, addr )) return;
sock->bound_addr[0] = register_bound_address( sock, addr );
if (sock->family != WS_AF_INET6 || v6only) return;
if (!ipv4addr_from_v6( &v4addr, &addr->in6, sock->exclusiveaddruse )) return;
sock->bound_addr[1] = register_bound_address( sock, &v4addr );
}
static void sock_dump( struct object *obj, int verbose );
static struct fd *sock_get_fd( struct object *obj );
static int sock_close_handle( struct object *obj, struct process *process, obj_handle_t handle );
static void sock_destroy( struct object *obj );
static struct object *sock_get_ifchange( struct sock *sock );
static void sock_release_ifchange( struct sock *sock );
static int sock_get_poll_events( struct fd *fd );
static void sock_poll_event( struct fd *fd, int event );
static enum server_fd_type sock_get_fd_type( struct fd *fd );
static void sock_ioctl( struct fd *fd, ioctl_code_t code, struct async *async );
static void sock_cancel_async( struct fd *fd, struct async *async );
static void sock_reselect_async( struct fd *fd, struct async_queue *queue );
static int accept_into_socket( struct sock *sock, struct sock *acceptsock );
static struct sock *accept_socket( struct sock *sock );
static int sock_get_ntstatus( int err );
static unsigned int sock_get_error( int err );
static void poll_socket( struct sock *poll_sock, struct async *async, int exclusive, timeout_t timeout,
unsigned int count, const struct afd_poll_socket_64 *sockets );
static const struct object_ops sock_ops =
{
sizeof(struct sock), /* size */
&file_type, /* type */
sock_dump, /* dump */
add_queue, /* add_queue */
remove_queue, /* remove_queue */
default_fd_signaled, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
sock_get_fd, /* get_fd */
default_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_get_full_name, /* get_full_name */
no_lookup_name, /* lookup_name */
no_link_name, /* link_name */
NULL, /* unlink_name */
no_open_file, /* open_file */
no_kernel_obj_list, /* get_kernel_obj_list */
sock_close_handle, /* close_handle */
sock_destroy /* destroy */
};
static const struct fd_ops sock_fd_ops =
{
sock_get_poll_events, /* get_poll_events */
sock_poll_event, /* poll_event */
sock_get_fd_type, /* get_fd_type */
no_fd_read, /* read */
no_fd_write, /* write */
no_fd_flush, /* flush */
default_fd_get_file_info, /* get_file_info */
no_fd_get_volume_info, /* get_volume_info */
sock_ioctl, /* ioctl */
sock_cancel_async, /* cancel_async */
no_fd_queue_async, /* queue_async */
sock_reselect_async /* reselect_async */
};
static int sockaddr_from_unix( const union unix_sockaddr *uaddr, struct WS_sockaddr *wsaddr, socklen_t wsaddrlen )
{
memset( wsaddr, 0, wsaddrlen );
switch (uaddr->addr.sa_family)
{
case AF_INET:
{
struct WS_sockaddr_in win = {0};
if (wsaddrlen < sizeof(win)) return -1;
win.sin_family = WS_AF_INET;
win.sin_port = uaddr->in.sin_port;
memcpy( &win.sin_addr, &uaddr->in.sin_addr, sizeof(win.sin_addr) );
memcpy( wsaddr, &win, sizeof(win) );
return sizeof(win);
}
case AF_INET6:
{
struct WS_sockaddr_in6 win = {0};
if (wsaddrlen < sizeof(win)) return -1;
win.sin6_family = WS_AF_INET6;
win.sin6_port = uaddr->in6.sin6_port;
win.sin6_flowinfo = uaddr->in6.sin6_flowinfo;
memcpy( &win.sin6_addr, &uaddr->in6.sin6_addr, sizeof(win.sin6_addr) );
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
win.sin6_scope_id = uaddr->in6.sin6_scope_id;
#endif
memcpy( wsaddr, &win, sizeof(win) );
return sizeof(win);
}
#ifdef HAS_IPX
case AF_IPX:
{
struct WS_sockaddr_ipx win = {0};
if (wsaddrlen < sizeof(win)) return -1;
win.sa_family = WS_AF_IPX;
memcpy( win.sa_netnum, &uaddr->ipx.sipx_network, sizeof(win.sa_netnum) );
memcpy( win.sa_nodenum, &uaddr->ipx.sipx_node, sizeof(win.sa_nodenum) );
win.sa_socket = uaddr->ipx.sipx_port;
memcpy( wsaddr, &win, sizeof(win) );
return sizeof(win);
}
#endif
#ifdef HAS_IRDA
case AF_IRDA:
{
SOCKADDR_IRDA win;
if (wsaddrlen < sizeof(win)) return -1;
win.irdaAddressFamily = WS_AF_IRDA;
memcpy( win.irdaDeviceID, &uaddr->irda.sir_addr, sizeof(win.irdaDeviceID) );
if (uaddr->irda.sir_lsap_sel != LSAP_ANY)
snprintf( win.irdaServiceName, sizeof(win.irdaServiceName), "LSAP-SEL%u", uaddr->irda.sir_lsap_sel );
else
memcpy( win.irdaServiceName, uaddr->irda.sir_name, sizeof(win.irdaServiceName) );
memcpy( wsaddr, &win, sizeof(win) );
return sizeof(win);
}
#endif
case AF_UNSPEC:
return 0;
default:
return -1;
}
}
static socklen_t sockaddr_to_unix( const struct WS_sockaddr *wsaddr, int wsaddrlen, union unix_sockaddr *uaddr )
{
memset( uaddr, 0, sizeof(*uaddr) );
switch (wsaddr->sa_family)
{
case WS_AF_INET:
{
struct WS_sockaddr_in win = {0};
if (wsaddrlen < sizeof(win)) return 0;
memcpy( &win, wsaddr, sizeof(win) );
uaddr->in.sin_family = AF_INET;
uaddr->in.sin_port = win.sin_port;
memcpy( &uaddr->in.sin_addr, &win.sin_addr, sizeof(win.sin_addr) );
return sizeof(uaddr->in);
}
case WS_AF_INET6:
{
struct WS_sockaddr_in6 win = {0};
if (wsaddrlen < sizeof(win)) return 0;
memcpy( &win, wsaddr, sizeof(win) );
uaddr->in6.sin6_family = AF_INET6;
uaddr->in6.sin6_port = win.sin6_port;
uaddr->in6.sin6_flowinfo = win.sin6_flowinfo;
memcpy( &uaddr->in6.sin6_addr, &win.sin6_addr, sizeof(win.sin6_addr) );
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
uaddr->in6.sin6_scope_id = win.sin6_scope_id;
#endif
return sizeof(uaddr->in6);
}
#ifdef HAS_IPX
case WS_AF_IPX:
{
struct WS_sockaddr_ipx win = {0};
if (wsaddrlen < sizeof(win)) return 0;
memcpy( &win, wsaddr, sizeof(win) );
uaddr->ipx.sipx_family = AF_IPX;
memcpy( &uaddr->ipx.sipx_network, win.sa_netnum, sizeof(win.sa_netnum) );
memcpy( &uaddr->ipx.sipx_node, win.sa_nodenum, sizeof(win.sa_nodenum) );
uaddr->ipx.sipx_port = win.sa_socket;
return sizeof(uaddr->ipx);
}
#endif
#ifdef HAS_IRDA
case WS_AF_IRDA:
{
SOCKADDR_IRDA win = {0};
unsigned int lsap_sel;
if (wsaddrlen < sizeof(win)) return 0;
memcpy( &win, wsaddr, sizeof(win) );
uaddr->irda.sir_family = AF_IRDA;
if (sscanf( win.irdaServiceName, "LSAP-SEL%u", &lsap_sel ) == 1)
uaddr->irda.sir_lsap_sel = lsap_sel;
else
{
uaddr->irda.sir_lsap_sel = LSAP_ANY;
memcpy( uaddr->irda.sir_name, win.irdaServiceName, sizeof(win.irdaServiceName) );
}
memcpy( &uaddr->irda.sir_addr, win.irdaDeviceID, sizeof(win.irdaDeviceID) );
return sizeof(uaddr->irda);
}
#endif
case WS_AF_UNSPEC:
switch (wsaddrlen)
{
default: /* likely an ipv4 address */
case sizeof(struct WS_sockaddr_in):
return sizeof(uaddr->in);
#ifdef HAS_IPX
case sizeof(struct WS_sockaddr_ipx):
return sizeof(uaddr->ipx);
#endif
#ifdef HAS_IRDA
case sizeof(SOCKADDR_IRDA):
return sizeof(uaddr->irda);
#endif
case sizeof(struct WS_sockaddr_in6):
return sizeof(uaddr->in6);
}
default:
return 0;
}
}
static socklen_t get_unix_sockaddr_any( union unix_sockaddr *uaddr, int ws_family )
{
memset( uaddr, 0, sizeof(*uaddr) );
switch (ws_family)
{
case WS_AF_INET:
uaddr->in.sin_family = AF_INET;
return sizeof(uaddr->in);
case WS_AF_INET6:
uaddr->in6.sin6_family = AF_INET6;
return sizeof(uaddr->in6);
#ifdef HAS_IPX
case WS_AF_IPX:
uaddr->ipx.sipx_family = AF_IPX;
return sizeof(uaddr->ipx);
#endif
#ifdef HAS_IRDA
case WS_AF_IRDA:
uaddr->irda.sir_family = AF_IRDA;
return sizeof(uaddr->irda);
#endif
default:
return 0;
}
}
/* some events are generated at the same time but must be sent in a particular
* order (e.g. CONNECT must be sent before READ) */
static const enum afd_poll_bit event_bitorder[] =
{
AFD_POLL_BIT_CONNECT,
AFD_POLL_BIT_CONNECT_ERR,
AFD_POLL_BIT_ACCEPT,
AFD_POLL_BIT_OOB,
AFD_POLL_BIT_READ,
AFD_POLL_BIT_WRITE,
AFD_POLL_BIT_RESET,
AFD_POLL_BIT_HUP,
AFD_POLL_BIT_CLOSE,
};
typedef enum {
SOCK_SHUTDOWN_ERROR = -1,
SOCK_SHUTDOWN_EOF = 0,
SOCK_SHUTDOWN_POLLHUP = 1
} sock_shutdown_t;
static sock_shutdown_t sock_shutdown_type = SOCK_SHUTDOWN_ERROR;
static sock_shutdown_t sock_check_pollhup(void)
{
sock_shutdown_t ret = SOCK_SHUTDOWN_ERROR;
int fd[2], n;
struct pollfd pfd;
char dummy;
if ( socketpair( AF_UNIX, SOCK_STREAM, 0, fd ) ) return ret;
if ( shutdown( fd[0], 1 ) ) goto out;
pfd.fd = fd[1];
pfd.events = POLLIN;
pfd.revents = 0;
/* Solaris' poll() sometimes returns nothing if given a 0ms timeout here */
n = poll( &pfd, 1, 1 );
if ( n != 1 ) goto out; /* error or timeout */
if ( pfd.revents & POLLHUP )
ret = SOCK_SHUTDOWN_POLLHUP;
else if ( pfd.revents & POLLIN &&
read( fd[1], &dummy, 1 ) == 0 )
ret = SOCK_SHUTDOWN_EOF;
out:
close( fd[0] );
close( fd[1] );
return ret;
}
void sock_init(void)
{
sock_shutdown_type = sock_check_pollhup();
switch ( sock_shutdown_type )
{
case SOCK_SHUTDOWN_EOF:
if (debug_level) fprintf( stderr, "sock_init: shutdown() causes EOF\n" );
break;
case SOCK_SHUTDOWN_POLLHUP:
if (debug_level) fprintf( stderr, "sock_init: shutdown() causes POLLHUP\n" );
break;
default:
fprintf( stderr, "sock_init: ERROR in sock_check_pollhup()\n" );
sock_shutdown_type = SOCK_SHUTDOWN_EOF;
}
}
static void sock_reselect( struct sock *sock )
{
int ev = sock_get_poll_events( sock->fd );
if (debug_level)
fprintf(stderr,"sock_reselect(%p): new mask %x\n", sock, ev);
set_fd_events( sock->fd, ev );
}
static unsigned int afd_poll_flag_to_win32( unsigned int flags )
{
static const unsigned int map[] =
{
FD_READ, /* READ */
FD_OOB, /* OOB */
FD_WRITE, /* WRITE */
FD_CLOSE, /* HUP */
FD_CLOSE, /* RESET */
0, /* CLOSE */
FD_CONNECT, /* CONNECT */
FD_ACCEPT, /* ACCEPT */
FD_CONNECT, /* CONNECT_ERR */
};
unsigned int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(map); ++i)
{
if (flags & (1 << i)) ret |= map[i];
}
return ret;
}
static void post_sock_messages( struct sock *sock )
{
unsigned int events = sock->pending_events & sock->mask;
int i;
if (sock->window)
{
if (debug_level) fprintf(stderr, "signalling events %x win %08x\n", events, sock->window );
for (i = 0; i < ARRAY_SIZE(event_bitorder); i++)
{
enum afd_poll_bit event = event_bitorder[i];
if (events & (1 << event))
{
lparam_t lparam;
if (event == AFD_POLL_BIT_RESET)
lparam = FD_CLOSE | (WSAECONNABORTED << 16);
else
lparam = afd_poll_flag_to_win32(1 << event) | (sock_get_error( sock->errors[event] ) << 16);
post_message( sock->window, sock->message, sock->wparam, lparam );
}
}
sock->pending_events = 0;
sock_reselect( sock );
}
}
static inline int sock_error( struct sock *sock )
{
int error = 0;
socklen_t len = sizeof(error);
getsockopt( get_unix_fd(sock->fd), SOL_SOCKET, SO_ERROR, (void *)&error, &len);
switch (sock->state)
{
case SOCK_UNCONNECTED:
break;
case SOCK_CONNECTING:
if (error)
sock->errors[AFD_POLL_BIT_CONNECT_ERR] = error;
else
error = sock->errors[AFD_POLL_BIT_CONNECT_ERR];
break;
case SOCK_LISTENING:
if (error)
sock->errors[AFD_POLL_BIT_ACCEPT] = error;
else
error = sock->errors[AFD_POLL_BIT_ACCEPT];
break;
case SOCK_CONNECTED:
case SOCK_CONNECTIONLESS:
if (error == ECONNRESET || error == EPIPE)
{
sock->reset = 1;
error = 0;
}
else if (error)
sock->errors[AFD_POLL_BIT_HUP] = error;
else
error = sock->errors[AFD_POLL_BIT_HUP];
break;
}
return error;
}
static void free_accept_req( void *private )
{
struct accept_req *req = private;
list_remove( &req->entry );
if (req->acceptsock)
{
req->acceptsock->accept_recv_req = NULL;
release_object( req->acceptsock );
}
release_object( req->async );
release_object( req->iosb );
release_object( req->sock );
free( req );
}
static void fill_accept_output( struct accept_req *req )
{
const data_size_t out_size = req->iosb->out_size;
struct async *async = req->async;
union unix_sockaddr unix_addr;
struct WS_sockaddr *win_addr;
unsigned int remote_len;
socklen_t unix_len;
int fd, size = 0;
char *out_data;
int win_len;
if (!(out_data = mem_alloc( out_size )))
{
async_terminate( async, get_error() );
return;
}
fd = get_unix_fd( req->acceptsock->fd );
if (req->recv_len && (size = recv( fd, out_data, req->recv_len, 0 )) < 0)
{
if (!req->accepted && errno == EWOULDBLOCK)
{
req->accepted = 1;
sock_reselect( req->acceptsock );
return;
}
async_terminate( async, sock_get_ntstatus( errno ) );
free( out_data );
return;
}
if (req->local_len)
{
if (req->local_len < sizeof(int))
{
async_terminate( async, STATUS_BUFFER_TOO_SMALL );
free( out_data );
return;
}
unix_len = sizeof(unix_addr);
win_addr = (struct WS_sockaddr *)(out_data + req->recv_len + sizeof(int));
if (getsockname( fd, &unix_addr.addr, &unix_len ) < 0 ||
(win_len = sockaddr_from_unix( &unix_addr, win_addr, req->local_len - sizeof(int) )) < 0)
{
async_terminate( async, sock_get_ntstatus( errno ) );
free( out_data );
return;
}
memcpy( out_data + req->recv_len, &win_len, sizeof(int) );
}
unix_len = sizeof(unix_addr);
win_addr = (struct WS_sockaddr *)(out_data + req->recv_len + req->local_len + sizeof(int));
remote_len = out_size - req->recv_len - req->local_len;
if (getpeername( fd, &unix_addr.addr, &unix_len ) < 0 ||
(win_len = sockaddr_from_unix( &unix_addr, win_addr, remote_len - sizeof(int) )) < 0)
{
async_terminate( async, sock_get_ntstatus( errno ) );
free( out_data );
return;
}
memcpy( out_data + req->recv_len + req->local_len, &win_len, sizeof(int) );
async_request_complete( req->async, STATUS_SUCCESS, size, out_size, out_data );
}
static void complete_async_accept( struct sock *sock, struct accept_req *req )
{
struct sock *acceptsock = req->acceptsock;
struct async *async = req->async;
if (debug_level) fprintf( stderr, "completing accept request for socket %p\n", sock );
if (acceptsock)
{
if (!accept_into_socket( sock, acceptsock ))
{
async_terminate( async, get_error() );
return;
}
fill_accept_output( req );
}
else
{
obj_handle_t handle;
if (!(acceptsock = accept_socket( sock )))
{
async_terminate( async, get_error() );
return;
}
handle = alloc_handle_no_access_check( async_get_thread( async )->process, &acceptsock->obj,
GENERIC_READ | GENERIC_WRITE | SYNCHRONIZE, OBJ_INHERIT );
acceptsock->wparam = handle;
sock_reselect( acceptsock );
release_object( acceptsock );
if (!handle)
{
async_terminate( async, get_error() );
return;
}
async_request_complete_alloc( req->async, STATUS_SUCCESS, 0, sizeof(handle), &handle );
}
}
static void complete_async_accept_recv( struct accept_req *req )
{
if (debug_level) fprintf( stderr, "completing accept recv request for socket %p\n", req->acceptsock );
assert( req->recv_len );
fill_accept_output( req );
}
static void free_connect_req( void *private )
{
struct connect_req *req = private;
req->sock->connect_req = NULL;
release_object( req->async );
release_object( req->iosb );
release_object( req->sock );
free( req );
}
static void complete_async_connect( struct sock *sock )
{
struct connect_req *req = sock->connect_req;
const char *in_buffer;
size_t len;
int ret;
if (debug_level) fprintf( stderr, "completing connect request for socket %p\n", sock );
if (!req->send_len)
{
async_terminate( req->async, STATUS_SUCCESS );
return;
}
in_buffer = (const char *)req->iosb->in_data + sizeof(struct afd_connect_params) + req->addr_len;
len = req->send_len - req->send_cursor;
ret = send( get_unix_fd( sock->fd ), in_buffer + req->send_cursor, len, 0 );
if (ret < 0 && errno != EWOULDBLOCK)
async_terminate( req->async, sock_get_ntstatus( errno ) );
else if (ret == len)
async_request_complete( req->async, STATUS_SUCCESS, req->send_len, 0, NULL );
else
req->send_cursor += ret;
}
static void free_poll_req( void *private )
{
struct poll_req *req = private;
unsigned int i;
if (req->timeout) remove_timeout_user( req->timeout );
for (i = 0; i < req->count; ++i)
release_object( req->sockets[i].sock );
release_object( req->async );
release_object( req->iosb );
list_remove( &req->entry );
free( req );
}
static int is_oobinline( struct sock *sock )
{
int oobinline;
socklen_t len = sizeof(oobinline);
return !getsockopt( get_unix_fd( sock->fd ), SOL_SOCKET, SO_OOBINLINE, (char *)&oobinline, &len ) && oobinline;
}
static int get_poll_flags( struct sock *sock, int event )
{
int flags = 0;
/* A connection-mode socket which has never been connected does not return
* write or hangup events, but Linux reports POLLOUT | POLLHUP. */
if (sock->state == SOCK_UNCONNECTED)
event &= ~(POLLOUT | POLLHUP);
if (event & POLLIN)
{
if (sock->state == SOCK_LISTENING)
flags |= AFD_POLL_ACCEPT;
else
flags |= AFD_POLL_READ;
}
if (event & POLLPRI)
flags |= is_oobinline( sock ) ? AFD_POLL_READ : AFD_POLL_OOB;
if (event & POLLOUT)
flags |= AFD_POLL_WRITE;
if (sock->state == SOCK_CONNECTED)
flags |= AFD_POLL_CONNECT;
if (event & POLLHUP)
flags |= AFD_POLL_HUP;
if (event & POLLERR)
flags |= AFD_POLL_CONNECT_ERR;
if (sock->reset)
flags |= AFD_POLL_RESET;
return flags;
}
static void complete_async_poll( struct poll_req *req, unsigned int status )
{
unsigned int i, signaled_count = 0;
for (i = 0; i < req->count; ++i)
{
struct sock *sock = req->sockets[i].sock;
if (sock->main_poll == req)
sock->main_poll = NULL;
}
if (!status)
{
for (i = 0; i < req->count; ++i)
{
if (req->sockets[i].flags)
++signaled_count;
}
}
if (is_machine_64bit( async_get_thread( req->async )->process->machine ))
{
size_t output_size = offsetof( struct afd_poll_params_64, sockets[signaled_count] );
struct afd_poll_params_64 *output;
if (!(output = mem_alloc( output_size )))
{
async_terminate( req->async, get_error() );
return;
}
memset( output, 0, output_size );
output->timeout = req->orig_timeout;
output->exclusive = req->exclusive;
for (i = 0; i < req->count; ++i)
{
if (!req->sockets[i].flags) continue;
output->sockets[output->count].socket = req->sockets[i].handle;
output->sockets[output->count].flags = req->sockets[i].flags;
output->sockets[output->count].status = req->sockets[i].status;
++output->count;
}
assert( output->count == signaled_count );
async_request_complete( req->async, status, output_size, output_size, output );
}
else
{
size_t output_size = offsetof( struct afd_poll_params_32, sockets[signaled_count] );
struct afd_poll_params_32 *output;
if (!(output = mem_alloc( output_size )))
{
async_terminate( req->async, get_error() );
return;
}
memset( output, 0, output_size );
output->timeout = req->orig_timeout;
output->exclusive = req->exclusive;
for (i = 0; i < req->count; ++i)
{
if (!req->sockets[i].flags) continue;
output->sockets[output->count].socket = req->sockets[i].handle;
output->sockets[output->count].flags = req->sockets[i].flags;
output->sockets[output->count].status = req->sockets[i].status;
++output->count;
}
assert( output->count == signaled_count );
async_request_complete( req->async, status, output_size, output_size, output );
}
}
static void complete_async_polls( struct sock *sock, int event, int error )
{
int flags = get_poll_flags( sock, event );
struct poll_req *req, *next;
LIST_FOR_EACH_ENTRY_SAFE( req, next, &poll_list, struct poll_req, entry )
{
unsigned int i;
if (req->iosb->status != STATUS_PENDING) continue;
for (i = 0; i < req->count; ++i)
{
if (req->sockets[i].sock != sock) continue;
if (!(req->sockets[i].mask & flags)) continue;
if (debug_level)
fprintf( stderr, "completing poll for socket %p, wanted %#x got %#x\n",
sock, req->sockets[i].mask, flags );
req->sockets[i].flags = req->sockets[i].mask & flags;
req->sockets[i].status = sock_get_ntstatus( error );
if (req->pending)
{
complete_async_poll( req, STATUS_SUCCESS );
break;
}
}
}
}
static void async_poll_timeout( void *private )
{
struct poll_req *req = private;
req->timeout = NULL;
if (req->iosb->status != STATUS_PENDING) return;
complete_async_poll( req, STATUS_TIMEOUT );
}
static int sock_dispatch_asyncs( struct sock *sock, int event, int error )
{
if (event & (POLLIN | POLLPRI))
{
struct accept_req *req;
LIST_FOR_EACH_ENTRY( req, &sock->accept_list, struct accept_req, entry )
{
if (req->iosb->status == STATUS_PENDING && !req->accepted)
{
complete_async_accept( sock, req );
event &= ~POLLIN;
break;
}
}
if (sock->accept_recv_req && sock->accept_recv_req->iosb->status == STATUS_PENDING)
complete_async_accept_recv( sock->accept_recv_req );
}
if ((event & POLLOUT) && sock->connect_req && sock->connect_req->iosb->status == STATUS_PENDING)
complete_async_connect( sock );
if ((event & (POLLIN | POLLPRI)) && async_queued( &sock->read_q ))
{
if (async_waiting( &sock->read_q ))
{
if (debug_level) fprintf( stderr, "activating read queue for socket %p\n", sock );
async_wake_up( &sock->read_q, STATUS_ALERTED );
}
event &= ~(POLLIN | POLLPRI);
}
if ((event & POLLOUT) && async_queued( &sock->write_q ))
{
if (async_waiting( &sock->write_q ))
{
if (debug_level) fprintf( stderr, "activating write queue for socket %p\n", sock );
async_wake_up( &sock->write_q, STATUS_ALERTED );
}
event &= ~POLLOUT;
}
if (event & (POLLERR | POLLHUP))
{
int status = sock_get_ntstatus( error );
struct accept_req *req, *next;
async_wake_up( &sock->read_q, status );
async_wake_up( &sock->write_q, status );
LIST_FOR_EACH_ENTRY_SAFE( req, next, &sock->accept_list, struct accept_req, entry )
{
if (req->iosb->status == STATUS_PENDING)
async_terminate( req->async, status );
}
if (sock->accept_recv_req && sock->accept_recv_req->iosb->status == STATUS_PENDING)
async_terminate( sock->accept_recv_req->async, status );
if (sock->connect_req)
async_terminate( sock->connect_req->async, status );
}
if (sock->reset)
{
async_wake_up( &sock->read_q, STATUS_CONNECTION_RESET );
async_wake_up( &sock->write_q, STATUS_CONNECTION_RESET );
if (sock->accept_recv_req && sock->accept_recv_req->iosb->status == STATUS_PENDING)
async_terminate( sock->accept_recv_req->async, STATUS_CONNECTION_RESET );
}
return event;
}
static void post_socket_event( struct sock *sock, enum afd_poll_bit event_bit )
{
unsigned int event = (1 << event_bit);
if (!(sock->reported_events & event))
{
sock->pending_events |= event;
sock->reported_events |= event;
if ((sock->mask & event) && sock->event)
set_event( sock->event );
}
}
static void sock_dispatch_events( struct sock *sock, enum connection_state prevstate, int event )
{
switch (prevstate)
{
case SOCK_UNCONNECTED:
break;
case SOCK_CONNECTING:
if (event & POLLOUT)
{
post_socket_event( sock, AFD_POLL_BIT_CONNECT );
post_socket_event( sock, AFD_POLL_BIT_WRITE );
}
if (event & (POLLERR | POLLHUP))
post_socket_event( sock, AFD_POLL_BIT_CONNECT_ERR );
break;
case SOCK_LISTENING:
if (event & (POLLIN | POLLERR | POLLHUP))
post_socket_event( sock, AFD_POLL_BIT_ACCEPT );
break;
case SOCK_CONNECTED:
case SOCK_CONNECTIONLESS:
if (sock->reset)
post_socket_event( sock, AFD_POLL_BIT_RESET );
if (event & POLLIN)
post_socket_event( sock, AFD_POLL_BIT_READ );
if (event & POLLOUT)
post_socket_event( sock, AFD_POLL_BIT_WRITE );
if (event & POLLPRI)
post_socket_event( sock, AFD_POLL_BIT_OOB );
if (event & (POLLERR | POLLHUP))
post_socket_event( sock, AFD_POLL_BIT_HUP );
break;
}
post_sock_messages( sock );
}
static void sock_poll_event( struct fd *fd, int event )
{
struct sock *sock = get_fd_user( fd );
int hangup_seen = 0;
enum connection_state prevstate = sock->state;
int error = 0;
assert( sock->obj.ops == &sock_ops );
grab_object( sock );
if (debug_level)
fprintf(stderr, "socket %p select event: %x\n", sock, event);
if (event & (POLLERR | POLLHUP))
error = sock_error( sock );
switch (sock->state)
{
case SOCK_UNCONNECTED:
break;
case SOCK_CONNECTING:
if (event & (POLLERR|POLLHUP))
{
sock->state = SOCK_UNCONNECTED;
event &= ~POLLOUT;
}
else if (event & POLLOUT)
{
sock->state = SOCK_CONNECTED;
sock->connect_time = current_time;
sock->errors[AFD_POLL_BIT_CONNECT_ERR] = 0;
}
break;
case SOCK_LISTENING:
break;
case SOCK_CONNECTED:
case SOCK_CONNECTIONLESS:
if (sock->reset)
event &= ~(POLLIN | POLLERR | POLLHUP);
if (sock->type == WS_SOCK_STREAM && (event & POLLIN))
{
char dummy;
int nr;
/* Linux 2.4 doesn't report POLLHUP if only one side of the socket
* has been closed, so we need to check for it explicitly here */
nr = recv( get_unix_fd( fd ), &dummy, 1, MSG_PEEK );
if ( nr == 0 )
{
hangup_seen = 1;
event &= ~POLLIN;
}
else if ( nr < 0 )
{
event &= ~POLLIN;
/* EAGAIN can happen if an async recv() falls between the server's poll()
call and the invocation of this routine */
if (errno == ECONNRESET || errno == EPIPE)
{
sock->reset = 1;
}
else if (errno != EAGAIN)
{
error = errno;
event |= POLLERR;
sock->errors[AFD_POLL_BIT_HUP] = error;
if ( debug_level )
fprintf( stderr, "recv error on socket %p: %d\n", sock, errno );
}
}
}
if (hangup_seen || (sock_shutdown_type == SOCK_SHUTDOWN_POLLHUP && (event & POLLHUP)))
{
sock->hangup = 1;
}
else if (event & (POLLHUP | POLLERR))
{
sock->aborted = 1;
if (debug_level)
fprintf( stderr, "socket %p aborted by error %d, event %#x\n", sock, error, event );
}
if (hangup_seen)
event |= POLLHUP;
break;
}
event = sock_dispatch_asyncs( sock, event, error );
sock_dispatch_events( sock, prevstate, event );
complete_async_polls( sock, event, error );
sock_reselect( sock );
release_object( sock );
}
static void sock_dump( struct object *obj, int verbose )
{
struct sock *sock = (struct sock *)obj;
assert( obj->ops == &sock_ops );
fprintf( stderr, "Socket fd=%p, state=%x, mask=%x, pending=%x, reported=%x\n",
sock->fd, sock->state,
sock->mask, sock->pending_events, sock->reported_events );
}
static int poll_flags_from_afd( struct sock *sock, int flags )
{
int ev = 0;
/* A connection-mode socket which has never been connected does
* not return write or hangup events, but Linux returns
* POLLOUT | POLLHUP. */
if (sock->state == SOCK_UNCONNECTED)
return -1;
if (flags & (AFD_POLL_READ | AFD_POLL_ACCEPT))
ev |= POLLIN;
if ((flags & AFD_POLL_HUP) && sock->type == WS_SOCK_STREAM)
ev |= POLLIN;
if (flags & AFD_POLL_OOB)
ev |= is_oobinline( sock ) ? POLLIN : POLLPRI;
if (flags & AFD_POLL_WRITE)
ev |= POLLOUT;
return ev;
}
static int sock_get_poll_events( struct fd *fd )
{
struct sock *sock = get_fd_user( fd );
unsigned int mask = sock->mask & ~sock->reported_events;
struct poll_req *req;
int ev = 0;
assert( sock->obj.ops == &sock_ops );
if (!sock->type) /* not initialized yet */
return -1;
LIST_FOR_EACH_ENTRY( req, &poll_list, struct poll_req, entry )
{
unsigned int i;
if (req->iosb->status != STATUS_PENDING) continue;
for (i = 0; i < req->count; ++i)
{
if (req->sockets[i].sock != sock) continue;
ev |= poll_flags_from_afd( sock, req->sockets[i].mask );
}
}
switch (sock->state)
{
case SOCK_UNCONNECTED:
/* A connection-mode Windows socket which has never been connected does
* not return any events, but Linux returns POLLOUT | POLLHUP. Hence we
* need to return -1 here, to prevent the socket from being polled on at
* all. */
return -1;
case SOCK_CONNECTING:
return POLLOUT;
case SOCK_LISTENING:
if (!list_empty( &sock->accept_list ) || (mask & AFD_POLL_ACCEPT))
ev |= POLLIN;
break;
case SOCK_CONNECTED:
case SOCK_CONNECTIONLESS:
if (sock->hangup && sock->wr_shutdown && !sock->wr_shutdown_pending)
{
/* Linux returns POLLHUP if a socket is both SHUT_RD and SHUT_WR, or
* if both the socket and its peer are SHUT_WR.
*
* We don't use SHUT_RD, so we can only encounter this in the latter
* case. In that case there can't be any pending read requests (they
* would have already been completed with a length of zero), the
* above condition ensures that we don't have any pending write
* requests, and nothing that can change about the socket state that
* would complete a pending poll request. */
return -1;
}
if (sock->aborted || sock->reset)
return -1;
if (sock->accept_recv_req)
{
ev |= POLLIN;
}
else if (async_queued( &sock->read_q ))
{
/* Clear POLLIN and POLLPRI if we have an alerted async, even if
* we're polling this socket for READ or OOB. We can't signal the
* poll if the pending async will read all of the data [cf. the
* matching logic in sock_dispatch_asyncs()], but we also don't
* want to spin polling for POLLIN if we're not going to use it. */
if (async_waiting( &sock->read_q ))
ev |= POLLIN | POLLPRI;
else
ev &= ~(POLLIN | POLLPRI);
}
else
{
/* Don't ask for POLLIN if we got a hangup. We won't receive more
* data anyway, but we will get POLLIN if SOCK_SHUTDOWN_EOF. */
if (!sock->hangup)
{
if (mask & AFD_POLL_READ)
ev |= POLLIN;
if (mask & AFD_POLL_OOB)
ev |= POLLPRI;
}
/* We use POLLIN with 0 bytes recv() as hangup indication for stream sockets. */
if (sock->state == SOCK_CONNECTED && (mask & AFD_POLL_HUP) && !(sock->reported_events & AFD_POLL_READ))
ev |= POLLIN;
}
if (async_queued( &sock->write_q ))
{
/* As with read asyncs above, clear POLLOUT if we have an alerted
* async. */
if (async_waiting( &sock->write_q ))
ev |= POLLOUT;
else
ev &= ~POLLOUT;
}
else if (!sock->wr_shutdown && (mask & AFD_POLL_WRITE))
{
ev |= POLLOUT;
}
break;
}
return ev;
}
static enum server_fd_type sock_get_fd_type( struct fd *fd )
{
return FD_TYPE_SOCKET;
}
static void sock_cancel_async( struct fd *fd, struct async *async )
{
struct poll_req *req;
LIST_FOR_EACH_ENTRY( req, &poll_list, struct poll_req, entry )
{
unsigned int i;
if (req->async != async)
continue;
for (i = 0; i < req->count; i++)
{
struct sock *sock = req->sockets[i].sock;
if (sock->main_poll == req)
sock->main_poll = NULL;
}
}
async_terminate( async, STATUS_CANCELLED );
}
static void sock_reselect_async( struct fd *fd, struct async_queue *queue )
{
struct sock *sock = get_fd_user( fd );
if (sock->wr_shutdown_pending && list_empty( &sock->write_q.queue ))
{
shutdown( get_unix_fd( sock->fd ), SHUT_WR );
sock->wr_shutdown_pending = 0;
}
/* Don't reselect the ifchange queue; we always ask for POLLIN.
* Don't reselect an uninitialized socket; we can't call set_fd_events() on
* a pseudo-fd. */
if (queue != &sock->ifchange_q && sock->type)
sock_reselect( sock );
}
static struct fd *sock_get_fd( struct object *obj )
{
struct sock *sock = (struct sock *)obj;
return (struct fd *)grab_object( sock->fd );
}
static int sock_close_handle( struct object *obj, struct process *process, obj_handle_t handle )
{
struct sock *sock = (struct sock *)obj;
if (sock->obj.handle_count == 1) /* last handle */
{
struct accept_req *accept_req, *accept_next;
struct poll_req *poll_req, *poll_next;
if (sock->accept_recv_req)
async_terminate( sock->accept_recv_req->async, STATUS_CANCELLED );
LIST_FOR_EACH_ENTRY_SAFE( accept_req, accept_next, &sock->accept_list, struct accept_req, entry )
async_terminate( accept_req->async, STATUS_CANCELLED );
if (sock->connect_req)
async_terminate( sock->connect_req->async, STATUS_CANCELLED );
LIST_FOR_EACH_ENTRY_SAFE( poll_req, poll_next, &poll_list, struct poll_req, entry )
{
struct iosb *iosb = poll_req->iosb;
BOOL signaled = FALSE;
unsigned int i;
if (iosb->status != STATUS_PENDING) continue;
for (i = 0; i < poll_req->count; ++i)
{
if (poll_req->sockets[i].sock == sock)
{
signaled = TRUE;
poll_req->sockets[i].flags = AFD_POLL_CLOSE;
poll_req->sockets[i].status = 0;
}
}
if (signaled) complete_async_poll( poll_req, STATUS_SUCCESS );
}
}
return async_close_obj_handle( obj, process, handle );
}
static void sock_destroy( struct object *obj )
{
struct sock *sock = (struct sock *)obj;
unsigned int i;
assert( obj->ops == &sock_ops );
/* FIXME: special socket shutdown stuff? */
for (i = 0; i < 2; ++i)
{
if (sock->bound_addr[i] && --sock->bound_addr[i]->reuse_count <= 0)
{
rb_remove( &bound_addresses_tree, &sock->bound_addr[i]->entry );
free( sock->bound_addr[i] );
}
}
if ( sock->deferred )
release_object( sock->deferred );
async_wake_up( &sock->ifchange_q, STATUS_CANCELLED );
sock_release_ifchange( sock );
free_async_queue( &sock->read_q );
free_async_queue( &sock->write_q );
free_async_queue( &sock->ifchange_q );
free_async_queue( &sock->accept_q );
free_async_queue( &sock->connect_q );
free_async_queue( &sock->poll_q );
if (sock->event) release_object( sock->event );
if (sock->fd) release_object( sock->fd );
}
static struct sock *create_socket(void)
{
struct sock *sock;
if (!(sock = alloc_object( &sock_ops ))) return NULL;
sock->fd = NULL;
sock->state = SOCK_UNCONNECTED;
sock->mask = 0;
sock->pending_events = 0;
sock->reported_events = 0;
sock->proto = 0;
sock->type = 0;
sock->family = 0;
sock->event = NULL;
sock->window = 0;
sock->message = 0;
sock->wparam = 0;
sock->connect_time = 0;
sock->deferred = NULL;
sock->ifchange_obj = NULL;
sock->accept_recv_req = NULL;
sock->connect_req = NULL;
sock->main_poll = NULL;
memset( &sock->addr, 0, sizeof(sock->addr) );
sock->addr_len = 0;
memset( &sock->peer_addr, 0, sizeof(sock->peer_addr) );
sock->peer_addr_len = 0;
sock->rd_shutdown = 0;
sock->wr_shutdown = 0;
sock->wr_shutdown_pending = 0;
sock->hangup = 0;
sock->aborted = 0;
sock->nonblocking = 0;
sock->bound = 0;
sock->reset = 0;
sock->reuseaddr = 0;
sock->exclusiveaddruse = 0;
sock->rcvbuf = 0;
sock->sndbuf = 0;
sock->rcvtimeo = 0;
sock->sndtimeo = 0;
sock->icmp_fixup_data_len = 0;
sock->bound_addr[0] = sock->bound_addr[1] = NULL;
init_async_queue( &sock->read_q );
init_async_queue( &sock->write_q );
init_async_queue( &sock->ifchange_q );
init_async_queue( &sock->accept_q );
init_async_queue( &sock->connect_q );
init_async_queue( &sock->poll_q );
memset( sock->errors, 0, sizeof(sock->errors) );
list_init( &sock->accept_list );
return sock;
}
static int get_unix_family( int family )
{
switch (family)
{
case WS_AF_INET: return AF_INET;
case WS_AF_INET6: return AF_INET6;
#ifdef HAS_IPX
case WS_AF_IPX: return AF_IPX;
#endif
#ifdef AF_IRDA
case WS_AF_IRDA: return AF_IRDA;
#endif
case WS_AF_UNSPEC: return AF_UNSPEC;
default: return -1;
}
}
static int get_unix_type( int type )
{
switch (type)
{
case WS_SOCK_DGRAM: return SOCK_DGRAM;
case WS_SOCK_RAW: return SOCK_RAW;
case WS_SOCK_STREAM: return SOCK_STREAM;
default: return -1;
}
}
static int get_unix_protocol( int protocol )
{
if (protocol >= WS_NSPROTO_IPX && protocol <= WS_NSPROTO_IPX + 255)
return protocol;
switch (protocol)
{
case WS_IPPROTO_ICMP: return IPPROTO_ICMP;
case WS_IPPROTO_IGMP: return IPPROTO_IGMP;
case WS_IPPROTO_IP: return IPPROTO_IP;
case WS_IPPROTO_IPV4: return IPPROTO_IPIP;
case WS_IPPROTO_IPV6: return IPPROTO_IPV6;
case WS_IPPROTO_RAW: return IPPROTO_RAW;
case WS_IPPROTO_TCP: return IPPROTO_TCP;
case WS_IPPROTO_UDP: return IPPROTO_UDP;
default: return -1;
}
}
static void set_dont_fragment( int fd, int level, int value )
{
int optname;
if (level == IPPROTO_IP)
{
#ifdef IP_DONTFRAG
optname = IP_DONTFRAG;
#elif defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO) && defined(IP_PMTUDISC_DONT)
optname = IP_MTU_DISCOVER;
value = value ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
#else
return;
#endif
}
else
{
#ifdef IPV6_DONTFRAG
optname = IPV6_DONTFRAG;
#elif defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO) && defined(IPV6_PMTUDISC_DONT)
optname = IPV6_MTU_DISCOVER;
value = value ? IPV6_PMTUDISC_DO : IPV6_PMTUDISC_DONT;
#else
return;
#endif
}
setsockopt( fd, level, optname, &value, sizeof(value) );
}
static int init_socket( struct sock *sock, int family, int type, int protocol )
{
unsigned int options = 0;
int sockfd, unix_type, unix_family, unix_protocol, value;
socklen_t len;
unix_family = get_unix_family( family );
unix_type = get_unix_type( type );
unix_protocol = get_unix_protocol( protocol );
if (unix_protocol < 0)
{
if (type && unix_type < 0)
set_win32_error( WSAESOCKTNOSUPPORT );
else
set_win32_error( WSAEPROTONOSUPPORT );
return -1;
}
if (unix_family < 0)
{
if (family >= 0 && unix_type < 0)
set_win32_error( WSAESOCKTNOSUPPORT );
else
set_win32_error( WSAEAFNOSUPPORT );
return -1;
}
sockfd = socket( unix_family, unix_type, unix_protocol );
#ifdef linux
if (sockfd == -1 && errno == EPERM && unix_family == AF_INET
&& unix_type == SOCK_RAW && unix_protocol == IPPROTO_ICMP)
{
sockfd = socket( unix_family, SOCK_DGRAM, unix_protocol );
if (sockfd != -1)
{
const int val = 1;
setsockopt( sockfd, IPPROTO_IP, IP_RECVTTL, (const char *)&val, sizeof(val) );
setsockopt( sockfd, IPPROTO_IP, IP_RECVTOS, (const char *)&val, sizeof(val) );
setsockopt( sockfd, IPPROTO_IP, IP_PKTINFO, (const char *)&val, sizeof(val) );
}
}
#endif
if (sockfd == -1)
{
if (errno == EINVAL) set_win32_error( WSAESOCKTNOSUPPORT );
else set_win32_error( sock_get_error( errno ));
return -1;
}
fcntl(sockfd, F_SETFL, O_NONBLOCK); /* make socket nonblocking */
if (family == WS_AF_IPX && protocol >= WS_NSPROTO_IPX && protocol <= WS_NSPROTO_IPX + 255)
{
#ifdef HAS_IPX
int ipx_type = protocol - WS_NSPROTO_IPX;
#ifdef SOL_IPX
setsockopt( sockfd, SOL_IPX, IPX_TYPE, &ipx_type, sizeof(ipx_type) );
#else
struct ipx val;
/* Should we retrieve val using a getsockopt call and then
* set the modified one? */
val.ipx_pt = ipx_type;
setsockopt( sockfd, 0, SO_DEFAULT_HEADERS, &val, sizeof(val) );
#endif
#endif
}
if (unix_family == AF_INET || unix_family == AF_INET6)
{
/* ensure IP_DONTFRAGMENT is disabled for SOCK_DGRAM and SOCK_RAW, enabled for SOCK_STREAM */
if (unix_type == SOCK_DGRAM || unix_type == SOCK_RAW) /* in Linux the global default can be enabled */
set_dont_fragment( sockfd, unix_family == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP, FALSE );
else if (unix_type == SOCK_STREAM)
set_dont_fragment( sockfd, unix_family == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP, TRUE );
}
#ifdef IPV6_V6ONLY
if (unix_family == AF_INET6)
{
static const int enable = 1;
setsockopt( sockfd, IPPROTO_IPV6, IPV6_V6ONLY, &enable, sizeof(enable) );
}
#endif
len = sizeof(value);
if (!getsockopt( sockfd, SOL_SOCKET, SO_RCVBUF, &value, &len ))
{
if (value < MIN_RCVBUF)
{
value = MIN_RCVBUF;
setsockopt( sockfd, SOL_SOCKET, SO_RCVBUF, &value, sizeof(value) );
}
sock->rcvbuf = value;
}
len = sizeof(value);
if (!getsockopt( sockfd, SOL_SOCKET, SO_SNDBUF, &value, &len ))
sock->sndbuf = value;
sock->state = (type == WS_SOCK_STREAM ? SOCK_UNCONNECTED : SOCK_CONNECTIONLESS);
sock->proto = protocol;
sock->type = type;
sock->family = family;
if (is_tcp_socket( sock ))
{
value = 1;
setsockopt( sockfd, SOL_SOCKET, SO_REUSEADDR, &value, sizeof(value) );
#ifdef TCP_SYNCNT
value = 4;
setsockopt( sockfd, IPPROTO_TCP, TCP_SYNCNT, &value, sizeof(value) );
#endif
}
if (sock->fd)
{
options = get_fd_options( sock->fd );
release_object( sock->fd );
}
if (!(sock->fd = create_anonymous_fd( &sock_fd_ops, sockfd, &sock->obj, options )))
{
return -1;
}
/* We can't immediately allow caching for a connection-mode socket, since it
* might be accepted into (changing the underlying fd object.) */
if (sock->type != WS_SOCK_STREAM) allow_fd_caching( sock->fd );
return 0;
}
/* accepts a socket and inits it */
static int accept_new_fd( struct sock *sock )
{
/* Try to accept(2). We can't be safe that this an already connected socket
* or that accept() is allowed on it. In those cases we will get -1/errno
* return.
*/
struct sockaddr saddr;
socklen_t slen = sizeof(saddr);
int acceptfd = accept( get_unix_fd(sock->fd), &saddr, &slen );
if (acceptfd != -1)
fcntl( acceptfd, F_SETFL, O_NONBLOCK );
else
set_error( sock_get_ntstatus( errno ));
return acceptfd;
}
/* accept a socket (creates a new fd) */
static struct sock *accept_socket( struct sock *sock )
{
struct sock *acceptsock;
int acceptfd;
if (get_unix_fd( sock->fd ) == -1) return NULL;
if ( sock->deferred )
{
acceptsock = sock->deferred;
sock->deferred = NULL;
}
else
{
union unix_sockaddr unix_addr;
socklen_t unix_len;
if ((acceptfd = accept_new_fd( sock )) == -1) return NULL;
if (!(acceptsock = create_socket()))
{
close( acceptfd );
return NULL;
}
/* newly created socket gets the same properties of the listening socket */
acceptsock->state = SOCK_CONNECTED;
acceptsock->bound = 1;
acceptsock->nonblocking = sock->nonblocking;
acceptsock->mask = sock->mask;
acceptsock->proto = sock->proto;
acceptsock->type = sock->type;
acceptsock->family = sock->family;
acceptsock->window = sock->window;
acceptsock->message = sock->message;
acceptsock->reuseaddr = sock->reuseaddr;
acceptsock->exclusiveaddruse = sock->exclusiveaddruse;
acceptsock->sndbuf = sock->sndbuf;
acceptsock->rcvbuf = sock->rcvbuf;
acceptsock->sndtimeo = sock->sndtimeo;
acceptsock->rcvtimeo = sock->rcvtimeo;
acceptsock->connect_time = current_time;
if (sock->event) acceptsock->event = (struct event *)grab_object( sock->event );
if (!(acceptsock->fd = create_anonymous_fd( &sock_fd_ops, acceptfd, &acceptsock->obj,
get_fd_options( sock->fd ) )))
{
release_object( acceptsock );
return NULL;
}
unix_len = sizeof(unix_addr);
if (!getsockname( acceptfd, &unix_addr.addr, &unix_len ))
{
acceptsock->addr_len = sockaddr_from_unix( &unix_addr, &acceptsock->addr.addr, sizeof(acceptsock->addr) );
if (!getpeername( acceptfd, &unix_addr.addr, &unix_len ))
acceptsock->peer_addr_len = sockaddr_from_unix( &unix_addr,
&acceptsock->peer_addr.addr,
sizeof(acceptsock->peer_addr) );
}
}
clear_error();
sock->pending_events &= ~AFD_POLL_ACCEPT;
sock->reported_events &= ~AFD_POLL_ACCEPT;
sock_reselect( sock );
return acceptsock;
}
static int accept_into_socket( struct sock *sock, struct sock *acceptsock )
{
union unix_sockaddr unix_addr;
socklen_t unix_len;
int acceptfd;
struct fd *newfd;
if (get_unix_fd( sock->fd ) == -1) return FALSE;
if ( sock->deferred )
{
newfd = dup_fd_object( sock->deferred->fd, 0, 0,
get_fd_options( acceptsock->fd ) );
if ( !newfd )
return FALSE;
set_fd_user( newfd, &sock_fd_ops, &acceptsock->obj );
release_object( sock->deferred );
sock->deferred = NULL;
}
else
{
if ((acceptfd = accept_new_fd( sock )) == -1)
return FALSE;
if (!(newfd = create_anonymous_fd( &sock_fd_ops, acceptfd, &acceptsock->obj,
get_fd_options( acceptsock->fd ) )))
return FALSE;
}
acceptsock->state = SOCK_CONNECTED;
acceptsock->bound = 1;
acceptsock->pending_events = 0;
acceptsock->reported_events = 0;
acceptsock->proto = sock->proto;
acceptsock->type = sock->type;
acceptsock->family = sock->family;
acceptsock->wparam = 0;
acceptsock->deferred = NULL;
acceptsock->connect_time = current_time;
fd_copy_completion( acceptsock->fd, newfd );
release_object( acceptsock->fd );
acceptsock->fd = newfd;
unix_len = sizeof(unix_addr);
if (!getsockname( get_unix_fd( newfd ), &unix_addr.addr, &unix_len ))
{
acceptsock->addr_len = sockaddr_from_unix( &unix_addr, &acceptsock->addr.addr, sizeof(acceptsock->addr) );
if (!getpeername( get_unix_fd( newfd ), &unix_addr.addr, &unix_len ))
acceptsock->peer_addr_len = sockaddr_from_unix( &unix_addr,
&acceptsock->peer_addr.addr,
sizeof(acceptsock->peer_addr) );
}
clear_error();
sock->pending_events &= ~AFD_POLL_ACCEPT;
sock->reported_events &= ~AFD_POLL_ACCEPT;
sock_reselect( sock );
return TRUE;
}
#ifdef IP_BOUND_IF
static int bind_to_iface_name( int fd, in_addr_t bind_addr, const char *name )
{
static const int enable = 1;
unsigned int index;
if (!(index = if_nametoindex( name )))
return -1;
if (setsockopt( fd, IPPROTO_IP, IP_BOUND_IF, &index, sizeof(index) ))
return -1;
return setsockopt( fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable) );
}
#elif defined(IP_UNICAST_IF) && defined(SO_ATTACH_FILTER) && defined(SO_BINDTODEVICE)
struct interface_filter
{
struct sock_filter iface_memaddr;
struct sock_filter iface_rule;
struct sock_filter ip_memaddr;
struct sock_filter ip_rule;
struct sock_filter return_keep;
struct sock_filter return_dump;
};
# define FILTER_JUMP_DUMP(here) (u_char)(offsetof(struct interface_filter, return_dump) \
-offsetof(struct interface_filter, here)-sizeof(struct sock_filter)) \
/sizeof(struct sock_filter)
# define FILTER_JUMP_KEEP(here) (u_char)(offsetof(struct interface_filter, return_keep) \
-offsetof(struct interface_filter, here)-sizeof(struct sock_filter)) \
/sizeof(struct sock_filter)
# define FILTER_JUMP_NEXT() (u_char)(0)
# define SKF_NET_DESTIP 16 /* offset in the network header to the destination IP */
static struct interface_filter generic_interface_filter =
{
/* This filter rule allows incoming packets on the specified interface, which works for all
* remotely generated packets and for locally generated broadcast packets. */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SKF_AD_OFF+SKF_AD_IFINDEX),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0xdeadbeef, FILTER_JUMP_KEEP(iface_rule), FILTER_JUMP_NEXT()),
/* This rule allows locally generated packets targeted at the specific IP address of the chosen
* adapter (local packets not destined for the broadcast address do not have IFINDEX set) */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SKF_NET_OFF+SKF_NET_DESTIP),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0xdeadbeef, FILTER_JUMP_KEEP(ip_rule), FILTER_JUMP_DUMP(ip_rule)),
BPF_STMT(BPF_RET+BPF_K, (u_int)-1), /* keep packet */
BPF_STMT(BPF_RET+BPF_K, 0) /* dump packet */
};
static int bind_to_iface_name( int fd, in_addr_t bind_addr, const char *name )
{
struct interface_filter specific_interface_filter;
struct sock_fprog filter_prog;
static const int enable = 1;
unsigned int index;
in_addr_t ifindex;
if (!setsockopt( fd, SOL_SOCKET, SO_BINDTODEVICE, name, strlen( name ) + 1 ))
return 0;
/* SO_BINDTODEVICE requires NET_CAP_RAW until Linux 5.7. */
if (debug_level)
fprintf( stderr, "setsockopt SO_BINDTODEVICE fd %d, name %s failed: %s, falling back to SO_REUSE_ADDR\n",
fd, name, strerror( errno ));
if (!(index = if_nametoindex( name )))
return -1;
ifindex = htonl( index );
if (setsockopt( fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex, sizeof(ifindex) ) < 0)
return -1;
specific_interface_filter = generic_interface_filter;
specific_interface_filter.iface_rule.k = index;
specific_interface_filter.ip_rule.k = htonl( bind_addr );
filter_prog.len = sizeof(generic_interface_filter) / sizeof(struct sock_filter);
filter_prog.filter = (struct sock_filter *)&specific_interface_filter;
if (setsockopt( fd, SOL_SOCKET, SO_ATTACH_FILTER, &filter_prog, sizeof(filter_prog) ))
return -1;
return setsockopt( fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable) );
}
#else
static int bind_to_iface_name( int fd, in_addr_t bind_addr, const char *name )
{
errno = EOPNOTSUPP;
return -1;
}
#endif /* LINUX_BOUND_IF */
/* Take bind() calls on any name corresponding to a local network adapter and
* restrict the given socket to operating only on the specified interface. This
* restriction consists of two components:
* 1) An outgoing packet restriction suggesting the egress interface for all
* packets.
* 2) An incoming packet restriction dropping packets not meant for the
* interface.
* If the function succeeds in placing these restrictions, then the name for the
* bind() may safely be changed to INADDR_ANY, permitting the transmission and
* receipt of broadcast packets on the socket. This behavior is only relevant to
* UDP sockets and is needed for applications that expect to be able to receive
* broadcast packets on a socket that is bound to a specific network interface.
*/
static int bind_to_interface( struct sock *sock, const struct sockaddr_in *addr )
{
in_addr_t bind_addr = addr->sin_addr.s_addr;
struct ifaddrs *ifaddrs, *ifaddr;
int fd = get_unix_fd( sock->fd );
int err = -1;
if (bind_addr == htonl( INADDR_ANY ) || bind_addr == htonl( INADDR_LOOPBACK ))
return 0;
if (sock->type != WS_SOCK_DGRAM)
return 0;
if (getifaddrs( &ifaddrs ) < 0) return 0;
for (ifaddr = ifaddrs; ifaddr != NULL; ifaddr = ifaddr->ifa_next)
{
if (ifaddr->ifa_addr && ifaddr->ifa_addr->sa_family == AF_INET
&& ((struct sockaddr_in *)ifaddr->ifa_addr)->sin_addr.s_addr == bind_addr)
{
if ((err = bind_to_iface_name( fd, bind_addr, ifaddr->ifa_name )) < 0)
{
if (debug_level)
fprintf( stderr, "failed to bind to interface: %s\n", strerror( errno ) );
}
break;
}
}
freeifaddrs( ifaddrs );
return !err;
}
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
static unsigned int get_ipv6_interface_index( const struct in6_addr *addr )
{
struct ifaddrs *ifaddrs, *ifaddr;
if (getifaddrs( &ifaddrs ) < 0) return 0;
for (ifaddr = ifaddrs; ifaddr != NULL; ifaddr = ifaddr->ifa_next)
{
if (ifaddr->ifa_addr && ifaddr->ifa_addr->sa_family == AF_INET6
&& !memcmp( &((struct sockaddr_in6 *)ifaddr->ifa_addr)->sin6_addr, addr, sizeof(*addr) ))
{
unsigned int index = if_nametoindex( ifaddr->ifa_name );
if (!index)
{
if (debug_level)
fprintf( stderr, "Unable to look up interface index for %s: %s\n",
ifaddr->ifa_name, strerror( errno ) );
continue;
}
freeifaddrs( ifaddrs );
return index;
}
}
freeifaddrs( ifaddrs );
return 0;
}
#endif
/* return an errno value mapped to a WSA error */
static unsigned int sock_get_error( int err )
{
switch (err)
{
case EINTR: return WSAEINTR;
case EBADF: return WSAEBADF;
case EPERM:
case EACCES: return WSAEACCES;
case EFAULT: return WSAEFAULT;
case EINVAL: return WSAEINVAL;
case EMFILE: return WSAEMFILE;
case EINPROGRESS:
case EWOULDBLOCK: return WSAEWOULDBLOCK;
case EALREADY: return WSAEALREADY;
case ENOTSOCK: return WSAENOTSOCK;
case EDESTADDRREQ: return WSAEDESTADDRREQ;
case EMSGSIZE: return WSAEMSGSIZE;
case EPROTOTYPE: return WSAEPROTOTYPE;
case ENOPROTOOPT: return WSAENOPROTOOPT;
case EPROTONOSUPPORT: return WSAEPROTONOSUPPORT;
case ESOCKTNOSUPPORT: return WSAESOCKTNOSUPPORT;
case EOPNOTSUPP: return WSAEOPNOTSUPP;
case EPFNOSUPPORT: return WSAEPFNOSUPPORT;
case EAFNOSUPPORT: return WSAEAFNOSUPPORT;
case EADDRINUSE: return WSAEADDRINUSE;
case EADDRNOTAVAIL: return WSAEADDRNOTAVAIL;
case ENETDOWN: return WSAENETDOWN;
case ENETUNREACH: return WSAENETUNREACH;
case ENETRESET: return WSAENETRESET;
case ECONNABORTED: return WSAECONNABORTED;
case EPIPE:
case ECONNRESET: return WSAECONNRESET;
case ENOBUFS: return WSAENOBUFS;
case EISCONN: return WSAEISCONN;
case ENOTCONN: return WSAENOTCONN;
case ESHUTDOWN: return WSAESHUTDOWN;
case ETOOMANYREFS: return WSAETOOMANYREFS;
case ETIMEDOUT: return WSAETIMEDOUT;
case ECONNREFUSED: return WSAECONNREFUSED;
case ELOOP: return WSAELOOP;
case ENAMETOOLONG: return WSAENAMETOOLONG;
case EHOSTDOWN: return WSAEHOSTDOWN;
case EHOSTUNREACH: return WSAEHOSTUNREACH;
case ENOTEMPTY: return WSAENOTEMPTY;
#ifdef EPROCLIM
case EPROCLIM: return WSAEPROCLIM;
#endif
#ifdef EUSERS
case EUSERS: return WSAEUSERS;
#endif
#ifdef EDQUOT
case EDQUOT: return WSAEDQUOT;
#endif
#ifdef ESTALE
case ESTALE: return WSAESTALE;
#endif
#ifdef EREMOTE
case EREMOTE: return WSAEREMOTE;
#endif
case 0: return 0;
default:
errno = err;
perror("wineserver: sock_get_error() can't map error");
return WSAEFAULT;
}
}
static int sock_get_ntstatus( int err )
{
switch ( err )
{
case EBADF: return STATUS_INVALID_HANDLE;
case EBUSY: return STATUS_DEVICE_BUSY;
case EPERM:
case EACCES: return STATUS_ACCESS_DENIED;
case EFAULT: return STATUS_ACCESS_VIOLATION;
case EINVAL: return STATUS_INVALID_PARAMETER;
case ENFILE:
case EMFILE: return STATUS_TOO_MANY_OPENED_FILES;
case EINPROGRESS:
case EWOULDBLOCK: return STATUS_DEVICE_NOT_READY;
case EALREADY: return STATUS_NETWORK_BUSY;
case ENOTSOCK: return STATUS_OBJECT_TYPE_MISMATCH;
case EDESTADDRREQ: return STATUS_INVALID_PARAMETER;
case EMSGSIZE: return STATUS_BUFFER_OVERFLOW;
case EPROTONOSUPPORT:
case ESOCKTNOSUPPORT:
case EPFNOSUPPORT:
case EAFNOSUPPORT:
case EPROTOTYPE: return STATUS_NOT_SUPPORTED;
case ENOPROTOOPT: return STATUS_INVALID_PARAMETER;
case EOPNOTSUPP: return STATUS_NOT_SUPPORTED;
case EADDRINUSE: return STATUS_SHARING_VIOLATION;
/* Linux returns ENODEV when specifying an invalid sin6_scope_id;
* Windows returns STATUS_INVALID_ADDRESS_COMPONENT */
case ENODEV:
case EADDRNOTAVAIL: return STATUS_INVALID_ADDRESS_COMPONENT;
case ECONNREFUSED: return STATUS_CONNECTION_REFUSED;
case ESHUTDOWN: return STATUS_PIPE_DISCONNECTED;
case ENOTCONN: return STATUS_INVALID_CONNECTION;
case ETIMEDOUT: return STATUS_IO_TIMEOUT;
case ENETUNREACH: return STATUS_NETWORK_UNREACHABLE;
case EHOSTUNREACH: return STATUS_HOST_UNREACHABLE;
case ENETDOWN: return STATUS_NETWORK_BUSY;
case EPIPE:
case ECONNRESET: return STATUS_CONNECTION_RESET;
case ECONNABORTED: return STATUS_CONNECTION_ABORTED;
case EISCONN: return STATUS_CONNECTION_ACTIVE;
case 0: return STATUS_SUCCESS;
default:
errno = err;
perror("wineserver: sock_get_ntstatus() can't map error");
return STATUS_UNSUCCESSFUL;
}
}
static struct accept_req *alloc_accept_req( struct sock *sock, struct sock *acceptsock, struct async *async,
const struct afd_accept_into_params *params )
{
struct accept_req *req = mem_alloc( sizeof(*req) );
if (req)
{
req->async = (struct async *)grab_object( async );
req->iosb = async_get_iosb( async );
req->sock = (struct sock *)grab_object( sock );
req->acceptsock = acceptsock;
if (acceptsock) grab_object( acceptsock );
req->accepted = 0;
req->recv_len = 0;
req->local_len = 0;
if (params)
{
req->recv_len = params->recv_len;
req->local_len = params->local_len;
}
}
return req;
}
static void sock_ioctl( struct fd *fd, ioctl_code_t code, struct async *async )
{
struct sock *sock = get_fd_user( fd );
int unix_fd = -1;
assert( sock->obj.ops == &sock_ops );
if (code != IOCTL_AFD_WINE_CREATE && code != IOCTL_AFD_POLL && (unix_fd = get_unix_fd( fd )) < 0)
return;
switch(code)
{
case IOCTL_AFD_WINE_CREATE:
{
const struct afd_create_params *params = get_req_data();
if (get_req_data_size() != sizeof(*params))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
init_socket( sock, params->family, params->type, params->protocol );
return;
}
case IOCTL_AFD_WINE_ACCEPT:
{
struct sock *acceptsock;
obj_handle_t handle;
if (get_reply_max_size() != sizeof(handle))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
if (!(acceptsock = accept_socket( sock )))
{
struct accept_req *req;
if (sock->nonblocking) return;
if (get_error() != STATUS_DEVICE_NOT_READY) return;
if (!(req = alloc_accept_req( sock, NULL, async, NULL ))) return;
list_add_tail( &sock->accept_list, &req->entry );
async_set_completion_callback( async, free_accept_req, req );
queue_async( &sock->accept_q, async );
sock_reselect( sock );
set_error( STATUS_PENDING );
return;
}
handle = alloc_handle( current->process, &acceptsock->obj,
GENERIC_READ | GENERIC_WRITE | SYNCHRONIZE, OBJ_INHERIT );
acceptsock->wparam = handle;
sock_reselect( acceptsock );
release_object( acceptsock );
set_reply_data( &handle, sizeof(handle) );
return;
}
case IOCTL_AFD_WINE_ACCEPT_INTO:
{
static const int access = FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES | FILE_READ_DATA;
const struct afd_accept_into_params *params = get_req_data();
struct sock *acceptsock;
unsigned int remote_len;
struct accept_req *req;
if (get_req_data_size() != sizeof(*params) ||
get_reply_max_size() < params->recv_len ||
get_reply_max_size() - params->recv_len < params->local_len)
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
remote_len = get_reply_max_size() - params->recv_len - params->local_len;
if (remote_len < sizeof(int))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!(acceptsock = (struct sock *)get_handle_obj( current->process, params->accept_handle, access, &sock_ops )))
return;
if (acceptsock->accept_recv_req)
{
release_object( acceptsock );
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!(req = alloc_accept_req( sock, acceptsock, async, params )))
{
release_object( acceptsock );
return;
}
list_add_tail( &sock->accept_list, &req->entry );
acceptsock->accept_recv_req = req;
release_object( acceptsock );
acceptsock->wparam = params->accept_handle;
async_set_completion_callback( async, free_accept_req, req );
queue_async( &sock->accept_q, async );
sock_reselect( sock );
set_error( STATUS_PENDING );
return;
}
case IOCTL_AFD_LISTEN:
{
const struct afd_listen_params *params = get_req_data();
if (get_req_data_size() < sizeof(*params))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (sock->type == WS_SOCK_DGRAM)
{
set_error( STATUS_NOT_SUPPORTED );
return;
}
if (!sock->bound)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (listen( unix_fd, params->backlog ) < 0)
{
set_error( sock_get_ntstatus( errno ) );
return;
}
sock->state = SOCK_LISTENING;
/* a listening socket can no longer be accepted into */
allow_fd_caching( sock->fd );
/* we may already be selecting for AFD_POLL_ACCEPT */
sock_reselect( sock );
return;
}
case IOCTL_AFD_WINE_CONNECT:
{
const struct afd_connect_params *params = get_req_data();
const struct WS_sockaddr *addr;
union unix_sockaddr unix_addr, peer_addr;
struct connect_req *req;
socklen_t unix_len;
int send_len, ret;
if (get_req_data_size() < sizeof(*params) ||
get_req_data_size() - sizeof(*params) < params->addr_len)
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
send_len = get_req_data_size() - sizeof(*params) - params->addr_len;
addr = (const struct WS_sockaddr *)(params + 1);
if (!params->synchronous && !sock->bound)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (sock->accept_recv_req)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (sock->connect_req)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
switch (sock->state)
{
case SOCK_LISTENING:
set_error( STATUS_INVALID_PARAMETER );
return;
case SOCK_CONNECTING:
/* FIXME: STATUS_ADDRESS_ALREADY_ASSOCIATED probably isn't right,
* but there's no status code that maps to WSAEALREADY... */
set_error( params->synchronous ? STATUS_ADDRESS_ALREADY_ASSOCIATED : STATUS_INVALID_PARAMETER );
return;
case SOCK_CONNECTED:
set_error( STATUS_CONNECTION_ACTIVE );
return;
case SOCK_UNCONNECTED:
case SOCK_CONNECTIONLESS:
break;
}
unix_len = sockaddr_to_unix( addr, params->addr_len, &unix_addr );
if (!unix_len)
{
set_error( STATUS_INVALID_ADDRESS );
return;
}
if (unix_addr.addr.sa_family == AF_INET && !memcmp( &unix_addr.in.sin_addr, magic_loopback_addr, 4 ))
unix_addr.in.sin_addr.s_addr = htonl( INADDR_LOOPBACK );
memcpy( &peer_addr, &unix_addr, sizeof(unix_addr) );
ret = connect( unix_fd, &unix_addr.addr, unix_len );
if (ret < 0 && errno == ECONNABORTED)
{
/* On Linux with nonblocking socket if the previous connect() failed for any reason (including
* timeout), next connect will fail. If the error code was queried by getsockopt( SO_ERROR )
* the error code returned now is ECONNABORTED (otherwise that is the actual connect() failure
* error code). If we got here after previous connect attempt on the socket that means
* we already queried SO_ERROR in sock_error(), so retrying on ECONNABORTED only is
* sufficient. */
ret = connect( unix_fd, &unix_addr.addr, unix_len );
}
if (ret < 0 && errno != EINPROGRESS)
{
set_error( sock_get_ntstatus( errno ) );
return;
}
/* a connected or connecting socket can no longer be accepted into */
allow_fd_caching( sock->fd );
unix_len = sizeof(unix_addr);
getsockname( unix_fd, &unix_addr.addr, &unix_len );
sock->addr_len = sockaddr_from_unix( &unix_addr, &sock->addr.addr, sizeof(sock->addr) );
sock->peer_addr_len = sockaddr_from_unix( &peer_addr, &sock->peer_addr.addr, sizeof(sock->peer_addr));
sock->bound = 1;
if (!ret)
{
if (sock->type != WS_SOCK_DGRAM)
{
sock->state = SOCK_CONNECTED;
sock->connect_time = current_time;
}
if (!send_len) return;
}
if (sock->type != WS_SOCK_DGRAM)
sock->state = SOCK_CONNECTING;
if (params->synchronous && sock->nonblocking)
{
sock_reselect( sock );
set_error( STATUS_DEVICE_NOT_READY );
return;
}
if (!(req = mem_alloc( sizeof(*req) )))
return;
req->async = (struct async *)grab_object( async );
req->iosb = async_get_iosb( async );
req->sock = (struct sock *)grab_object( sock );
req->addr_len = params->addr_len;
req->send_len = send_len;
req->send_cursor = 0;
async_set_completion_callback( async, free_connect_req, req );
sock->connect_req = req;
queue_async( &sock->connect_q, async );
sock_reselect( sock );
set_error( STATUS_PENDING );
return;
}
case IOCTL_AFD_WINE_SHUTDOWN:
{
unsigned int how;
if (get_req_data_size() < sizeof(int))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
how = *(int *)get_req_data();
if (how > SD_BOTH)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (sock->state != SOCK_CONNECTED && sock->state != SOCK_CONNECTIONLESS)
{
set_error( STATUS_INVALID_CONNECTION );
return;
}
if (how != SD_SEND)
{
sock->rd_shutdown = 1;
}
if (how != SD_RECEIVE)
{
sock->wr_shutdown = 1;
if (list_empty( &sock->write_q.queue ))
shutdown( unix_fd, SHUT_WR );
else
sock->wr_shutdown_pending = 1;
}
if (how == SD_BOTH)
{
if (sock->event) release_object( sock->event );
sock->event = NULL;
sock->window = 0;
sock->mask = 0;
sock->nonblocking = 1;
}
sock_reselect( sock );
return;
}
case IOCTL_AFD_WINE_ADDRESS_LIST_CHANGE:
{
int force_async;
if (get_req_data_size() < sizeof(int))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
force_async = *(int *)get_req_data();
if (sock->nonblocking && !force_async)
{
set_error( STATUS_DEVICE_NOT_READY );
return;
}
if (!sock_get_ifchange( sock )) return;
queue_async( &sock->ifchange_q, async );
set_error( STATUS_PENDING );
return;
}
case IOCTL_AFD_WINE_FIONBIO:
if (get_req_data_size() < sizeof(int))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
if (*(int *)get_req_data())
{
sock->nonblocking = 1;
}
else
{
if (sock->mask)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
sock->nonblocking = 0;
}
return;
case IOCTL_AFD_EVENT_SELECT:
{
struct event *event = NULL;
obj_handle_t event_handle;
int mask;
set_async_pending( async );
if (is_machine_64bit( current->process->machine ))
{
const struct afd_event_select_params_64 *params = get_req_data();
if (get_req_data_size() < sizeof(*params))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
event_handle = params->event;
mask = params->mask;
}
else
{
const struct afd_event_select_params_32 *params = get_req_data();
if (get_req_data_size() < sizeof(*params))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
event_handle = params->event;
mask = params->mask;
}
if ((event_handle || mask) &&
!(event = get_event_obj( current->process, event_handle, EVENT_MODIFY_STATE )))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (sock->event) release_object( sock->event );
sock->event = event;
sock->mask = mask;
sock->window = 0;
sock->message = 0;
sock->wparam = 0;
sock->nonblocking = 1;
sock_reselect( sock );
/* Explicitly wake the socket up if the mask matches pending_events.
*
* The logic here is a bit surprising. We always set the event if the
* socket has events that haven't been consumed by
* WSAEnumNetworkEvents() yet, including if WSAEventSelect() is called
* multiple times without consuming the events.
* However, once the events are consumed by WSAEnumNetworkEvents(), we
* don't set the event again (even though e.g. data is still available)
* until a "reset" call (i.e. that clears reported_events). */
if (event && (sock->pending_events & mask))
{
if (debug_level) fprintf( stderr, "signalling pending events %#x due to event select\n",
sock->pending_events & mask );
set_event( event );
}
return;
}
case IOCTL_AFD_WINE_MESSAGE_SELECT:
{
const struct afd_message_select_params *params = get_req_data();
if (get_req_data_size() < sizeof(params))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
if (sock->event) release_object( sock->event );
if (params->window)
{
sock->pending_events = 0;
sock->reported_events = 0;
}
sock->event = NULL;
sock->mask = params->mask;
sock->window = params->window;
sock->message = params->message;
sock->wparam = params->handle;
sock->nonblocking = 1;
sock_reselect( sock );
return;
}
case IOCTL_AFD_BIND:
{
const struct afd_bind_params *params = get_req_data();
union unix_sockaddr unix_addr, bind_addr;
data_size_t in_size;
socklen_t unix_len;
int v6only = 1;
/* the ioctl is METHOD_NEITHER, so ntdll gives us the output buffer as
* input */
if (get_req_data_size() < get_reply_max_size())
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
in_size = get_req_data_size() - get_reply_max_size();
if (in_size < offsetof(struct afd_bind_params, addr.sa_data)
|| get_reply_max_size() < in_size - sizeof(int))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (sock->bound)
{
set_error( STATUS_ADDRESS_ALREADY_ASSOCIATED );
return;
}
unix_len = sockaddr_to_unix( &params->addr, in_size - sizeof(int), &unix_addr );
if (!unix_len)
{
set_error( STATUS_INVALID_ADDRESS );
return;
}
bind_addr = unix_addr;
if (unix_addr.addr.sa_family == AF_INET)
{
if (!memcmp( &unix_addr.in.sin_addr, magic_loopback_addr, 4 )
|| bind_to_interface( sock, &unix_addr.in ))
bind_addr.in.sin_addr.s_addr = htonl( INADDR_ANY );
}
else if (unix_addr.addr.sa_family == AF_INET6)
{
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
/* Windows allows specifying zero to use the default scope. Linux
* interprets it as an interface index and requires that it be
* nonzero. */
if (!unix_addr.in6.sin6_scope_id)
bind_addr.in6.sin6_scope_id = get_ipv6_interface_index( &unix_addr.in6.sin6_addr );
#endif
}
set_async_pending( async );
#ifdef IPV6_V6ONLY
if (sock->family == WS_AF_INET6)
{
socklen_t len = sizeof(v6only);
getsockopt( get_unix_fd(sock->fd), IPPROTO_IPV6, IPV6_V6ONLY, &v6only, &len );
}
#endif
if (check_addr_usage( sock, &bind_addr, v6only ))
return;
if (bind( unix_fd, &bind_addr.addr, unix_len ) < 0)
{
if (errno == EADDRINUSE && sock->reuseaddr)
errno = EACCES;
set_error( sock_get_ntstatus( errno ) );
return;
}
sock->bound = 1;
unix_len = sizeof(bind_addr);
if (!getsockname( unix_fd, &bind_addr.addr, &unix_len ))
{
/* store the interface or magic loopback address instead of the
* actual unix address */
if (bind_addr.addr.sa_family == AF_INET)
bind_addr.in.sin_addr = unix_addr.in.sin_addr;
sock->addr_len = sockaddr_from_unix( &bind_addr, &sock->addr.addr, sizeof(sock->addr) );
}
update_addr_usage( sock, &bind_addr, v6only );
if (get_reply_max_size() >= sock->addr_len)
set_reply_data( &sock->addr, sock->addr_len );
return;
}
case IOCTL_AFD_GETSOCKNAME:
if (!sock->bound)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (get_reply_max_size() < sock->addr_len)
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &sock->addr, sock->addr_len );
return;
case IOCTL_AFD_WINE_GETPEERNAME:
if (sock->state != SOCK_CONNECTED &&
sock->state != SOCK_CONNECTING &&
sock->state != SOCK_CONNECTIONLESS)
{
set_error( STATUS_INVALID_CONNECTION );
return;
}
/* If ConnectEx() hasn't finished connecting (or failing to connect) the provided
* socket, getpeername() can't be called on it. This seems to be undocumented
* and is *not* the case for connect(), but we do test for it in ws2_32.
* connect_req is non-NULL iff ConnectEx() was used and has not finished,
* so we can use it as a check for ConnectEx() usage here. */
if (sock->connect_req)
{
set_error( STATUS_INVALID_CONNECTION );
return;
}
if (!sock->peer_addr_len && sock->type == WS_SOCK_DGRAM)
{
set_error( STATUS_INVALID_CONNECTION );
return;
}
if (get_reply_max_size() < sock->peer_addr_len)
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &sock->peer_addr, sock->peer_addr_len );
return;
case IOCTL_AFD_WINE_DEFER:
{
const obj_handle_t *handle = get_req_data();
struct sock *acceptsock;
if (get_req_data_size() < sizeof(*handle))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
acceptsock = (struct sock *)get_handle_obj( current->process, *handle, 0, &sock_ops );
if (!acceptsock) return;
sock->deferred = acceptsock;
return;
}
case IOCTL_AFD_WINE_GET_INFO:
{
struct afd_get_info_params params;
if (get_reply_max_size() < sizeof(params))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
params.family = sock->family;
params.type = sock->type;
params.protocol = sock->proto;
set_reply_data( &params, sizeof(params) );
return;
}
case IOCTL_AFD_WINE_GET_SO_ACCEPTCONN:
{
int listening = (sock->state == SOCK_LISTENING);
if (get_reply_max_size() < sizeof(listening))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &listening, sizeof(listening) );
return;
}
case IOCTL_AFD_WINE_GET_SO_ERROR:
{
int error;
unsigned int i;
if (get_reply_max_size() < sizeof(error))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
error = sock_error( sock );
if (!error)
{
for (i = 0; i < ARRAY_SIZE( sock->errors ); ++i)
{
if (sock->errors[i])
{
error = sock->errors[i];
break;
}
}
}
error = sock_get_error( error );
set_reply_data( &error, sizeof(error) );
return;
}
case IOCTL_AFD_WINE_GET_SO_RCVBUF:
{
int rcvbuf = sock->rcvbuf;
if (get_reply_max_size() < sizeof(rcvbuf))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &rcvbuf, sizeof(rcvbuf) );
return;
}
case IOCTL_AFD_WINE_SET_SO_RCVBUF:
{
DWORD rcvbuf, set_rcvbuf;
if (get_req_data_size() < sizeof(rcvbuf))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
rcvbuf = *(DWORD *)get_req_data();
set_rcvbuf = max( rcvbuf, MIN_RCVBUF );
if (!setsockopt( unix_fd, SOL_SOCKET, SO_RCVBUF, (char *)&set_rcvbuf, sizeof(set_rcvbuf) ))
sock->rcvbuf = rcvbuf;
else
set_error( sock_get_ntstatus( errno ) );
return;
}
case IOCTL_AFD_WINE_GET_SO_RCVTIMEO:
{
DWORD rcvtimeo = sock->rcvtimeo;
if (get_reply_max_size() < sizeof(rcvtimeo))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &rcvtimeo, sizeof(rcvtimeo) );
return;
}
case IOCTL_AFD_WINE_SET_SO_RCVTIMEO:
{
DWORD rcvtimeo;
if (get_req_data_size() < sizeof(rcvtimeo))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
rcvtimeo = *(DWORD *)get_req_data();
sock->rcvtimeo = rcvtimeo;
return;
}
/* BSD socket SO_REUSEADDR is not compatible with winsock semantics. */
case IOCTL_AFD_WINE_SET_SO_REUSEADDR:
{
int reuse, ret;
if (get_req_data_size() < sizeof(reuse))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
reuse = *(int *)get_req_data();
if (reuse && sock->exclusiveaddruse)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (is_tcp_socket( sock ))
ret = 0;
else
ret = setsockopt( unix_fd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse) );
#ifdef __APPLE__
if (!ret) ret = setsockopt( unix_fd, SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(reuse) );
#endif
if (ret)
set_error( sock_get_ntstatus( errno ) );
else
sock->reuseaddr = !!reuse;
return;
}
case IOCTL_AFD_WINE_SET_SO_EXCLUSIVEADDRUSE:
{
int exclusive;
if (get_req_data_size() < sizeof(exclusive))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
exclusive = *(int *)get_req_data();
if (exclusive && sock->reuseaddr)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
sock->exclusiveaddruse = !!exclusive;
return;
}
case IOCTL_AFD_WINE_GET_SO_SNDBUF:
{
int sndbuf = sock->sndbuf;
if (get_reply_max_size() < sizeof(sndbuf))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &sndbuf, sizeof(sndbuf) );
return;
}
case IOCTL_AFD_WINE_SET_SO_SNDBUF:
{
DWORD sndbuf;
if (get_req_data_size() < sizeof(sndbuf))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
sndbuf = *(DWORD *)get_req_data();
#ifdef __APPLE__
if (!sndbuf)
{
/* setsockopt fails if a zero value is passed */
sock->sndbuf = sndbuf;
return;
}
#endif
if (!setsockopt( unix_fd, SOL_SOCKET, SO_SNDBUF, (char *)&sndbuf, sizeof(sndbuf) ))
sock->sndbuf = sndbuf;
else
set_error( sock_get_ntstatus( errno ) );
return;
}
case IOCTL_AFD_WINE_GET_SO_SNDTIMEO:
{
DWORD sndtimeo = sock->sndtimeo;
if (get_reply_max_size() < sizeof(sndtimeo))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
set_reply_data( &sndtimeo, sizeof(sndtimeo) );
return;
}
case IOCTL_AFD_WINE_SET_SO_SNDTIMEO:
{
DWORD sndtimeo;
if (get_req_data_size() < sizeof(sndtimeo))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
sndtimeo = *(DWORD *)get_req_data();
sock->sndtimeo = sndtimeo;
return;
}
case IOCTL_AFD_WINE_GET_SO_CONNECT_TIME:
{
DWORD time = ~0u;
if (get_reply_max_size() < sizeof(time))
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
if (sock->state == SOCK_CONNECTED)
time = (current_time - sock->connect_time) / 10000000;
set_reply_data( &time, sizeof(time) );
return;
}
case IOCTL_AFD_WINE_GET_SO_REUSEADDR:
{
int reuse;
if (!get_reply_max_size())
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
reuse = sock->reuseaddr;
set_reply_data( &reuse, min( sizeof(reuse), get_reply_max_size() ));
return;
}
case IOCTL_AFD_WINE_GET_SO_EXCLUSIVEADDRUSE:
{
int exclusive;
if (!get_reply_max_size())
{
set_error( STATUS_BUFFER_TOO_SMALL );
return;
}
exclusive = sock->exclusiveaddruse;
set_reply_data( &exclusive, min( sizeof(exclusive), get_reply_max_size() ));
return;
}
case IOCTL_AFD_POLL:
{
if (get_reply_max_size() < get_req_data_size())
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (is_machine_64bit( current->process->machine ))
{
const struct afd_poll_params_64 *params = get_req_data();
if (get_req_data_size() < sizeof(struct afd_poll_params_64) ||
get_req_data_size() < offsetof( struct afd_poll_params_64, sockets[params->count] ))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
poll_socket( sock, async, params->exclusive, params->timeout, params->count, params->sockets );
}
else
{
const struct afd_poll_params_32 *params = get_req_data();
struct afd_poll_socket_64 *sockets;
unsigned int i;
if (get_req_data_size() < sizeof(struct afd_poll_params_32) ||
get_req_data_size() < offsetof( struct afd_poll_params_32, sockets[params->count] ))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!(sockets = mem_alloc( params->count * sizeof(*sockets) ))) return;
for (i = 0; i < params->count; ++i)
{
sockets[i].socket = params->sockets[i].socket;
sockets[i].flags = params->sockets[i].flags;
sockets[i].status = params->sockets[i].status;
}
poll_socket( sock, async, params->exclusive, params->timeout, params->count, sockets );
free( sockets );
}
return;
}
default:
set_error( STATUS_NOT_SUPPORTED );
return;
}
}
static void handle_exclusive_poll(struct poll_req *req)
{
unsigned int i;
for (i = 0; i < req->count; ++i)
{
struct sock *sock = req->sockets[i].sock;
struct poll_req *main_poll = sock->main_poll;
if (main_poll && main_poll->exclusive && req->exclusive)
{
complete_async_poll( main_poll, STATUS_SUCCESS );
main_poll = NULL;
}
if (!main_poll)
sock->main_poll = req;
}
}
static void poll_socket( struct sock *poll_sock, struct async *async, int exclusive, timeout_t timeout,
unsigned int count, const struct afd_poll_socket_64 *sockets )
{
BOOL signaled = FALSE;
struct poll_req *req;
unsigned int i, j;
if (!count)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!(req = mem_alloc( offsetof( struct poll_req, sockets[count] ) )))
return;
req->timeout = NULL;
req->pending = 0;
if (timeout && timeout != TIMEOUT_INFINITE &&
!(req->timeout = add_timeout_user( timeout, async_poll_timeout, req )))
{
free( req );
return;
}
req->orig_timeout = timeout;
for (i = 0; i < count; ++i)
{
req->sockets[i].sock = (struct sock *)get_handle_obj( current->process, sockets[i].socket, 0, &sock_ops );
if (!req->sockets[i].sock)
{
for (j = 0; j < i; ++j) release_object( req->sockets[j].sock );
if (req->timeout) remove_timeout_user( req->timeout );
free( req );
return;
}
req->sockets[i].handle = sockets[i].socket;
req->sockets[i].mask = sockets[i].flags;
req->sockets[i].flags = 0;
}
req->exclusive = exclusive;
req->count = count;
req->async = (struct async *)grab_object( async );
req->iosb = async_get_iosb( async );
handle_exclusive_poll(req);
list_add_tail( &poll_list, &req->entry );
async_set_completion_callback( async, free_poll_req, req );
queue_async( &poll_sock->poll_q, async );
for (i = 0; i < count; ++i)
{
struct sock *sock = req->sockets[i].sock;
int mask = req->sockets[i].mask;
struct pollfd pollfd;
pollfd.fd = get_unix_fd( sock->fd );
pollfd.events = poll_flags_from_afd( sock, mask );
if (pollfd.events >= 0 && poll( &pollfd, 1, 0 ) >= 0)
sock_poll_event( sock->fd, pollfd.revents );
/* FIXME: do other error conditions deserve a similar treatment? */
if (sock->state != SOCK_CONNECTING && sock->errors[AFD_POLL_BIT_CONNECT_ERR] && (mask & AFD_POLL_CONNECT_ERR))
{
req->sockets[i].flags |= AFD_POLL_CONNECT_ERR;
req->sockets[i].status = sock_get_ntstatus( sock->errors[AFD_POLL_BIT_CONNECT_ERR] );
}
}
for (i = 0; i < count; ++i)
{
if (req->sockets[i].flags)
signaled = TRUE;
}
if (!timeout || signaled)
complete_async_poll( req, STATUS_SUCCESS );
else
req->pending = 1;
for (i = 0; i < req->count; ++i)
sock_reselect( req->sockets[i].sock );
set_error( STATUS_PENDING );
}
#ifdef HAVE_LINUX_RTNETLINK_H
/* only keep one ifchange object around, all sockets waiting for wakeups will look to it */
static struct object *ifchange_object;
static void ifchange_dump( struct object *obj, int verbose );
static struct fd *ifchange_get_fd( struct object *obj );
static void ifchange_destroy( struct object *obj );
static int ifchange_get_poll_events( struct fd *fd );
static void ifchange_poll_event( struct fd *fd, int event );
struct ifchange
{
struct object obj; /* object header */
struct fd *fd; /* interface change file descriptor */
struct list sockets; /* list of sockets to send interface change notifications */
};
static const struct object_ops ifchange_ops =
{
sizeof(struct ifchange), /* size */
&no_type, /* type */
ifchange_dump, /* dump */
no_add_queue, /* add_queue */
NULL, /* remove_queue */
NULL, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
ifchange_get_fd, /* get_fd */
default_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_get_full_name, /* get_full_name */
no_lookup_name, /* lookup_name */
no_link_name, /* link_name */
NULL, /* unlink_name */
no_open_file, /* open_file */
no_kernel_obj_list, /* get_kernel_obj_list */
no_close_handle, /* close_handle */
ifchange_destroy /* destroy */
};
static const struct fd_ops ifchange_fd_ops =
{
ifchange_get_poll_events, /* get_poll_events */
ifchange_poll_event, /* poll_event */
NULL, /* get_fd_type */
no_fd_read, /* read */
no_fd_write, /* write */
no_fd_flush, /* flush */
no_fd_get_file_info, /* get_file_info */
no_fd_get_volume_info, /* get_volume_info */
no_fd_ioctl, /* ioctl */
NULL, /* cancel_async */
NULL, /* queue_async */
NULL /* reselect_async */
};
static void ifchange_dump( struct object *obj, int verbose )
{
assert( obj->ops == &ifchange_ops );
fprintf( stderr, "Interface change\n" );
}
static struct fd *ifchange_get_fd( struct object *obj )
{
struct ifchange *ifchange = (struct ifchange *)obj;
return (struct fd *)grab_object( ifchange->fd );
}
static void ifchange_destroy( struct object *obj )
{
struct ifchange *ifchange = (struct ifchange *)obj;
assert( obj->ops == &ifchange_ops );
release_object( ifchange->fd );
/* reset the global ifchange object so that it will be recreated if it is needed again */
assert( obj == ifchange_object );
ifchange_object = NULL;
}
static int ifchange_get_poll_events( struct fd *fd )
{
return POLLIN;
}
/* wake up all the sockets waiting for a change notification event */
static void ifchange_wake_up( struct object *obj, unsigned int status )
{
struct ifchange *ifchange = (struct ifchange *)obj;
struct list *ptr, *next;
assert( obj->ops == &ifchange_ops );
assert( obj == ifchange_object );
LIST_FOR_EACH_SAFE( ptr, next, &ifchange->sockets )
{
struct sock *sock = LIST_ENTRY( ptr, struct sock, ifchange_entry );
assert( sock->ifchange_obj );
async_wake_up( &sock->ifchange_q, status ); /* issue ifchange notification for the socket */
sock_release_ifchange( sock ); /* remove socket from list and decrement ifchange refcount */
}
}
static void ifchange_poll_event( struct fd *fd, int event )
{
struct object *ifchange = get_fd_user( fd );
unsigned int status = STATUS_PENDING;
char buffer[PIPE_BUF];
int r;
r = recv( get_unix_fd(fd), buffer, sizeof(buffer), MSG_DONTWAIT );
if (r < 0)
{
if (errno == EWOULDBLOCK || (EWOULDBLOCK != EAGAIN && errno == EAGAIN))
return; /* retry when poll() says the socket is ready */
status = sock_get_ntstatus( errno );
}
else if (r > 0)
{
struct nlmsghdr *nlh;
for (nlh = (struct nlmsghdr *)buffer; NLMSG_OK(nlh, r); nlh = NLMSG_NEXT(nlh, r))
{
if (nlh->nlmsg_type == NLMSG_DONE)
break;
if (nlh->nlmsg_type == RTM_NEWADDR || nlh->nlmsg_type == RTM_DELADDR)
status = STATUS_SUCCESS;
}
}
else status = STATUS_CANCELLED;
if (status != STATUS_PENDING) ifchange_wake_up( ifchange, status );
}
#endif
/* we only need one of these interface notification objects, all of the sockets dependent upon
* it will wake up when a notification event occurs */
static struct object *get_ifchange( void )
{
#ifdef HAVE_LINUX_RTNETLINK_H
struct ifchange *ifchange;
struct sockaddr_nl addr;
int unix_fd;
if (ifchange_object)
{
/* increment the refcount for each socket that uses the ifchange object */
return grab_object( ifchange_object );
}
/* create the socket we need for processing interface change notifications */
unix_fd = socket( PF_NETLINK, SOCK_RAW, NETLINK_ROUTE );
if (unix_fd == -1)
{
set_error( sock_get_ntstatus( errno ));
return NULL;
}
fcntl( unix_fd, F_SETFL, O_NONBLOCK ); /* make socket nonblocking */
memset( &addr, 0, sizeof(addr) );
addr.nl_family = AF_NETLINK;
addr.nl_groups = RTMGRP_IPV4_IFADDR;
/* bind the socket to the special netlink kernel interface */
if (bind( unix_fd, (struct sockaddr *)&addr, sizeof(addr) ) == -1)
{
close( unix_fd );
set_error( sock_get_ntstatus( errno ));
return NULL;
}
if (!(ifchange = alloc_object( &ifchange_ops )))
{
close( unix_fd );
set_error( STATUS_NO_MEMORY );
return NULL;
}
list_init( &ifchange->sockets );
if (!(ifchange->fd = create_anonymous_fd( &ifchange_fd_ops, unix_fd, &ifchange->obj, 0 )))
{
release_object( ifchange );
set_error( STATUS_NO_MEMORY );
return NULL;
}
set_fd_events( ifchange->fd, POLLIN ); /* enable read wakeup on the file descriptor */
/* the ifchange object is now successfully configured */
ifchange_object = &ifchange->obj;
return &ifchange->obj;
#else
set_error( STATUS_NOT_SUPPORTED );
return NULL;
#endif
}
/* add the socket to the interface change notification list */
static void ifchange_add_sock( struct object *obj, struct sock *sock )
{
#ifdef HAVE_LINUX_RTNETLINK_H
struct ifchange *ifchange = (struct ifchange *)obj;
list_add_tail( &ifchange->sockets, &sock->ifchange_entry );
#endif
}
/* create a new ifchange queue for a specific socket or, if one already exists, reuse the existing one */
static struct object *sock_get_ifchange( struct sock *sock )
{
struct object *ifchange;
if (sock->ifchange_obj) /* reuse existing ifchange_obj for this socket */
return sock->ifchange_obj;
if (!(ifchange = get_ifchange()))
return NULL;
/* add the socket to the ifchange notification list */
ifchange_add_sock( ifchange, sock );
sock->ifchange_obj = ifchange;
return ifchange;
}
/* destroy an existing ifchange queue for a specific socket */
static void sock_release_ifchange( struct sock *sock )
{
if (sock->ifchange_obj)
{
list_remove( &sock->ifchange_entry );
release_object( sock->ifchange_obj );
sock->ifchange_obj = NULL;
}
}
static void socket_device_dump( struct object *obj, int verbose );
static struct object *socket_device_lookup_name( struct object *obj, struct unicode_str *name,
unsigned int attr, struct object *root );
static struct object *socket_device_open_file( struct object *obj, unsigned int access,
unsigned int sharing, unsigned int options );
static const struct object_ops socket_device_ops =
{
sizeof(struct object), /* size */
&device_type, /* type */
socket_device_dump, /* dump */
no_add_queue, /* add_queue */
NULL, /* remove_queue */
NULL, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
default_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
default_get_full_name, /* get_full_name */
socket_device_lookup_name, /* lookup_name */
directory_link_name, /* link_name */
default_unlink_name, /* unlink_name */
socket_device_open_file, /* open_file */
no_kernel_obj_list, /* get_kernel_obj_list */
no_close_handle, /* close_handle */
no_destroy /* destroy */
};
static void socket_device_dump( struct object *obj, int verbose )
{
fputs( "Socket device\n", stderr );
}
static struct object *socket_device_lookup_name( struct object *obj, struct unicode_str *name,
unsigned int attr, struct object *root )
{
if (name) name->len = 0;
return NULL;
}
static struct object *socket_device_open_file( struct object *obj, unsigned int access,
unsigned int sharing, unsigned int options )
{
struct sock *sock;
if (!(sock = create_socket())) return NULL;
if (!(sock->fd = alloc_pseudo_fd( &sock_fd_ops, &sock->obj, options )))
{
release_object( sock );
return NULL;
}
return &sock->obj;
}
struct object *create_socket_device( struct object *root, const struct unicode_str *name,
unsigned int attr, const struct security_descriptor *sd )
{
return create_named_object( root, &socket_device_ops, name, attr, sd );
}
DECL_HANDLER(recv_socket)
{
struct sock *sock = (struct sock *)get_handle_obj( current->process, req->async.handle, 0, &sock_ops );
unsigned int status = STATUS_PENDING;
timeout_t timeout = 0;
struct async *async;
struct fd *fd;
if (!sock) return;
fd = sock->fd;
if (!req->force_async && !sock->nonblocking && is_fd_overlapped( fd ))
timeout = (timeout_t)sock->rcvtimeo * -10000;
if (sock->rd_shutdown)
status = STATUS_PIPE_DISCONNECTED;
else if (sock->reset)
status = STATUS_CONNECTION_RESET;
else if (!async_queued( &sock->read_q ))
{
/* If read_q is not empty, we cannot really tell if the already queued
* asyncs will not consume all available data; if there's no data
* available, the current request won't be immediately satiable.
*/
if ((!req->force_async && sock->nonblocking) ||
check_fd_events( sock->fd, req->oob && !is_oobinline( sock ) ? POLLPRI : POLLIN ))
{
/* Give the client opportunity to complete synchronously.
* If it turns out that the I/O request is not actually immediately satiable,
* the client may then choose to re-queue the async (with STATUS_PENDING).
*
* Note: If the nonblocking flag is set, we don't poll the socket
* here and always opt for synchronous completion first. This is
* because the application has probably seen POLLIN already from a
* preceding select()/poll() call before it requested to receive
* data.
*/
status = STATUS_ALERTED;
}
}
if (status == STATUS_PENDING && !req->force_async && sock->nonblocking)
status = STATUS_DEVICE_NOT_READY;
sock->pending_events &= ~(req->oob ? AFD_POLL_OOB : AFD_POLL_READ);
sock->reported_events &= ~(req->oob ? AFD_POLL_OOB : AFD_POLL_READ);
if ((async = create_request_async( fd, get_fd_comp_flags( fd ), &req->async )))
{
set_error( status );
if (timeout)
async_set_timeout( async, timeout, STATUS_IO_TIMEOUT );
if (status == STATUS_PENDING || status == STATUS_ALERTED)
queue_async( &sock->read_q, async );
/* always reselect; we changed reported_events above */
sock_reselect( sock );
reply->wait = async_handoff( async, NULL, 0 );
reply->options = get_fd_options( fd );
reply->nonblocking = sock->nonblocking;
release_object( async );
}
release_object( sock );
}
static void send_socket_completion_callback( void *private )
{
struct send_req *send_req = private;
struct iosb *iosb = send_req->iosb;
struct sock *sock = send_req->sock;
if (iosb->status != STATUS_SUCCESS)
{
/* send() calls only clear and reselect events if unsuccessful. */
sock->pending_events &= ~AFD_POLL_WRITE;
sock->reported_events &= ~AFD_POLL_WRITE;
sock_reselect( sock );
}
release_object( iosb );
release_object( sock );
free( send_req );
}
DECL_HANDLER(send_socket)
{
struct sock *sock = (struct sock *)get_handle_obj( current->process, req->async.handle, 0, &sock_ops );
unsigned int status = STATUS_PENDING;
timeout_t timeout = 0;
struct async *async;
struct fd *fd;
int bind_errno = 0;
if (!sock) return;
fd = sock->fd;
if (sock->type == WS_SOCK_DGRAM && !sock->bound)
{
union unix_sockaddr unix_addr;
socklen_t unix_len;
int unix_fd = get_unix_fd( fd );
unix_len = get_unix_sockaddr_any( &unix_addr, sock->family );
if (bind( unix_fd, &unix_addr.addr, unix_len ) < 0)
bind_errno = errno;
if (getsockname( unix_fd, &unix_addr.addr, &unix_len ) >= 0)
{
sock->addr_len = sockaddr_from_unix( &unix_addr, &sock->addr.addr, sizeof(sock->addr) );
sock->bound = 1;
}
else if (!bind_errno) bind_errno = errno;
}
if (!req->force_async && !sock->nonblocking && is_fd_overlapped( fd ))
timeout = (timeout_t)sock->sndtimeo * -10000;
if (bind_errno) status = sock_get_ntstatus( bind_errno );
else if (sock->wr_shutdown) status = STATUS_PIPE_DISCONNECTED;
else if (!async_queued( &sock->write_q ))
{
/* If write_q is not empty, we cannot really tell if the already queued
* asyncs will not consume all available space; if there's no space
* available, the current request won't be immediately satiable.
*/
if ((!req->force_async && sock->nonblocking) || check_fd_events( sock->fd, POLLOUT ))
{
/* Give the client opportunity to complete synchronously.
* If it turns out that the I/O request is not actually immediately satiable,
* the client may then choose to re-queue the async (with STATUS_PENDING).
*
* Note: If the nonblocking flag is set, we don't poll the socket
* here and always opt for synchronous completion first. This is
* because the application has probably seen POLLOUT already from a
* preceding select()/poll() call before it requested to send data.
*
* Furthermore, some applications expect that any send() call on a
* socket that has indicated POLLOUT beforehand never fails with
* WSAEWOULDBLOCK. It's possible that Linux poll() may yield
* POLLOUT on the first call but not the second, even if no send()
* call has been made in the meanwhile. This can happen for a
* number of reasons; for example, TCP fragmentation may consume
* extra buffer space for each packet that has been split out, or
* the TCP/IP networking stack may decide to shrink the send buffer
* due to memory pressure.
*/
status = STATUS_ALERTED;
}
}
if (status == STATUS_PENDING && !req->force_async && sock->nonblocking)
status = STATUS_DEVICE_NOT_READY;
if ((async = create_request_async( fd, get_fd_comp_flags( fd ), &req->async )))
{
struct send_req *send_req;
struct iosb *iosb = async_get_iosb( async );
if ((send_req = mem_alloc( sizeof(*send_req) )))
{
send_req->iosb = (struct iosb *)grab_object( iosb );
send_req->sock = (struct sock *)grab_object( sock );
async_set_completion_callback( async, send_socket_completion_callback, send_req );
}
else if (status == STATUS_PENDING || status == STATUS_DEVICE_NOT_READY)
status = STATUS_NO_MEMORY;
release_object( iosb );
set_error( status );
if (timeout)
async_set_timeout( async, timeout, STATUS_IO_TIMEOUT );
if (status == STATUS_PENDING || status == STATUS_ALERTED)
{
queue_async( &sock->write_q, async );
sock_reselect( sock );
}
reply->wait = async_handoff( async, NULL, 0 );
reply->options = get_fd_options( fd );
reply->nonblocking = sock->nonblocking;
release_object( async );
}
release_object( sock );
}
DECL_HANDLER(socket_get_events)
{
struct sock *sock = (struct sock *)get_handle_obj( current->process, req->handle, 0, &sock_ops );
unsigned int status[13];
struct event *event = NULL;
unsigned int i;
if (get_reply_max_size() < sizeof(status))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!sock) return;
if (req->event)
{
if (!(event = get_event_obj( current->process, req->event, EVENT_MODIFY_STATE )))
{
release_object( sock );
return;
}
}
reply->flags = sock->pending_events & sock->mask;
for (i = 0; i < ARRAY_SIZE( status ); ++i)
status[i] = sock_get_ntstatus( sock->errors[i] );
sock->pending_events &= ~sock->mask;
sock_reselect( sock );
if (event)
{
reset_event( event );
release_object( event );
}
set_reply_data( status, sizeof(status) );
release_object( sock );
}
DECL_HANDLER(socket_send_icmp_id)
{
struct sock *sock = (struct sock *)get_handle_obj( current->process, req->handle, 0, &sock_ops );
if (!sock) return;
if (sock->icmp_fixup_data_len == MAX_ICMP_HISTORY_LENGTH)
{
memmove( sock->icmp_fixup_data, sock->icmp_fixup_data + 1,
sizeof(*sock->icmp_fixup_data) * (MAX_ICMP_HISTORY_LENGTH - 1) );
--sock->icmp_fixup_data_len;
}
sock->icmp_fixup_data[sock->icmp_fixup_data_len].icmp_id = req->icmp_id;
sock->icmp_fixup_data[sock->icmp_fixup_data_len].icmp_seq = req->icmp_seq;
++sock->icmp_fixup_data_len;
release_object( sock );
}
DECL_HANDLER(socket_get_icmp_id)
{
struct sock *sock = (struct sock *)get_handle_obj( current->process, req->handle, 0, &sock_ops );
unsigned int i;
if (!sock) return;
for (i = 0; i < sock->icmp_fixup_data_len; ++i)
{
if (sock->icmp_fixup_data[i].icmp_seq == req->icmp_seq)
{
reply->icmp_id = sock->icmp_fixup_data[i].icmp_id;
--sock->icmp_fixup_data_len;
memmove( &sock->icmp_fixup_data[i], &sock->icmp_fixup_data[i + 1],
(sock->icmp_fixup_data_len - i) * sizeof(*sock->icmp_fixup_data) );
release_object( sock );
return;
}
}
set_error( STATUS_NOT_FOUND );
release_object( sock );
}