wine/dlls/win32u/path.c
2022-08-10 19:24:12 +02:00

2128 lines
68 KiB
C

/*
* Graphics paths (BeginPath, EndPath etc.)
*
* Copyright 1997, 1998 Martin Boehme
* 1999 Huw D M Davies
* Copyright 2005 Dmitry Timoshkov
* Copyright 2011 Alexandre Julliard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#if 0
#pragma makedep unix
#endif
#include <assert.h>
#include <math.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <float.h>
#include "windef.h"
#include "winbase.h"
#include "wingdi.h"
#include "winerror.h"
#include "ntgdi_private.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(gdi);
/* Notes on the implementation
*
* The implementation is based on dynamically resizable arrays of points and
* flags. I dithered for a bit before deciding on this implementation, and
* I had even done a bit of work on a linked list version before switching
* to arrays. It's a bit of a tradeoff. When you use linked lists, the
* implementation of FlattenPath is easier, because you can rip the
* PT_BEZIERTO entries out of the middle of the list and link the
* corresponding PT_LINETO entries in. However, when you use arrays,
* PathToRegion becomes easier, since you can essentially just pass your array
* of points to CreatePolyPolygonRgn. Also, if I'd used linked lists, I would
* have had the extra effort of creating a chunk-based allocation scheme
* in order to use memory effectively. That's why I finally decided to use
* arrays. Note by the way that the array based implementation has the same
* linear time complexity that linked lists would have since the arrays grow
* exponentially.
*
* The points are stored in the path in device coordinates. This is
* consistent with the way Windows does things (for instance, see the Win32
* SDK documentation for GetPath).
*
* The word "stroke" appears in several places (e.g. in the flag
* GdiPath.newStroke). A stroke consists of a PT_MOVETO followed by one or
* more PT_LINETOs or PT_BEZIERTOs, up to, but not including, the next
* PT_MOVETO. Note that this is not the same as the definition of a figure;
* a figure can contain several strokes.
*
* Martin Boehme
*/
#define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */
/* A floating point version of the POINT structure */
typedef struct tagFLOAT_POINT
{
double x, y;
} FLOAT_POINT;
struct gdi_path
{
POINT *points;
BYTE *flags;
int count;
int allocated;
BOOL newStroke;
POINT pos; /* current cursor position */
POINT points_buf[NUM_ENTRIES_INITIAL];
BYTE flags_buf[NUM_ENTRIES_INITIAL];
};
struct path_physdev
{
struct gdi_physdev dev;
struct gdi_path *path;
};
static inline struct path_physdev *get_path_physdev( PHYSDEV dev )
{
return CONTAINING_RECORD( dev, struct path_physdev, dev );
}
void free_gdi_path( struct gdi_path *path )
{
if (path->points != path->points_buf)
free( path->points );
free( path );
}
static struct gdi_path *alloc_gdi_path( int count )
{
struct gdi_path *path = malloc( sizeof(*path) );
if (!path)
{
RtlSetLastWin32Error( ERROR_NOT_ENOUGH_MEMORY );
return NULL;
}
count = max( NUM_ENTRIES_INITIAL, count );
if (count > NUM_ENTRIES_INITIAL)
{
path->points = malloc( count * (sizeof(path->points[0]) + sizeof(path->flags[0])) );
if (!path->points)
{
free( path );
RtlSetLastWin32Error( ERROR_NOT_ENOUGH_MEMORY );
return NULL;
}
path->flags = (BYTE *)(path->points + count);
}
else
{
path->points = path->points_buf;
path->flags = path->flags_buf;
}
path->count = 0;
path->allocated = count;
path->newStroke = TRUE;
path->pos.x = path->pos.y = 0;
return path;
}
static struct gdi_path *copy_gdi_path( const struct gdi_path *src_path )
{
struct gdi_path *path = alloc_gdi_path( src_path->count );
if (!path) return NULL;
path->count = src_path->count;
path->newStroke = src_path->newStroke;
path->pos = src_path->pos;
memcpy( path->points, src_path->points, path->count * sizeof(*path->points) );
memcpy( path->flags, src_path->flags, path->count * sizeof(*path->flags) );
return path;
}
/* Performs a world-to-viewport transformation on the specified point (which
* is in floating point format).
*/
static inline void INTERNAL_LPTODP_FLOAT( DC *dc, FLOAT_POINT *point, int count )
{
double x, y;
while (count--)
{
x = point->x;
y = point->y;
point->x = x * dc->xformWorld2Vport.eM11 + y * dc->xformWorld2Vport.eM21 + dc->xformWorld2Vport.eDx;
point->y = x * dc->xformWorld2Vport.eM12 + y * dc->xformWorld2Vport.eM22 + dc->xformWorld2Vport.eDy;
point++;
}
}
static inline INT int_from_fixed(FIXED f)
{
return (f.fract >= 0x8000) ? (f.value + 1) : f.value;
}
/* PATH_ReserveEntries
*
* Ensures that at least "numEntries" entries (for points and flags) have
* been allocated; allocates larger arrays and copies the existing entries
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
*/
static BOOL PATH_ReserveEntries(struct gdi_path *path, INT count)
{
POINT *pts_new;
int size;
assert(count>=0);
/* Do we have to allocate more memory? */
if (count > path->allocated)
{
/* Find number of entries to allocate. We let the size of the array
* grow exponentially, since that will guarantee linear time
* complexity. */
count = max( path->allocated * 2, count );
size = count * (sizeof(path->points[0]) + sizeof(path->flags[0]));
if (path->points == path->points_buf)
{
pts_new = malloc( size );
if (!pts_new) return FALSE;
memcpy( pts_new, path->points, path->count * sizeof(path->points[0]) );
memcpy( pts_new + count, path->flags, path->count * sizeof(path->flags[0]) );
}
else
{
pts_new = realloc( path->points, size );
if (!pts_new) return FALSE;
memmove( pts_new + count, pts_new + path->allocated, path->count * sizeof(path->flags[0]) );
}
path->points = pts_new;
path->flags = (BYTE *)(pts_new + count);
path->allocated = count;
}
return TRUE;
}
/* PATH_AddEntry
*
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
* successful, FALSE otherwise (e.g. if not enough memory was available).
*/
static BOOL PATH_AddEntry(struct gdi_path *pPath, const POINT *pPoint, BYTE flags)
{
/* FIXME: If newStroke is true, perhaps we want to check that we're
* getting a PT_MOVETO
*/
TRACE("(%d,%d) - %d\n", pPoint->x, pPoint->y, flags);
/* Reserve enough memory for an extra path entry */
if(!PATH_ReserveEntries(pPath, pPath->count+1))
return FALSE;
/* Store information in path entry */
pPath->points[pPath->count]=*pPoint;
pPath->flags[pPath->count]=flags;
pPath->count++;
return TRUE;
}
/* add a number of points, converting them to device coords */
/* return a pointer to the first type byte so it can be fixed up if necessary */
static BYTE *add_log_points( DC *dc, struct gdi_path *path, const POINT *points,
DWORD count, BYTE type )
{
BYTE *ret;
if (!PATH_ReserveEntries( path, path->count + count )) return NULL;
ret = &path->flags[path->count];
memcpy( &path->points[path->count], points, count * sizeof(*points) );
lp_to_dp( dc, &path->points[path->count], count );
memset( ret, type, count );
path->count += count;
return ret;
}
/* add a number of points that are already in device coords */
/* return a pointer to the first type byte so it can be fixed up if necessary */
static BYTE *add_points( struct gdi_path *path, const POINT *points, DWORD count, BYTE type )
{
BYTE *ret;
if (!PATH_ReserveEntries( path, path->count + count )) return NULL;
ret = &path->flags[path->count];
memcpy( &path->points[path->count], points, count * sizeof(*points) );
memset( ret, type, count );
path->count += count;
return ret;
}
/* reverse the order of an array of points */
static void reverse_points( POINT *points, UINT count )
{
UINT i;
for (i = 0; i < count / 2; i++)
{
POINT pt = points[i];
points[i] = points[count - i - 1];
points[count - i - 1] = pt;
}
}
/* start a new path stroke if necessary */
static BOOL start_new_stroke( struct gdi_path *path )
{
if (!path->newStroke && path->count &&
!(path->flags[path->count - 1] & PT_CLOSEFIGURE) &&
path->points[path->count - 1].x == path->pos.x &&
path->points[path->count - 1].y == path->pos.y)
return TRUE;
path->newStroke = FALSE;
return add_points( path, &path->pos, 1, PT_MOVETO ) != NULL;
}
/* set current position to the last point that was added to the path */
static void update_current_pos( struct gdi_path *path )
{
assert( path->count );
path->pos = path->points[path->count - 1];
}
/* close the current figure */
static void close_figure( struct gdi_path *path )
{
assert( path->count );
path->flags[path->count - 1] |= PT_CLOSEFIGURE;
}
/* add a number of points, starting a new stroke if necessary */
static BOOL add_log_points_new_stroke( DC *dc, struct gdi_path *path, const POINT *points,
DWORD count, BYTE type )
{
if (!start_new_stroke( path )) return FALSE;
if (!add_log_points( dc, path, points, count, type )) return FALSE;
update_current_pos( path );
return TRUE;
}
/* convert a (flattened) path to a region */
static HRGN path_to_region( const struct gdi_path *path, int mode )
{
int i, pos, polygons, *counts;
HRGN hrgn;
if (!path->count) return 0;
if (!(counts = malloc( (path->count / 2) * sizeof(*counts) ))) return 0;
pos = polygons = 0;
assert( path->flags[0] == PT_MOVETO );
for (i = 1; i < path->count; i++)
{
if (path->flags[i] != PT_MOVETO) continue;
counts[polygons++] = i - pos;
pos = i;
}
if (i > pos + 1) counts[polygons++] = i - pos;
assert( polygons <= path->count / 2 );
hrgn = create_polypolygon_region( path->points, counts, polygons, mode, NULL );
free( counts );
return hrgn;
}
/* PATH_CheckCorners
*
* Helper function for RoundRect() and Rectangle()
*/
static BOOL PATH_CheckCorners( DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2 )
{
INT temp;
/* Convert points to device coordinates */
corners[0].x=x1;
corners[0].y=y1;
corners[1].x=x2;
corners[1].y=y2;
lp_to_dp( dc, corners, 2 );
/* Make sure first corner is top left and second corner is bottom right */
if(corners[0].x>corners[1].x)
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if(corners[0].y>corners[1].y)
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (dc->attr->graphics_mode == GM_COMPATIBLE)
{
if (corners[0].x == corners[1].x) return FALSE;
if (corners[0].y == corners[1].y) return FALSE;
corners[1].x--;
corners[1].y--;
}
return TRUE;
}
/* PATH_AddFlatBezier
*/
static BOOL PATH_AddFlatBezier(struct gdi_path *pPath, POINT *pt, BOOL closed)
{
POINT *pts;
BOOL ret;
INT no;
pts = GDI_Bezier( pt, 4, &no );
if(!pts) return FALSE;
ret = (add_points( pPath, pts + 1, no - 1, PT_LINETO ) != NULL);
if (ret && closed) close_figure( pPath );
free( pts );
return ret;
}
/* PATH_FlattenPath
*
* Replaces Beziers with line segments
*
*/
static struct gdi_path *PATH_FlattenPath(const struct gdi_path *pPath)
{
struct gdi_path *new_path;
INT srcpt;
if (!(new_path = alloc_gdi_path( pPath->count ))) return NULL;
for(srcpt = 0; srcpt < pPath->count; srcpt++) {
switch(pPath->flags[srcpt] & ~PT_CLOSEFIGURE) {
case PT_MOVETO:
case PT_LINETO:
if (!PATH_AddEntry(new_path, &pPath->points[srcpt], pPath->flags[srcpt]))
{
free_gdi_path( new_path );
return NULL;
}
break;
case PT_BEZIERTO:
if (!PATH_AddFlatBezier(new_path, &pPath->points[srcpt-1],
pPath->flags[srcpt+2] & PT_CLOSEFIGURE))
{
free_gdi_path( new_path );
return NULL;
}
srcpt += 2;
break;
}
}
return new_path;
}
/* PATH_ScaleNormalizedPoint
*
* Scales a normalized point (x, y) with respect to the box whose corners are
* passed in "corners". The point is stored in "*pPoint". The normalized
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
* (1.0, 1.0) correspond to corners[1].
*/
static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x,
double y, POINT *pPoint)
{
pPoint->x = GDI_ROUND( corners[0].x + (corners[1].x-corners[0].x)*0.5*(x+1.0) );
pPoint->y = GDI_ROUND( corners[0].y + (corners[1].y-corners[0].y)*0.5*(y+1.0) );
}
/* PATH_NormalizePoint
*
* Normalizes a point with respect to the box whose corners are passed in
* "corners". The normalized coordinates are stored in "*pX" and "*pY".
*/
static void PATH_NormalizePoint(FLOAT_POINT corners[],
const FLOAT_POINT *pPoint,
double *pX, double *pY)
{
*pX = (pPoint->x-corners[0].x)/(corners[1].x-corners[0].x) * 2.0 - 1.0;
*pY = (pPoint->y-corners[0].y)/(corners[1].y-corners[0].y) * 2.0 - 1.0;
}
/* PATH_DoArcPart
*
* Creates a Bezier spline that corresponds to part of an arc and appends the
* corresponding points to the path. The start and end angles are passed in
* "angleStart" and "angleEnd"; these angles should span a quarter circle
* at most. If "startEntryType" is non-zero, an entry of that type for the first
* control point is added to the path; otherwise, it is assumed that the current
* position is equal to the first control point.
*/
static BOOL PATH_DoArcPart(struct gdi_path *pPath, FLOAT_POINT corners[],
double angleStart, double angleEnd, BYTE startEntryType)
{
double halfAngle, a;
double xNorm[4], yNorm[4];
POINT points[4];
BYTE *type;
int i, start;
assert(fabs(angleEnd-angleStart)<=M_PI_2);
/* FIXME: Is there an easier way of computing this? */
/* Compute control points */
halfAngle=(angleEnd-angleStart)/2.0;
if(fabs(halfAngle)>1e-8)
{
a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle);
xNorm[0]=cos(angleStart);
yNorm[0]=sin(angleStart);
xNorm[1]=xNorm[0] - a*yNorm[0];
yNorm[1]=yNorm[0] + a*xNorm[0];
xNorm[3]=cos(angleEnd);
yNorm[3]=sin(angleEnd);
xNorm[2]=xNorm[3] + a*yNorm[3];
yNorm[2]=yNorm[3] - a*xNorm[3];
}
else
for(i=0; i<4; i++)
{
xNorm[i]=cos(angleStart);
yNorm[i]=sin(angleStart);
}
/* Add starting point to path if desired */
start = !startEntryType;
for (i = start; i < 4; i++) PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &points[i]);
if (!(type = add_points( pPath, points + start, 4 - start, PT_BEZIERTO ))) return FALSE;
if (!start) type[0] = startEntryType;
return TRUE;
}
/* retrieve a flattened path in device coordinates, and optionally its region */
/* the DC path is deleted; the returned data must be freed by caller using free_gdi_path() */
/* helper for stroke_and_fill_path in the DIB driver */
struct gdi_path *get_gdi_flat_path( DC *dc, HRGN *rgn )
{
struct gdi_path *ret = NULL;
if (dc->path)
{
ret = PATH_FlattenPath( dc->path );
free_gdi_path( dc->path );
dc->path = NULL;
if (ret && rgn) *rgn = path_to_region( ret, dc->attr->poly_fill_mode );
}
else RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
return ret;
}
int get_gdi_path_data( struct gdi_path *path, POINT **pts, BYTE **flags )
{
*pts = path->points;
*flags = path->flags;
return path->count;
}
/***********************************************************************
* NtGdiBeginPath (win32u.@)
*/
BOOL WINAPI NtGdiBeginPath( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pBeginPath );
ret = physdev->funcs->pBeginPath( physdev );
release_dc_ptr( dc );
}
return ret;
}
/***********************************************************************
* NtGdiEndPath (win32u.@)
*/
BOOL WINAPI NtGdiEndPath( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pEndPath );
ret = physdev->funcs->pEndPath( physdev );
release_dc_ptr( dc );
}
return ret;
}
/******************************************************************************
* NtGdiAbortPath (win32u.@)
*/
BOOL WINAPI NtGdiAbortPath( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pAbortPath );
ret = physdev->funcs->pAbortPath( physdev );
release_dc_ptr( dc );
}
return ret;
}
/***********************************************************************
* NtGdiCloseFigure (win32u.@)
*/
BOOL WINAPI NtGdiCloseFigure( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pCloseFigure );
ret = physdev->funcs->pCloseFigure( physdev );
release_dc_ptr( dc );
}
return ret;
}
/***********************************************************************
* NtGdiGetPath (win32u.@)
*/
INT WINAPI NtGdiGetPath( HDC hdc, POINT *points, BYTE *types, INT size )
{
INT ret = -1;
DC *dc = get_dc_ptr( hdc );
if (!dc) return -1;
if (!dc->path)
{
RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
}
else if (size == 0)
{
ret = dc->path->count;
}
else if (size < dc->path->count)
{
RtlSetLastWin32Error( ERROR_INVALID_PARAMETER );
}
else
{
memcpy( points, dc->path->points, sizeof(POINT) * dc->path->count );
memcpy( types, dc->path->flags, sizeof(BYTE) * dc->path->count );
/* Convert the points to logical coordinates */
if (dp_to_lp( dc, points, dc->path->count ))
ret = dc->path->count;
else
/* FIXME: Is this the correct value? */
RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
}
release_dc_ptr( dc );
return ret;
}
/***********************************************************************
* NtGdiPathToRegion (win32u.@)
*/
HRGN WINAPI NtGdiPathToRegion( HDC hdc )
{
HRGN ret = 0;
DC *dc = get_dc_ptr( hdc );
if (!dc) return 0;
if (dc->path)
{
struct gdi_path *path = PATH_FlattenPath( dc->path );
free_gdi_path( dc->path );
dc->path = NULL;
if (path)
{
ret = path_to_region( path, dc->attr->poly_fill_mode );
free_gdi_path( path );
}
}
else RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
release_dc_ptr( dc );
return ret;
}
/***********************************************************************
* NtGdiFillPath (win32u.@)
*/
BOOL WINAPI NtGdiFillPath( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pFillPath );
ret = physdev->funcs->pFillPath( physdev );
release_dc_ptr( dc );
}
return ret;
}
/***********************************************************************
* NtGdiSelectClipPath (win32u.@)
*/
BOOL WINAPI NtGdiSelectClipPath( HDC hdc, INT mode )
{
BOOL ret = FALSE;
HRGN rgn;
if ((rgn = NtGdiPathToRegion( hdc )))
{
ret = NtGdiExtSelectClipRgn( hdc, rgn, mode ) != ERROR;
NtGdiDeleteObjectApp( rgn );
}
return ret;
}
/***********************************************************************
* pathdrv_BeginPath
*/
static BOOL CDECL pathdrv_BeginPath( PHYSDEV dev )
{
/* path already open, nothing to do */
return TRUE;
}
/***********************************************************************
* pathdrv_AbortPath
*/
static BOOL CDECL pathdrv_AbortPath( PHYSDEV dev )
{
DC *dc = get_physdev_dc( dev );
path_driver.pDeleteDC( pop_dc_driver( dc, &path_driver ));
return TRUE;
}
/***********************************************************************
* pathdrv_EndPath
*/
static BOOL CDECL pathdrv_EndPath( PHYSDEV dev )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
dc->path = physdev->path;
pop_dc_driver( dc, &path_driver );
free( physdev );
return TRUE;
}
/***********************************************************************
* pathdrv_CreateDC
*/
static BOOL CDECL pathdrv_CreateDC( PHYSDEV *dev, LPCWSTR device, LPCWSTR output,
const DEVMODEW *devmode )
{
struct path_physdev *physdev = malloc( sizeof(*physdev) );
if (!physdev) return FALSE;
push_dc_driver( dev, &physdev->dev, &path_driver );
return TRUE;
}
/*************************************************************
* pathdrv_DeleteDC
*/
static BOOL CDECL pathdrv_DeleteDC( PHYSDEV dev )
{
struct path_physdev *physdev = get_path_physdev( dev );
free_gdi_path( physdev->path );
free( physdev );
return TRUE;
}
BOOL PATH_SavePath( DC *dst, DC *src )
{
PHYSDEV dev;
if (src->path)
{
if (!(dst->path = copy_gdi_path( src->path ))) return FALSE;
}
else if ((dev = find_dc_driver( src, &path_driver )))
{
struct path_physdev *physdev = get_path_physdev( dev );
if (!(dst->path = copy_gdi_path( physdev->path ))) return FALSE;
dst->path_open = TRUE;
}
else dst->path = NULL;
return TRUE;
}
BOOL PATH_RestorePath( DC *dst, DC *src )
{
PHYSDEV dev;
struct path_physdev *physdev;
if ((dev = pop_dc_driver( dst, &path_driver )))
{
physdev = get_path_physdev( dev );
free_gdi_path( physdev->path );
free( physdev );
}
if (src->path && src->path_open)
{
if (!path_driver.pCreateDC( &dst->physDev, NULL, NULL, NULL )) return FALSE;
physdev = get_path_physdev( find_dc_driver( dst, &path_driver ));
physdev->path = src->path;
src->path_open = FALSE;
src->path = NULL;
}
if (dst->path) free_gdi_path( dst->path );
dst->path = src->path;
src->path = NULL;
return TRUE;
}
/*************************************************************
* pathdrv_MoveTo
*/
static BOOL CDECL pathdrv_MoveTo( PHYSDEV dev, INT x, INT y )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
physdev->path->newStroke = TRUE;
physdev->path->pos.x = x;
physdev->path->pos.y = y;
lp_to_dp( dc, &physdev->path->pos, 1 );
return TRUE;
}
/*************************************************************
* pathdrv_LineTo
*/
static BOOL CDECL pathdrv_LineTo( PHYSDEV dev, INT x, INT y )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
POINT point;
point.x = x;
point.y = y;
return add_log_points_new_stroke( dc, physdev->path, &point, 1, PT_LINETO );
}
/*************************************************************
* pathdrv_Rectangle
*/
static BOOL CDECL pathdrv_Rectangle( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2 )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
POINT corners[2], points[4];
BYTE *type;
if (!PATH_CheckCorners( dc, corners, x1, y1, x2, y2 )) return TRUE;
points[0].x = corners[1].x;
points[0].y = corners[0].y;
points[1] = corners[0];
points[2].x = corners[0].x;
points[2].y = corners[1].y;
points[3] = corners[1];
if (dc->attr->arc_direction == AD_CLOCKWISE) reverse_points( points, 4 );
if (!(type = add_points( physdev->path, points, 4, PT_LINETO ))) return FALSE;
type[0] = PT_MOVETO;
close_figure( physdev->path );
return TRUE;
}
/*************************************************************
* pathdrv_RoundRect
*/
static BOOL CDECL pathdrv_RoundRect( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height )
{
const double factor = 0.55428475; /* 4 / 3 * (sqrt(2) - 1) */
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
POINT corners[2], ellipse[2], points[16];
BYTE *type;
double width, height;
if (!ell_width || !ell_height) return pathdrv_Rectangle( dev, x1, y1, x2, y2 );
if (!PATH_CheckCorners( dc, corners, x1, y1, x2, y2 )) return TRUE;
ellipse[0].x = ellipse[0].y = 0;
ellipse[1].x = ell_width;
ellipse[1].y = ell_height;
lp_to_dp( dc, (POINT *)&ellipse, 2 );
ell_width = min( abs( ellipse[1].x - ellipse[0].x ), corners[1].x - corners[0].x );
ell_height = min( abs( ellipse[1].y - ellipse[0].y ), corners[1].y - corners[0].y );
width = ell_width / 2.0;
height = ell_height / 2.0;
/* starting point */
points[0].x = corners[1].x;
points[0].y = corners[0].y + GDI_ROUND( height );
/* first curve */
points[1].x = corners[1].x;
points[1].y = corners[0].y + GDI_ROUND( height * (1 - factor) );
points[2].x = corners[1].x - GDI_ROUND( width * (1 - factor) );
points[2].y = corners[0].y;
points[3].x = corners[1].x - GDI_ROUND( width );
points[3].y = corners[0].y;
/* horizontal line */
points[4].x = corners[0].x + GDI_ROUND( width );
points[4].y = corners[0].y;
/* second curve */
points[5].x = corners[0].x + GDI_ROUND( width * (1 - factor) );
points[5].y = corners[0].y;
points[6].x = corners[0].x;
points[6].y = corners[0].y + GDI_ROUND( height * (1 - factor) );
points[7].x = corners[0].x;
points[7].y = corners[0].y + GDI_ROUND( height );
/* vertical line */
points[8].x = corners[0].x;
points[8].y = corners[1].y - GDI_ROUND( height );
/* third curve */
points[9].x = corners[0].x;
points[9].y = corners[1].y - GDI_ROUND( height * (1 - factor) );
points[10].x = corners[0].x + GDI_ROUND( width * (1 - factor) );
points[10].y = corners[1].y;
points[11].x = corners[0].x + GDI_ROUND( width );
points[11].y = corners[1].y;
/* horizontal line */
points[12].x = corners[1].x - GDI_ROUND( width );
points[12].y = corners[1].y;
/* fourth curve */
points[13].x = corners[1].x - GDI_ROUND( width * (1 - factor) );
points[13].y = corners[1].y;
points[14].x = corners[1].x;
points[14].y = corners[1].y - GDI_ROUND( height * (1 - factor) );
points[15].x = corners[1].x;
points[15].y = corners[1].y - GDI_ROUND( height );
if (dc->attr->arc_direction == AD_CLOCKWISE) reverse_points( points, 16 );
if (!(type = add_points( physdev->path, points, 16, PT_BEZIERTO ))) return FALSE;
type[0] = PT_MOVETO;
type[4] = type[8] = type[12] = PT_LINETO;
close_figure( physdev->path );
return TRUE;
}
/*************************************************************
* pathdrv_Ellipse
*/
static BOOL CDECL pathdrv_Ellipse( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2 )
{
const double factor = 0.55428475; /* 4 / 3 * (sqrt(2) - 1) */
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
POINT corners[2], points[13];
BYTE *type;
double width, height;
if (!PATH_CheckCorners( dc, corners, x1, y1, x2, y2 )) return TRUE;
width = (corners[1].x - corners[0].x) / 2.0;
height = (corners[1].y - corners[0].y) / 2.0;
/* starting point */
points[0].x = corners[1].x;
points[0].y = corners[0].y + GDI_ROUND( height );
/* first curve */
points[1].x = corners[1].x;
points[1].y = corners[0].y + GDI_ROUND( height * (1 - factor) );
points[2].x = corners[1].x - GDI_ROUND( width * (1 - factor) );
points[2].y = corners[0].y;
points[3].x = corners[0].x + GDI_ROUND( width );
points[3].y = corners[0].y;
/* second curve */
points[4].x = corners[0].x + GDI_ROUND( width * (1 - factor) );
points[4].y = corners[0].y;
points[5].x = corners[0].x;
points[5].y = corners[0].y + GDI_ROUND( height * (1 - factor) );
points[6].x = corners[0].x;
points[6].y = corners[0].y + GDI_ROUND( height );
/* third curve */
points[7].x = corners[0].x;
points[7].y = corners[1].y - GDI_ROUND( height * (1 - factor) );
points[8].x = corners[0].x + GDI_ROUND( width * (1 - factor) );
points[8].y = corners[1].y;
points[9].x = corners[0].x + GDI_ROUND( width );
points[9].y = corners[1].y;
/* fourth curve */
points[10].x = corners[1].x - GDI_ROUND( width * (1 - factor) );
points[10].y = corners[1].y;
points[11].x = corners[1].x;
points[11].y = corners[1].y - GDI_ROUND( height * (1 - factor) );
points[12].x = corners[1].x;
points[12].y = corners[1].y - GDI_ROUND( height );
if (dc->attr->arc_direction == AD_CLOCKWISE) reverse_points( points, 13 );
if (!(type = add_points( physdev->path, points, 13, PT_BEZIERTO ))) return FALSE;
type[0] = PT_MOVETO;
close_figure( physdev->path );
return TRUE;
}
/* PATH_Arc
*
* Should be called when a call to Arc is performed on a DC that has
* an open path. This adds up to five Bezier splines representing the arc
* to the path. When 'lines' is 1, we add 1 extra line to get a chord,
* when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is
* -1 we add 1 extra line from the current DC position to the starting position
* of the arc before drawing the arc itself (arcto). Returns TRUE if successful,
* else FALSE.
*/
static BOOL PATH_Arc( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2,
INT xStart, INT yStart, INT xEnd, INT yEnd, int direction, int lines )
{
DC *dc = get_physdev_dc( dev );
struct path_physdev *physdev = get_path_physdev( dev );
double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0;
/* Initialize angleEndQuadrant to silence gcc's warning */
double x, y;
FLOAT_POINT corners[2], pointStart, pointEnd;
POINT centre;
BOOL start, end;
INT temp;
/* FIXME: Do we have to respect newStroke? */
/* Check for zero height / width */
/* FIXME: Only in GM_COMPATIBLE? */
if(x1==x2 || y1==y2)
return TRUE;
/* Convert points to device coordinates */
corners[0].x = x1;
corners[0].y = y1;
corners[1].x = x2;
corners[1].y = y2;
pointStart.x = xStart;
pointStart.y = yStart;
pointEnd.x = xEnd;
pointEnd.y = yEnd;
INTERNAL_LPTODP_FLOAT(dc, corners, 2);
INTERNAL_LPTODP_FLOAT(dc, &pointStart, 1);
INTERNAL_LPTODP_FLOAT(dc, &pointEnd, 1);
/* Make sure first corner is top left and second corner is bottom right */
if(corners[0].x>corners[1].x)
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if(corners[0].y>corners[1].y)
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* Compute start and end angle */
PATH_NormalizePoint(corners, &pointStart, &x, &y);
angleStart=atan2(y, x);
PATH_NormalizePoint(corners, &pointEnd, &x, &y);
angleEnd=atan2(y, x);
/* Make sure the end angle is "on the right side" of the start angle */
if (direction == AD_CLOCKWISE)
{
if(angleEnd<=angleStart)
{
angleEnd+=2*M_PI;
assert(angleEnd>=angleStart);
}
}
else
{
if(angleEnd>=angleStart)
{
angleEnd-=2*M_PI;
assert(angleEnd<=angleStart);
}
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (dc->attr->graphics_mode == GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
/* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */
if (lines == -1 && !start_new_stroke( physdev->path )) return FALSE;
/* Add the arc to the path with one Bezier spline per quadrant that the
* arc spans */
start=TRUE;
end=FALSE;
do
{
/* Determine the start and end angles for this quadrant */
if(start)
{
angleStartQuadrant=angleStart;
if (direction == AD_CLOCKWISE)
angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2;
else
angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2;
}
else
{
angleStartQuadrant=angleEndQuadrant;
if (direction == AD_CLOCKWISE)
angleEndQuadrant+=M_PI_2;
else
angleEndQuadrant-=M_PI_2;
}
/* Have we reached the last part of the arc? */
if((direction == AD_CLOCKWISE && angleEnd<angleEndQuadrant) ||
(direction == AD_COUNTERCLOCKWISE && angleEnd>angleEndQuadrant))
{
/* Adjust the end angle for this quadrant */
angleEndQuadrant=angleEnd;
end=TRUE;
}
/* Add the Bezier spline to the path */
PATH_DoArcPart(physdev->path, corners, angleStartQuadrant, angleEndQuadrant,
start ? (lines==-1 ? PT_LINETO : PT_MOVETO) : 0);
start=FALSE;
} while(!end);
/* chord: close figure. pie: add line and close figure */
switch (lines)
{
case -1:
update_current_pos( physdev->path );
break;
case 1:
close_figure( physdev->path );
break;
case 2:
centre.x = (corners[0].x+corners[1].x)/2;
centre.y = (corners[0].y+corners[1].y)/2;
if(!PATH_AddEntry(physdev->path, &centre, PT_LINETO | PT_CLOSEFIGURE))
return FALSE;
break;
}
return TRUE;
}
/*************************************************************
* pathdrv_AngleArc
*/
static BOOL CDECL pathdrv_AngleArc( PHYSDEV dev, INT x, INT y, DWORD radius, FLOAT eStartAngle, FLOAT eSweepAngle)
{
int x1 = GDI_ROUND( x + cos(eStartAngle*M_PI/180) * radius );
int y1 = GDI_ROUND( y - sin(eStartAngle*M_PI/180) * radius );
int x2 = GDI_ROUND( x + cos((eStartAngle+eSweepAngle)*M_PI/180) * radius );
int y2 = GDI_ROUND( y - sin((eStartAngle+eSweepAngle)*M_PI/180) * radius );
return PATH_Arc( dev, x-radius, y-radius, x+radius, y+radius, x1, y1, x2, y2,
eSweepAngle >= 0 ? AD_COUNTERCLOCKWISE : AD_CLOCKWISE, -1 );
}
/*************************************************************
* pathdrv_Arc
*/
static BOOL CDECL pathdrv_Arc( PHYSDEV dev, INT left, INT top, INT right, INT bottom,
INT xstart, INT ystart, INT xend, INT yend )
{
DC *dc = get_physdev_dc( dev );
return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend,
dc->attr->arc_direction, 0 );
}
/*************************************************************
* pathdrv_ArcTo
*/
static BOOL CDECL pathdrv_ArcTo( PHYSDEV dev, INT left, INT top, INT right, INT bottom,
INT xstart, INT ystart, INT xend, INT yend )
{
DC *dc = get_physdev_dc( dev );
return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend,
dc->attr->arc_direction, -1 );
}
/*************************************************************
* pathdrv_Chord
*/
static BOOL CDECL pathdrv_Chord( PHYSDEV dev, INT left, INT top, INT right, INT bottom,
INT xstart, INT ystart, INT xend, INT yend )
{
DC *dc = get_physdev_dc( dev );
return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend,
dc->attr->arc_direction, 1 );
}
/*************************************************************
* pathdrv_Pie
*/
static BOOL CDECL pathdrv_Pie( PHYSDEV dev, INT left, INT top, INT right, INT bottom,
INT xstart, INT ystart, INT xend, INT yend )
{
DC *dc = get_physdev_dc( dev );
return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend,
dc->attr->arc_direction, 2 );
}
/*************************************************************
* pathdrv_PolyBezierTo
*/
static BOOL CDECL pathdrv_PolyBezierTo( PHYSDEV dev, const POINT *pts, DWORD cbPoints )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
return add_log_points_new_stroke( dc, physdev->path, pts, cbPoints, PT_BEZIERTO );
}
/*************************************************************
* pathdrv_PolyBezier
*/
static BOOL CDECL pathdrv_PolyBezier( PHYSDEV dev, const POINT *pts, DWORD cbPoints )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
BYTE *type = add_log_points( dc, physdev->path, pts, cbPoints, PT_BEZIERTO );
if (!type) return FALSE;
type[0] = PT_MOVETO;
return TRUE;
}
/*************************************************************
* pathdrv_PolyDraw
*/
static BOOL CDECL pathdrv_PolyDraw( PHYSDEV dev, const POINT *pts, const BYTE *types, DWORD cbPoints )
{
struct path_physdev *physdev = get_path_physdev( dev );
struct gdi_path *path = physdev->path;
DC *dc = get_physdev_dc( dev );
POINT orig_pos;
INT i, lastmove = 0;
for (i = 0; i < path->count; i++) if (path->flags[i] == PT_MOVETO) lastmove = i;
orig_pos = path->pos;
for(i = 0; i < cbPoints; i++)
{
switch (types[i])
{
case PT_MOVETO:
path->newStroke = TRUE;
path->pos = pts[i];
lp_to_dp( dc, &path->pos, 1 );
lastmove = path->count;
break;
case PT_LINETO:
case PT_LINETO | PT_CLOSEFIGURE:
if (!add_log_points_new_stroke( dc, path, &pts[i], 1, PT_LINETO )) return FALSE;
break;
case PT_BEZIERTO:
if ((i + 2 < cbPoints) && (types[i + 1] == PT_BEZIERTO) &&
(types[i + 2] & ~PT_CLOSEFIGURE) == PT_BEZIERTO)
{
if (!add_log_points_new_stroke( dc, path, &pts[i], 3, PT_BEZIERTO )) return FALSE;
i += 2;
break;
}
/* fall through */
default:
/* restore original position */
path->pos = orig_pos;
return FALSE;
}
if (types[i] & PT_CLOSEFIGURE)
{
close_figure( path );
path->pos = path->points[lastmove];
}
}
return TRUE;
}
/*************************************************************
* pathdrv_PolylineTo
*/
static BOOL CDECL pathdrv_PolylineTo( PHYSDEV dev, const POINT *pts, INT count )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
if (count < 1) return FALSE;
return add_log_points_new_stroke( dc, physdev->path, pts, count, PT_LINETO );
}
/*************************************************************
* pathdrv_PolyPolygon
*/
static BOOL CDECL pathdrv_PolyPolygon( PHYSDEV dev, const POINT* pts, const INT* counts, UINT polygons )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
UINT poly, count;
BYTE *type;
if (!polygons) return FALSE;
for (poly = count = 0; poly < polygons; poly++)
{
if (counts[poly] < 2) return FALSE;
count += counts[poly];
}
type = add_log_points( dc, physdev->path, pts, count, PT_LINETO );
if (!type) return FALSE;
/* make the first point of each polyline a PT_MOVETO, and close the last one */
for (poly = 0; poly < polygons; type += counts[poly++])
{
type[0] = PT_MOVETO;
type[counts[poly] - 1] = PT_LINETO | PT_CLOSEFIGURE;
}
return TRUE;
}
/*************************************************************
* pathdrv_PolyPolyline
*/
static BOOL CDECL pathdrv_PolyPolyline( PHYSDEV dev, const POINT* pts, const DWORD* counts, DWORD polylines )
{
struct path_physdev *physdev = get_path_physdev( dev );
DC *dc = get_physdev_dc( dev );
UINT poly, count;
BYTE *type;
if (!polylines) return FALSE;
for (poly = count = 0; poly < polylines; poly++)
{
if (counts[poly] < 2) return FALSE;
count += counts[poly];
}
type = add_log_points( dc, physdev->path, pts, count, PT_LINETO );
if (!type) return FALSE;
/* make the first point of each polyline a PT_MOVETO */
for (poly = 0; poly < polylines; type += counts[poly++]) *type = PT_MOVETO;
return TRUE;
}
/**********************************************************************
* PATH_BezierTo
*
* internally used by PATH_add_outline
*/
static void PATH_BezierTo(struct gdi_path *pPath, POINT *lppt, INT n)
{
if (n < 2) return;
if (n == 2)
{
PATH_AddEntry(pPath, &lppt[1], PT_LINETO);
}
else if (n == 3)
{
add_points( pPath, lppt, 3, PT_BEZIERTO );
}
else
{
POINT pt[3];
INT i = 0;
pt[2] = lppt[0];
n--;
while (n > 2)
{
pt[0] = pt[2];
pt[1] = lppt[i+1];
pt[2].x = (lppt[i+2].x + lppt[i+1].x) / 2;
pt[2].y = (lppt[i+2].y + lppt[i+1].y) / 2;
add_points( pPath, pt, 3, PT_BEZIERTO );
n--;
i++;
}
pt[0] = pt[2];
pt[1] = lppt[i+1];
pt[2] = lppt[i+2];
add_points( pPath, pt, 3, PT_BEZIERTO );
}
}
static BOOL PATH_add_outline(struct path_physdev *physdev, INT x, INT y,
TTPOLYGONHEADER *header, DWORD size)
{
TTPOLYGONHEADER *start;
POINT pt;
start = header;
while ((char *)header < (char *)start + size)
{
TTPOLYCURVE *curve;
if (header->dwType != TT_POLYGON_TYPE)
{
FIXME("Unknown header type %d\n", header->dwType);
return FALSE;
}
pt.x = x + int_from_fixed(header->pfxStart.x);
pt.y = y - int_from_fixed(header->pfxStart.y);
PATH_AddEntry(physdev->path, &pt, PT_MOVETO);
curve = (TTPOLYCURVE *)(header + 1);
while ((char *)curve < (char *)header + header->cb)
{
/*TRACE("curve->wType %d\n", curve->wType);*/
switch(curve->wType)
{
case TT_PRIM_LINE:
{
WORD i;
for (i = 0; i < curve->cpfx; i++)
{
pt.x = x + int_from_fixed(curve->apfx[i].x);
pt.y = y - int_from_fixed(curve->apfx[i].y);
PATH_AddEntry(physdev->path, &pt, PT_LINETO);
}
break;
}
case TT_PRIM_QSPLINE:
case TT_PRIM_CSPLINE:
{
WORD i;
POINTFX ptfx;
POINT *pts = malloc( (curve->cpfx + 1) * sizeof(POINT) );
if (!pts) return FALSE;
ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX));
pts[0].x = x + int_from_fixed(ptfx.x);
pts[0].y = y - int_from_fixed(ptfx.y);
for(i = 0; i < curve->cpfx; i++)
{
pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x);
pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y);
}
PATH_BezierTo(physdev->path, pts, curve->cpfx + 1);
free( pts );
break;
}
default:
FIXME("Unknown curve type %04x\n", curve->wType);
return FALSE;
}
curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx];
}
header = (TTPOLYGONHEADER *)((char *)header + header->cb);
}
close_figure( physdev->path );
return TRUE;
}
/*************************************************************
* pathdrv_ExtTextOut
*/
static BOOL CDECL pathdrv_ExtTextOut( PHYSDEV dev, INT x, INT y, UINT flags, const RECT *lprc,
LPCWSTR str, UINT count, const INT *dx )
{
struct path_physdev *physdev = get_path_physdev( dev );
unsigned int idx, ggo_flags = GGO_NATIVE;
POINT offset = {0, 0};
if (!count) return TRUE;
if (flags & ETO_GLYPH_INDEX) ggo_flags |= GGO_GLYPH_INDEX;
for (idx = 0; idx < count; idx++)
{
static const MAT2 identity = { {0,1},{0,0},{0,0},{0,1} };
GLYPHMETRICS gm;
DWORD dwSize;
void *outline;
dwSize = NtGdiGetGlyphOutline( dev->hdc, str[idx], ggo_flags, &gm, 0, NULL, &identity, FALSE );
if (dwSize == GDI_ERROR) continue;
/* add outline only if char is printable */
if(dwSize)
{
outline = malloc( dwSize );
if (!outline) return FALSE;
NtGdiGetGlyphOutline( dev->hdc, str[idx], ggo_flags, &gm, dwSize, outline, &identity, FALSE );
PATH_add_outline(physdev, x + offset.x, y + offset.y, outline, dwSize);
free( outline );
}
if (dx)
{
if(flags & ETO_PDY)
{
offset.x += dx[idx * 2];
offset.y += dx[idx * 2 + 1];
}
else
offset.x += dx[idx];
}
else
{
offset.x += gm.gmCellIncX;
offset.y += gm.gmCellIncY;
}
}
return TRUE;
}
/*************************************************************
* pathdrv_CloseFigure
*/
static BOOL CDECL pathdrv_CloseFigure( PHYSDEV dev )
{
struct path_physdev *physdev = get_path_physdev( dev );
/* Set PT_CLOSEFIGURE on the last entry and start a new stroke */
/* It is not necessary to draw a line, PT_CLOSEFIGURE is a virtual closing line itself */
if (physdev->path->count) close_figure( physdev->path );
return TRUE;
}
/*******************************************************************
* NtGdiFlattenPath (win32u.@)
*/
BOOL WINAPI NtGdiFlattenPath( HDC hdc )
{
struct gdi_path *path;
BOOL ret = FALSE;
DC *dc;
if (!(dc = get_dc_ptr( hdc ))) return FALSE;
if (!dc->path) RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
else if ((path = PATH_FlattenPath( dc->path )))
{
free_gdi_path( dc->path );
dc->path = path;
ret = TRUE;
}
release_dc_ptr( dc );
return ret;
}
#define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5))
static struct gdi_path *PATH_WidenPath(DC *dc)
{
INT i, j, numStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle;
struct gdi_path *flat_path, *pNewPath, **pStrokes = NULL, **new_strokes, *pUpPath, *pDownPath;
EXTLOGPEN *elp;
BYTE *type;
DWORD obj_type, joint, endcap, penType;
size = NtGdiExtGetObjectW( dc->hPen, 0, NULL );
if (!size) {
RtlSetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
return NULL;
}
elp = malloc( size );
NtGdiExtGetObjectW( dc->hPen, size, elp );
obj_type = get_gdi_object_type(dc->hPen);
switch (obj_type)
{
case NTGDI_OBJ_PEN:
penStyle = ((LOGPEN*)elp)->lopnStyle;
break;
case NTGDI_OBJ_EXTPEN:
penStyle = elp->elpPenStyle;
break;
default:
RtlSetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
free( elp );
return NULL;
}
penWidth = elp->elpWidth;
free( elp );
endcap = (PS_ENDCAP_MASK & penStyle);
joint = (PS_JOIN_MASK & penStyle);
penType = (PS_TYPE_MASK & penStyle);
/* The function cannot apply to cosmetic pens */
if(obj_type == OBJ_EXTPEN && penType == PS_COSMETIC) {
RtlSetLastWin32Error(ERROR_CAN_NOT_COMPLETE);
return NULL;
}
if (!(flat_path = PATH_FlattenPath( dc->path ))) return NULL;
penWidthIn = penWidth / 2;
penWidthOut = penWidth / 2;
if(penWidthIn + penWidthOut < penWidth)
penWidthOut++;
numStrokes = 0;
for(i = 0, j = 0; i < flat_path->count; i++, j++) {
POINT point;
if((i == 0 || (flat_path->flags[i-1] & PT_CLOSEFIGURE)) &&
(flat_path->flags[i] != PT_MOVETO)) {
ERR("Expected PT_MOVETO %s, got path flag %c\n",
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
flat_path->flags[i]);
free_gdi_path( flat_path );
return NULL;
}
switch(flat_path->flags[i]) {
case PT_MOVETO:
numStrokes++;
j = 0;
new_strokes = realloc( pStrokes, numStrokes * sizeof(*pStrokes) );
if (!new_strokes)
{
free_gdi_path(flat_path);
free(pStrokes);
return NULL;
}
pStrokes = new_strokes;
pStrokes[numStrokes - 1] = alloc_gdi_path(0);
/* fall through */
case PT_LINETO:
case (PT_LINETO | PT_CLOSEFIGURE):
point.x = flat_path->points[i].x;
point.y = flat_path->points[i].y;
PATH_AddEntry(pStrokes[numStrokes - 1], &point, flat_path->flags[i]);
break;
case PT_BEZIERTO:
/* should never happen because of the FlattenPath call */
ERR("Should never happen\n");
break;
default:
ERR("Got path flag %c\n", flat_path->flags[i]);
for(i = 0; i < numStrokes; i++) free_gdi_path(pStrokes[i]);
free( pStrokes );
free_gdi_path(flat_path);
return NULL;
}
}
pNewPath = alloc_gdi_path( flat_path->count );
for(i = 0; i < numStrokes; i++) {
pUpPath = alloc_gdi_path( pStrokes[i]->count );
pDownPath = alloc_gdi_path( pStrokes[i]->count );
for(j = 0; j < pStrokes[i]->count; j++) {
/* Beginning or end of the path if not closed */
if((!(pStrokes[i]->flags[pStrokes[i]->count - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->count - 1) ) {
/* Compute segment angle */
double xo, yo, xa, ya, theta;
POINT pt;
FLOAT_POINT corners[2];
if(j == 0) {
xo = pStrokes[i]->points[j].x;
yo = pStrokes[i]->points[j].y;
xa = pStrokes[i]->points[1].x;
ya = pStrokes[i]->points[1].y;
}
else {
xa = pStrokes[i]->points[j - 1].x;
ya = pStrokes[i]->points[j - 1].y;
xo = pStrokes[i]->points[j].x;
yo = pStrokes[i]->points[j].y;
}
theta = atan2( ya - yo, xa - xo );
switch(endcap) {
case PS_ENDCAP_SQUARE :
pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta));
pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta));
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO) );
pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta));
pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta));
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
break;
case PS_ENDCAP_FLAT :
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
break;
case PS_ENDCAP_ROUND :
default :
corners[0].x = xo - penWidthIn;
corners[0].y = yo - penWidthIn;
corners[1].x = xo + penWidthOut;
corners[1].y = yo + penWidthOut;
PATH_DoArcPart(pUpPath ,corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : 0));
PATH_DoArcPart(pUpPath ,corners, theta + 3 * M_PI_4 , theta + M_PI, 0);
PATH_DoArcPart(pUpPath ,corners, theta + M_PI, theta + 5 * M_PI_4, 0);
PATH_DoArcPart(pUpPath ,corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, 0);
break;
}
}
/* Corpse of the path */
else {
/* Compute angle */
INT previous, next;
double xa, ya, xb, yb, xo, yo;
double alpha, theta, miterWidth;
DWORD _joint = joint;
POINT pt;
struct gdi_path *pInsidePath, *pOutsidePath;
if(j > 0 && j < pStrokes[i]->count - 1) {
previous = j - 1;
next = j + 1;
}
else if (j == 0) {
previous = pStrokes[i]->count - 1;
next = j + 1;
}
else {
previous = j - 1;
next = 0;
}
xo = pStrokes[i]->points[j].x;
yo = pStrokes[i]->points[j].y;
xa = pStrokes[i]->points[previous].x;
ya = pStrokes[i]->points[previous].y;
xb = pStrokes[i]->points[next].x;
yb = pStrokes[i]->points[next].y;
theta = atan2( yo - ya, xo - xa );
alpha = atan2( yb - yo, xb - xo ) - theta;
if (alpha > 0) alpha -= M_PI;
else alpha += M_PI;
if(_joint == PS_JOIN_MITER && dc->attr->miter_limit < fabs(1 / sin(alpha/2))) {
_joint = PS_JOIN_BEVEL;
}
if(alpha > 0) {
pInsidePath = pUpPath;
pOutsidePath = pDownPath;
}
else if(alpha < 0) {
pInsidePath = pDownPath;
pOutsidePath = pUpPath;
}
else {
continue;
}
/* Inside angle points */
if(alpha > 0) {
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
}
else {
pt.x = xo + round( penWidthIn * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthIn * sin(theta + M_PI_2) );
}
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
if(alpha > 0) {
pt.x = xo + round( penWidthIn * cos(M_PI_2 + alpha + theta) );
pt.y = yo + round( penWidthIn * sin(M_PI_2 + alpha + theta) );
}
else {
pt.x = xo - round( penWidthIn * cos(M_PI_2 + alpha + theta) );
pt.y = yo - round( penWidthIn * sin(M_PI_2 + alpha + theta) );
}
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
/* Outside angle point */
switch(_joint) {
case PS_JOIN_MITER :
miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2));
pt.x = xo + round( miterWidth * cos(theta + alpha / 2) );
pt.y = yo + round( miterWidth * sin(theta + alpha / 2) );
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
break;
case PS_JOIN_BEVEL :
if(alpha > 0) {
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
}
else {
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
if(alpha > 0) {
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
else {
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
break;
case PS_JOIN_ROUND :
default :
if(alpha > 0) {
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
}
else {
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
pt.x = xo + round( penWidthOut * cos(theta + alpha / 2) );
pt.y = yo + round( penWidthOut * sin(theta + alpha / 2) );
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
if(alpha > 0) {
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
else {
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
}
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
break;
}
}
}
type = add_points( pNewPath, pUpPath->points, pUpPath->count, PT_LINETO );
type[0] = PT_MOVETO;
reverse_points( pDownPath->points, pDownPath->count );
type = add_points( pNewPath, pDownPath->points, pDownPath->count, PT_LINETO );
if (pStrokes[i]->flags[pStrokes[i]->count - 1] & PT_CLOSEFIGURE) type[0] = PT_MOVETO;
free_gdi_path( pStrokes[i] );
free_gdi_path( pUpPath );
free_gdi_path( pDownPath );
}
free( pStrokes );
free_gdi_path( flat_path );
return pNewPath;
}
/*******************************************************************
* NtGdiStrokeAndFillPath (win32u.@)
*/
BOOL WINAPI NtGdiStrokeAndFillPath( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pStrokeAndFillPath );
ret = physdev->funcs->pStrokeAndFillPath( physdev );
release_dc_ptr( dc );
}
return ret;
}
/*******************************************************************
* NtGdiStrokePath (win32u.@)
*/
BOOL WINAPI NtGdiStrokePath( HDC hdc )
{
BOOL ret = FALSE;
DC *dc = get_dc_ptr( hdc );
if (dc)
{
PHYSDEV physdev = GET_DC_PHYSDEV( dc, pStrokePath );
ret = physdev->funcs->pStrokePath( physdev );
release_dc_ptr( dc );
}
return ret;
}
/*******************************************************************
* NtGdiWidenPath (win32u.@)
*/
BOOL WINAPI NtGdiWidenPath( HDC hdc )
{
struct gdi_path *path;
BOOL ret = FALSE;
DC *dc;
if (!(dc = get_dc_ptr( hdc ))) return FALSE;
if (!dc->path) RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
else if ((path = PATH_WidenPath( dc )))
{
free_gdi_path( dc->path );
dc->path = path;
ret = TRUE;
}
release_dc_ptr( dc );
return ret;
}
/***********************************************************************
* null driver fallback implementations
*/
BOOL CDECL nulldrv_BeginPath( PHYSDEV dev )
{
DC *dc = get_nulldrv_dc( dev );
struct path_physdev *physdev;
struct gdi_path *path = alloc_gdi_path(0);
if (!path) return FALSE;
if (!path_driver.pCreateDC( &dc->physDev, NULL, NULL, NULL ))
{
free_gdi_path( path );
return FALSE;
}
physdev = get_path_physdev( find_dc_driver( dc, &path_driver ));
physdev->path = path;
path->pos = dc->attr->cur_pos;
lp_to_dp( dc, &path->pos, 1 );
if (dc->path) free_gdi_path( dc->path );
dc->path = NULL;
return TRUE;
}
BOOL CDECL nulldrv_EndPath( PHYSDEV dev )
{
RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
return FALSE;
}
BOOL CDECL nulldrv_AbortPath( PHYSDEV dev )
{
DC *dc = get_nulldrv_dc( dev );
if (dc->path) free_gdi_path( dc->path );
dc->path = NULL;
return TRUE;
}
BOOL CDECL nulldrv_CloseFigure( PHYSDEV dev )
{
RtlSetLastWin32Error( ERROR_CAN_NOT_COMPLETE );
return FALSE;
}
BOOL CDECL nulldrv_FillPath( PHYSDEV dev )
{
if (NtGdiGetPath( dev->hdc, NULL, NULL, 0 ) == -1) return FALSE;
NtGdiAbortPath( dev->hdc );
return TRUE;
}
BOOL CDECL nulldrv_StrokeAndFillPath( PHYSDEV dev )
{
if (NtGdiGetPath( dev->hdc, NULL, NULL, 0 ) == -1) return FALSE;
NtGdiAbortPath( dev->hdc );
return TRUE;
}
BOOL CDECL nulldrv_StrokePath( PHYSDEV dev )
{
if (NtGdiGetPath( dev->hdc, NULL, NULL, 0 ) == -1) return FALSE;
NtGdiAbortPath( dev->hdc );
return TRUE;
}
const struct gdi_dc_funcs path_driver =
{
NULL, /* pAbortDoc */
pathdrv_AbortPath, /* pAbortPath */
NULL, /* pAlphaBlend */
pathdrv_AngleArc, /* pAngleArc */
pathdrv_Arc, /* pArc */
pathdrv_ArcTo, /* pArcTo */
pathdrv_BeginPath, /* pBeginPath */
NULL, /* pBlendImage */
pathdrv_Chord, /* pChord */
pathdrv_CloseFigure, /* pCloseFigure */
NULL, /* pCreateCompatibleDC */
pathdrv_CreateDC, /* pCreateDC */
pathdrv_DeleteDC, /* pDeleteDC */
NULL, /* pDeleteObject */
pathdrv_Ellipse, /* pEllipse */
NULL, /* pEndDoc */
NULL, /* pEndPage */
pathdrv_EndPath, /* pEndPath */
NULL, /* pEnumFonts */
NULL, /* pExtEscape */
NULL, /* pExtFloodFill */
pathdrv_ExtTextOut, /* pExtTextOut */
NULL, /* pFillPath */
NULL, /* pFillRgn */
NULL, /* pFontIsLinked */
NULL, /* pFrameRgn */
NULL, /* pGetBoundsRect */
NULL, /* pGetCharABCWidths */
NULL, /* pGetCharABCWidthsI */
NULL, /* pGetCharWidth */
NULL, /* pGetCharWidthInfo */
NULL, /* pGetDeviceCaps */
NULL, /* pGetDeviceGammaRamp */
NULL, /* pGetFontData */
NULL, /* pGetFontRealizationInfo */
NULL, /* pGetFontUnicodeRanges */
NULL, /* pGetGlyphIndices */
NULL, /* pGetGlyphOutline */
NULL, /* pGetICMProfile */
NULL, /* pGetImage */
NULL, /* pGetKerningPairs */
NULL, /* pGetNearestColor */
NULL, /* pGetOutlineTextMetrics */
NULL, /* pGetPixel */
NULL, /* pGetSystemPaletteEntries */
NULL, /* pGetTextCharsetInfo */
NULL, /* pGetTextExtentExPoint */
NULL, /* pGetTextExtentExPointI */
NULL, /* pGetTextFace */
NULL, /* pGetTextMetrics */
NULL, /* pGradientFill */
NULL, /* pInvertRgn */
pathdrv_LineTo, /* pLineTo */
pathdrv_MoveTo, /* pMoveTo */
NULL, /* pPaintRgn */
NULL, /* pPatBlt */
pathdrv_Pie, /* pPie */
pathdrv_PolyBezier, /* pPolyBezier */
pathdrv_PolyBezierTo, /* pPolyBezierTo */
pathdrv_PolyDraw, /* pPolyDraw */
pathdrv_PolyPolygon, /* pPolyPolygon */
pathdrv_PolyPolyline, /* pPolyPolyline */
pathdrv_PolylineTo, /* pPolylineTo */
NULL, /* pPutImage */
NULL, /* pRealizeDefaultPalette */
NULL, /* pRealizePalette */
pathdrv_Rectangle, /* pRectangle */
NULL, /* pResetDC */
pathdrv_RoundRect, /* pRoundRect */
NULL, /* pSelectBitmap */
NULL, /* pSelectBrush */
NULL, /* pSelectFont */
NULL, /* pSelectPen */
NULL, /* pSetBkColor */
NULL, /* pSetBoundsRect */
NULL, /* pSetDCBrushColor */
NULL, /* pSetDCPenColor */
NULL, /* pSetDIBitsToDevice */
NULL, /* pSetDeviceClipping */
NULL, /* pSetDeviceGammaRamp */
NULL, /* pSetPixel */
NULL, /* pSetTextColor */
NULL, /* pStartDoc */
NULL, /* pStartPage */
NULL, /* pStretchBlt */
NULL, /* pStretchDIBits */
NULL, /* pStrokeAndFillPath */
NULL, /* pStrokePath */
NULL, /* pUnrealizePalette */
NULL, /* pD3DKMTCheckVidPnExclusiveOwnership */
NULL, /* pD3DKMTCloseAdapter */
NULL, /* pD3DKMTOpenAdapterFromLuid */
NULL, /* pD3DKMTQueryVideoMemoryInfo */
NULL, /* pD3DKMTSetVidPnSourceOwner */
GDI_PRIORITY_PATH_DRV /* priority */
};