wine/dlls/ntdll/large_int.c
Alexandre Julliard e055a3ee05 configure: Require 64-bit compare-and-swap support from gcc.
Wine-Bug: https://bugs.winehq.org/show_bug.cgi?id=49191
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
2020-09-28 17:03:57 +02:00

956 lines
28 KiB
C

/*
* Large integer functions
*
* Copyright 2000 Alexandre Julliard
* Copyright 2003 Thomas Mertes
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <stdarg.h>
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winternl.h"
#include "wine/asm.h"
#ifndef _WIN64
/*
* Note: we use LONGLONG instead of LARGE_INTEGER, because
* the latter is a structure and the calling convention for
* returning a structure would not be binary-compatible.
*
* FIXME: for platforms that don't have a native LONGLONG type,
* we should define LONGLONG as a structure similar to LARGE_INTEGER
* and do everything by hand. You are welcome to do it...
*/
/******************************************************************************
* RtlLargeIntegerAdd (NTDLL.@)
*
* Add two 64 bit integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to add to a.
*
* RETURNS
* The sum of a and b.
*/
LONGLONG WINAPI RtlLargeIntegerAdd( LONGLONG a, LONGLONG b )
{
return a + b;
}
/******************************************************************************
* RtlLargeIntegerSubtract (NTDLL.@)
*
* Subtract two 64 bit integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to subtract from a.
*
* RETURNS
* The difference of a and b.
*/
LONGLONG WINAPI RtlLargeIntegerSubtract( LONGLONG a, LONGLONG b )
{
return a - b;
}
/******************************************************************************
* RtlLargeIntegerNegate (NTDLL.@)
*
* Negate a 64 bit integer.
*
* PARAMS
* a [I] Initial number.
*
* RETURNS
* The value of a negated.
*/
LONGLONG WINAPI RtlLargeIntegerNegate( LONGLONG a )
{
return -a;
}
/******************************************************************************
* RtlLargeIntegerShiftLeft (NTDLL.@)
*
* Perform a shift left on a 64 bit integer.
*
* PARAMS
* a [I] Initial number.
* count [I] Number of bits to shift by
*
* RETURNS
* The value of a following the shift.
*/
LONGLONG WINAPI RtlLargeIntegerShiftLeft( LONGLONG a, INT count )
{
return a << count;
}
/******************************************************************************
* RtlLargeIntegerShiftRight (NTDLL.@)
*
* Perform a shift right on a 64 bit integer.
*
* PARAMS
* a [I] Initial number.
* count [I] Number of bits to shift by
*
* RETURNS
* The value of a following the shift.
*/
LONGLONG WINAPI RtlLargeIntegerShiftRight( LONGLONG a, INT count )
{
return (ULONGLONG)a >> count;
}
/******************************************************************************
* RtlLargeIntegerArithmeticShift (NTDLL.@)
*
* Perform an arithmetic shift right on a 64 bit integer.
*
* PARAMS
* a [I] Initial number.
* count [I] Number of bits to shift by
*
* RETURNS
* The value of a following the shift.
*/
LONGLONG WINAPI RtlLargeIntegerArithmeticShift( LONGLONG a, INT count )
{
/* FIXME: gcc does arithmetic shift here, but it may not be true on all platforms */
return a >> count;
}
/******************************************************************************
* RtlLargeIntegerDivide (NTDLL.@)
*
* Divide one 64 bit unsigned integer by another, with remainder.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by
* rem [O] Destination for remainder
*
* RETURNS
* The dividend of a and b. If rem is non-NULL it is set to the remainder.
*
* FIXME
* Should it be signed division instead?
*/
ULONGLONG WINAPI RtlLargeIntegerDivide( ULONGLONG a, ULONGLONG b, ULONGLONG *rem )
{
ULONGLONG ret = a / b;
if (rem) *rem = a - ret * b;
return ret;
}
/******************************************************************************
* RtlConvertLongToLargeInteger (NTDLL.@)
*
* Convert a 32 bit integer into 64 bits.
*
* PARAMS
* a [I] Number to convert
*
* RETURNS
* a.
*/
LONGLONG WINAPI RtlConvertLongToLargeInteger( LONG a )
{
return a;
}
/******************************************************************************
* RtlConvertUlongToLargeInteger (NTDLL.@)
*
* Convert a 32 bit unsigned integer into 64 bits.
*
* PARAMS
* a [I] Number to convert
*
* RETURNS
* a.
*/
ULONGLONG WINAPI RtlConvertUlongToLargeInteger( ULONG a )
{
return a;
}
/******************************************************************************
* RtlEnlargedIntegerMultiply (NTDLL.@)
*
* Multiply two integers giving a 64 bit integer result.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to multiply a by.
*
* RETURNS
* The product of a and b.
*/
LONGLONG WINAPI RtlEnlargedIntegerMultiply( INT a, INT b )
{
return (LONGLONG)a * b;
}
/******************************************************************************
* RtlEnlargedUnsignedMultiply (NTDLL.@)
*
* Multiply two unsigned integers giving a 64 bit unsigned integer result.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to multiply a by.
*
* RETURNS
* The product of a and b.
*/
ULONGLONG WINAPI RtlEnlargedUnsignedMultiply( UINT a, UINT b )
{
return (ULONGLONG)a * b;
}
/******************************************************************************
* RtlEnlargedUnsignedDivide (NTDLL.@)
*
* Divide one 64 bit unsigned integer by a 32 bit unsigned integer, with remainder.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by
* remptr [O] Destination for remainder
*
* RETURNS
* The dividend of a and b. If remptr is non-NULL it is set to the remainder.
*/
UINT WINAPI RtlEnlargedUnsignedDivide( ULONGLONG a, UINT b, UINT *remptr )
{
#if defined(__i386__) && defined(__GNUC__)
UINT ret, rem;
__asm__("divl %4"
: "=a" (ret), "=d" (rem)
: "0" ((UINT)a), "1" ((UINT)(a >> 32)), "g" (b) );
if (remptr) *remptr = rem;
return ret;
#else
UINT ret = a / b;
if (remptr) *remptr = a % b;
return ret;
#endif
}
/******************************************************************************
* RtlExtendedLargeIntegerDivide (NTDLL.@)
*
* Divide one 64 bit integer by a 32 bit integer, with remainder.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by
* rem [O] Destination for remainder
*
* RETURNS
* The dividend of a and b. If rem is non-NULL it is set to the remainder.
*/
LONGLONG WINAPI RtlExtendedLargeIntegerDivide( LONGLONG a, INT b, INT *rem )
{
LONGLONG ret = a / b;
if (rem) *rem = a - b * ret;
return ret;
}
/******************************************************************************
* RtlExtendedIntegerMultiply (NTDLL.@)
*
* Multiply one 64 bit integer by another 32 bit integer.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to multiply a by.
*
* RETURNS
* The product of a and b.
*/
LONGLONG WINAPI RtlExtendedIntegerMultiply( LONGLONG a, INT b )
{
return a * b;
}
/******************************************************************************
* RtlExtendedMagicDivide (NTDLL.@)
*
* Allows replacing a division by a longlong constant with a multiplication by
* the inverse constant.
*
* RETURNS
* (dividend * inverse_divisor) >> (64 + shift)
*
* NOTES
* If the divisor of a division is constant, the constants inverse_divisor and
* shift must be chosen such that inverse_divisor = 2^(64 + shift) / divisor.
* Then we have RtlExtendedMagicDivide(dividend,inverse_divisor,shift) ==
* dividend * inverse_divisor / 2^(64 + shift) == dividend / divisor.
*
* The Parameter inverse_divisor although defined as LONGLONG is used as
* ULONGLONG.
*/
#define LOWER_32(A) ((A) & 0xffffffff)
#define UPPER_32(A) ((A) >> 32)
LONGLONG WINAPI RtlExtendedMagicDivide(
LONGLONG dividend, /* [I] Dividend to be divided by the constant divisor */
LONGLONG inverse_divisor, /* [I] Constant computed manually as 2^(64+shift) / divisor */
INT shift) /* [I] Constant shift chosen to make inverse_divisor as big as possible for 64 bits */
{
ULONGLONG dividend_high;
ULONGLONG dividend_low;
ULONGLONG inverse_divisor_high;
ULONGLONG inverse_divisor_low;
ULONGLONG ah_bl;
ULONGLONG al_bh;
LONGLONG result;
int positive;
if (dividend < 0) {
dividend_high = UPPER_32((ULONGLONG) -dividend);
dividend_low = LOWER_32((ULONGLONG) -dividend);
positive = 0;
} else {
dividend_high = UPPER_32((ULONGLONG) dividend);
dividend_low = LOWER_32((ULONGLONG) dividend);
positive = 1;
} /* if */
inverse_divisor_high = UPPER_32((ULONGLONG) inverse_divisor);
inverse_divisor_low = LOWER_32((ULONGLONG) inverse_divisor);
ah_bl = dividend_high * inverse_divisor_low;
al_bh = dividend_low * inverse_divisor_high;
result = (LONGLONG) ((dividend_high * inverse_divisor_high +
UPPER_32(ah_bl) +
UPPER_32(al_bh) +
UPPER_32(LOWER_32(ah_bl) + LOWER_32(al_bh) +
UPPER_32(dividend_low * inverse_divisor_low))) >> shift);
if (positive) {
return result;
} else {
return -result;
} /* if */
}
/*************************************************************************
* RtlInterlockedCompareExchange64 (NTDLL.@)
*/
LONGLONG WINAPI RtlInterlockedCompareExchange64( LONGLONG *dest, LONGLONG xchg, LONGLONG compare )
{
return __sync_val_compare_and_swap( dest, compare, xchg );
}
#endif /* _WIN64 */
/******************************************************************************
* RtlLargeIntegerToChar [NTDLL.@]
*
* Convert an unsigned large integer to a character string.
*
* RETURNS
* Success: STATUS_SUCCESS. str contains the converted number
* Failure: STATUS_INVALID_PARAMETER, if base is not 0, 2, 8, 10 or 16.
* STATUS_BUFFER_OVERFLOW, if str would be larger than length.
* STATUS_ACCESS_VIOLATION, if str is NULL.
*
* NOTES
* Instead of base 0 it uses 10 as base.
* Writes at most length characters to the string str.
* Str is '\0' terminated when length allows it.
* When str fits exactly in length characters the '\0' is omitted.
* If value_ptr is NULL it crashes, as the native function does.
*
* DIFFERENCES
* - Accept base 0 as 10 instead of crashing as native function does.
* - The native function does produce garbage or STATUS_BUFFER_OVERFLOW for
* base 2, 8 and 16 when the value is larger than 0xFFFFFFFF.
*/
NTSTATUS WINAPI RtlLargeIntegerToChar(
const ULONGLONG *value_ptr, /* [I] Pointer to the value to be converted */
ULONG base, /* [I] Number base for conversion (allowed 0, 2, 8, 10 or 16) */
ULONG length, /* [I] Length of the str buffer in bytes */
PCHAR str) /* [O] Destination for the converted value */
{
ULONGLONG value = *value_ptr;
CHAR buffer[65];
PCHAR pos;
CHAR digit;
ULONG len;
if (base == 0) {
base = 10;
} else if (base != 2 && base != 8 && base != 10 && base != 16) {
return STATUS_INVALID_PARAMETER;
} /* if */
pos = &buffer[64];
*pos = '\0';
do {
pos--;
digit = value % base;
value = value / base;
if (digit < 10) {
*pos = '0' + digit;
} else {
*pos = 'A' + digit - 10;
} /* if */
} while (value != 0L);
len = &buffer[64] - pos;
if (len > length) {
return STATUS_BUFFER_OVERFLOW;
} else if (str == NULL) {
return STATUS_ACCESS_VIOLATION;
} else if (len == length) {
memcpy(str, pos, len);
} else {
memcpy(str, pos, len + 1);
} /* if */
return STATUS_SUCCESS;
}
/**************************************************************************
* RtlInt64ToUnicodeString (NTDLL.@)
*
* Convert a large unsigned integer to a '\0' terminated unicode string.
*
* RETURNS
* Success: STATUS_SUCCESS. str contains the converted number
* Failure: STATUS_INVALID_PARAMETER, if base is not 0, 2, 8, 10 or 16.
* STATUS_BUFFER_OVERFLOW, if str is too small to hold the string
* (with the '\0' termination). In this case str->Length
* is set to the length, the string would have (which can
* be larger than the MaximumLength).
*
* NOTES
* Instead of base 0 it uses 10 as base.
* If str is NULL it crashes, as the native function does.
*
* DIFFERENCES
* - Accept base 0 as 10 instead of crashing as native function does.
* - Do not return STATUS_BUFFER_OVERFLOW when the string is long enough.
* The native function does this when the string would be longer than 31
* characters even when the string parameter is long enough.
* - The native function does produce garbage or STATUS_BUFFER_OVERFLOW for
* base 2, 8 and 16 when the value is larger than 0xFFFFFFFF.
*/
NTSTATUS WINAPI RtlInt64ToUnicodeString(
ULONGLONG value, /* [I] Value to be converted */
ULONG base, /* [I] Number base for conversion (allowed 0, 2, 8, 10 or 16) */
UNICODE_STRING *str) /* [O] Destination for the converted value */
{
WCHAR buffer[65];
PWCHAR pos;
WCHAR digit;
if (base == 0) {
base = 10;
} else if (base != 2 && base != 8 && base != 10 && base != 16) {
return STATUS_INVALID_PARAMETER;
} /* if */
pos = &buffer[64];
*pos = '\0';
do {
pos--;
digit = value % base;
value = value / base;
if (digit < 10) {
*pos = '0' + digit;
} else {
*pos = 'A' + digit - 10;
} /* if */
} while (value != 0L);
str->Length = (&buffer[64] - pos) * sizeof(WCHAR);
if (str->Length >= str->MaximumLength) {
return STATUS_BUFFER_OVERFLOW;
} else {
memcpy(str->Buffer, pos, str->Length + sizeof(WCHAR));
} /* if */
return STATUS_SUCCESS;
}
#ifdef __i386__
/* those builtin functions use stdcall calling convention, but compilers reference them without stdcall declarations */
#if defined(__MINGW32__) || defined(_MSC_VER)
LONGLONG WINAPI _alldiv( LONGLONG a, LONGLONG b ) asm(__ASM_NAME("_alldiv"));
LONGLONG WINAPI _allmul( LONGLONG a, LONGLONG b ) asm(__ASM_NAME("_allmul"));
LONGLONG WINAPI _allrem( LONGLONG a, LONGLONG b ) asm(__ASM_NAME("_allrem"));
ULONGLONG WINAPI _aulldiv( ULONGLONG a, ULONGLONG b ) asm(__ASM_NAME("_aulldiv"));
ULONGLONG WINAPI _aullrem( ULONGLONG a, ULONGLONG b ) asm(__ASM_NAME("_aullrem"));
#endif
static ULONGLONG udivmod(ULONGLONG a, ULONGLONG b, ULONGLONG *rem)
{
const ULARGE_INTEGER n = { .QuadPart = a };
const ULARGE_INTEGER d = { .QuadPart = b };
DWORD sr, carry, index;
ULARGE_INTEGER q, r;
const unsigned n_uword_bits = 32;
const unsigned n_udword_bits = 64;
/* special cases, X is unknown, K != 0 */
if (n.u.HighPart == 0)
{
if (d.u.HighPart == 0)
{
/* 0 X / 0 X */
if (rem) *rem = n.u.LowPart % d.u.LowPart;
return n.u.LowPart / d.u.LowPart;
}
/* 0 X / K X */
if (rem) *rem = n.u.LowPart;
return 0;
}
/* n.u.HighPart != 0 */
if (d.u.LowPart == 0)
{
if (d.u.HighPart == 0)
{
/* K X / 0 0 */
if (rem) *rem = n.u.HighPart % d.u.LowPart;
return n.u.HighPart / d.u.LowPart;
}
/* d.u.HighPart != 0 */
if (n.u.LowPart == 0) {
/* K 0 / K 0 */
if (rem)
{
r.u.HighPart = n.u.HighPart % d.u.HighPart;
r.u.LowPart = 0;
*rem = r.QuadPart;
}
return n.u.HighPart / d.u.HighPart;
}
/* K K / K 0 */
if ((d.u.HighPart & (d.u.HighPart - 1)) == 0) /* if d is a power of 2 */
{
if (rem)
{
r.u.LowPart = n.u.LowPart;
r.u.HighPart = n.u.HighPart & (d.u.HighPart - 1);
*rem = r.QuadPart;
}
BitScanForward(&index, d.u.HighPart);
return n.u.HighPart >> index;
}
/* K K / K 0 */
BitScanReverse(&index, d.u.HighPart);
BitScanReverse(&sr, n.u.HighPart);
sr -= index;
/* 0 <= sr <= n_uword_bits - 2 or sr large */
if (sr > n_uword_bits - 2)
{
if (rem) *rem = n.QuadPart;
return 0;
}
++sr;
/* 1 <= sr <= n_uword_bits - 1 */
/* q.QuadPart = n.QuadPart << (n_udword_bits - sr); */
q.u.LowPart = 0;
q.u.HighPart = n.u.LowPart << (n_uword_bits - sr);
/* r.QuadPart = n.QuadPart >> sr; */
r.u.HighPart = n.u.HighPart >> sr;
r.u.LowPart = (n.u.HighPart << (n_uword_bits - sr)) | (n.u.LowPart >> sr);
}
else /* d.u.LowPart != 0 */
{
if (d.u.HighPart == 0)
{
/* K X / 0 K */
if ((d.u.LowPart & (d.u.LowPart - 1)) == 0) /* if d is a power of 2 */
{
if (rem) *rem = n.u.LowPart & (d.u.LowPart - 1);
if (d.u.LowPart == 1) return n.QuadPart;
BitScanForward(&sr, d.u.LowPart);
q.u.HighPart = n.u.HighPart >> sr;
q.u.LowPart = (n.u.HighPart << (n_uword_bits - sr)) | (n.u.LowPart >> sr);
return q.QuadPart;
}
BitScanReverse(&index, d.u.LowPart);
BitScanReverse(&sr, n.u.HighPart);
sr = 1 + n_uword_bits + sr - index;
/* 2 <= sr <= n_udword_bits - 1
* q.QuadPart = n.QuadPart << (n_udword_bits - sr);
* r.QuadPart = n.QuadPart >> sr; */
if (sr == n_uword_bits)
{
q.u.LowPart = 0;
q.u.HighPart = n.u.LowPart;
r.u.HighPart = 0;
r.u.LowPart = n.u.HighPart;
}
else if (sr < n_uword_bits) /* 2 <= sr <= n_uword_bits - 1 */
{
q.u.LowPart = 0;
q.u.HighPart = n.u.LowPart << (n_uword_bits - sr);
r.u.HighPart = n.u.HighPart >> sr;
r.u.LowPart = (n.u.HighPart << (n_uword_bits - sr)) | (n.u.LowPart >> sr);
}
else /* n_uword_bits + 1 <= sr <= n_udword_bits - 1 */
{
q.u.LowPart = n.u.LowPart << (n_udword_bits - sr);
q.u.HighPart = (n.u.HighPart << (n_udword_bits - sr)) |
(n.u.LowPart >> (sr - n_uword_bits));
r.u.HighPart = 0;
r.u.LowPart = n.u.HighPart >> (sr - n_uword_bits);
}
}
else
{
/* K X / K K */
BitScanReverse(&index, d.u.HighPart);
BitScanReverse(&sr, n.u.HighPart);
sr -= index;
/* 0 <= sr <= n_uword_bits - 1 or sr large */
if (sr > n_uword_bits - 1)
{
if (rem) *rem = n.QuadPart;
return 0;
}
++sr;
/* 1 <= sr <= n_uword_bits
* q.QuadPart = n.QuadPart << (n_udword_bits - sr); */
q.u.LowPart = 0;
if (sr == n_uword_bits)
{
q.u.HighPart = n.u.LowPart;
r.u.HighPart = 0;
r.u.LowPart = n.u.HighPart;
}
else
{
q.u.HighPart = n.u.LowPart << (n_uword_bits - sr);
r.u.HighPart = n.u.HighPart >> sr;
r.u.LowPart = (n.u.HighPart << (n_uword_bits - sr)) | (n.u.LowPart >> sr);
}
}
}
/* Not a special case
* q and r are initialized with:
* q.QuadPart = n.QuadPart << (n_udword_bits - sr);
* r.QuadPart = n.QuadPart >> sr;
* 1 <= sr <= n_udword_bits - 1 */
carry = 0;
for (; sr > 0; --sr)
{
LONGLONG s;
/* r:q = ((r:q) << 1) | carry */
r.u.HighPart = (r.u.HighPart << 1) | (r.u.LowPart >> (n_uword_bits - 1));
r.u.LowPart = (r.u.LowPart << 1) | (q.u.HighPart >> (n_uword_bits - 1));
q.u.HighPart = (q.u.HighPart << 1) | (q.u.LowPart >> (n_uword_bits - 1));
q.u.LowPart = (q.u.LowPart << 1) | carry;
/* if (r.QuadPart >= d.QuadPart)
* {
* r.QuadPart -= d.QuadPart;
* carry = 1;
* }
*/
s = (LONGLONG)(d.QuadPart - r.QuadPart - 1) >> (n_udword_bits - 1);
carry = s & 1;
r.QuadPart -= d.QuadPart & s;
}
q.QuadPart = (q.QuadPart << 1) | carry;
if (rem) *rem = r.QuadPart;
return q.QuadPart;
}
/******************************************************************************
* _alldiv (NTDLL.@)
*
* Divide two 64 bit unsigned integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by.
*
* RETURNS
* The dividend of a and b.
*/
LONGLONG WINAPI _alldiv( LONGLONG a, LONGLONG b )
{
LONGLONG s_a = a >> 63; /* s_a = a < 0 ? -1 : 0 */
LONGLONG s_b = b >> 63; /* s_b = b < 0 ? -1 : 0 */
a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
s_a ^= s_b; /* sign of quotient */
return (udivmod(a, b, NULL) ^ s_a) - s_a; /* negate if s_a == -1 */
}
/******************************************************************************
* _allmul (NTDLL.@)
*
* Multiply two 64 bit integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to multiply a by.
*
* RETURNS
* The product of a and b.
*/
LONGLONG WINAPI _allmul( LONGLONG a, LONGLONG b )
{
LARGE_INTEGER x = { .QuadPart = a };
LARGE_INTEGER y = { .QuadPart = b };
LARGE_INTEGER r;
unsigned int t;
const int bits_in_word_2 = 16;
const unsigned int lower_mask = ~0u >> bits_in_word_2;
r.u.LowPart = (x.u.LowPart & lower_mask) * (y.u.LowPart & lower_mask);
t = r.u.LowPart >> bits_in_word_2;
r.u.LowPart &= lower_mask;
t += (x.u.LowPart >> bits_in_word_2) * (y.u.LowPart & lower_mask);
r.u.LowPart += (t & lower_mask) << bits_in_word_2;
r.u.HighPart = t >> bits_in_word_2;
t = r.u.LowPart >> bits_in_word_2;
r.u.LowPart &= lower_mask;
t += (y.u.LowPart >> bits_in_word_2) * (x.u.LowPart & lower_mask);
r.u.LowPart += (t & lower_mask) << bits_in_word_2;
r.u.HighPart += t >> bits_in_word_2;
r.u.HighPart += (x.u.LowPart >> bits_in_word_2) * (y.u.LowPart >> bits_in_word_2);
r.u.HighPart += x.u.HighPart * y.u.LowPart + x.u.LowPart * y.u.HighPart;
return r.QuadPart;
}
/******************************************************************************
* _allrem (NTDLL.@)
*
* Calculate the remainder after dividing two 64 bit integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by.
*
* RETURNS
* The remainder of a divided by b.
*/
LONGLONG WINAPI _allrem( LONGLONG a, LONGLONG b )
{
LONGLONG s = b >> 63; /* s = b < 0 ? -1 : 0 */
ULONGLONG r;
b = (b ^ s) - s; /* negate if s == -1 */
s = a >> 63; /* s = a < 0 ? -1 : 0 */
a = (a ^ s) - s; /* negate if s == -1 */
udivmod(a, b, &r);
return ((LONGLONG)r ^ s) - s; /* negate if s == -1 */
}
/******************************************************************************
* _aulldiv (NTDLL.@)
*
* Divide two 64 bit unsigned integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by.
*
* RETURNS
* The dividend of a and b.
*/
ULONGLONG WINAPI _aulldiv( ULONGLONG a, ULONGLONG b )
{
return udivmod(a, b, NULL);
}
/******************************************************************************
* _allshl (NTDLL.@)
*
* Shift a 64 bit integer to the left.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to shift a by to the left.
*
* RETURNS
* The left-shifted value.
*/
LONGLONG WINAPI _allshl( LONGLONG a, LONG b )
{
return a << b;
}
/******************************************************************************
* _allshr (NTDLL.@)
*
* Shift a 64 bit integer to the right.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to shift a by to the right.
*
* RETURNS
* The right-shifted value.
*/
LONGLONG WINAPI _allshr( LONGLONG a, LONG b )
{
return a >> b;
}
/******************************************************************************
* _alldvrm (NTDLL.@)
*
* Divide two 64 bit integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by.
*
* RETURNS
* Returns the quotient of a and b in edx:eax.
* Returns the remainder of a and b in ebx:ecx.
*/
__ASM_GLOBAL_FUNC( _alldvrm,
"pushl %ebp\n\t"
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t")
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t")
"movl %esp,%ebp\n\t"
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t")
"pushl 20(%ebp)\n\t"
"pushl 16(%ebp)\n\t"
"pushl 12(%ebp)\n\t"
"pushl 8(%ebp)\n\t"
"call " __ASM_NAME("_allrem") "\n\t"
"movl %edx,%ebx\n\t"
"pushl %eax\n\t"
"pushl 20(%ebp)\n\t"
"pushl 16(%ebp)\n\t"
"pushl 12(%ebp)\n\t"
"pushl 8(%ebp)\n\t"
"call " __ASM_NAME("_alldiv") "\n\t"
"popl %ecx\n\t"
"leave\n\t"
__ASM_CFI(".cfi_def_cfa %esp,4\n\t")
__ASM_CFI(".cfi_same_value %ebp\n\t")
"ret $16" )
/******************************************************************************
* _aullrem (NTDLL.@)
*
* Calculate the remainder after dividing two 64 bit unsigned integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by.
*
* RETURNS
* The remainder of a divided by b.
*/
ULONGLONG WINAPI _aullrem( ULONGLONG a, ULONGLONG b )
{
ULONGLONG r;
udivmod(a, b, &r);
return r;
}
/******************************************************************************
* _aullshr (NTDLL.@)
*
* Shift a 64 bit unsigned integer to the right.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to shift a by to the right.
*
* RETURNS
* The right-shifted value.
*/
ULONGLONG WINAPI _aullshr( ULONGLONG a, LONG b )
{
return a >> b;
}
/******************************************************************************
* _aulldvrm (NTDLL.@)
*
* Divide two 64 bit unsigned integers.
*
* PARAMS
* a [I] Initial number.
* b [I] Number to divide a by.
*
* RETURNS
* Returns the quotient of a and b in edx:eax.
* Returns the remainder of a and b in ebx:ecx.
*/
__ASM_GLOBAL_FUNC( _aulldvrm,
"pushl %ebp\n\t"
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t")
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t")
"movl %esp,%ebp\n\t"
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t")
"pushl 20(%ebp)\n\t"
"pushl 16(%ebp)\n\t"
"pushl 12(%ebp)\n\t"
"pushl 8(%ebp)\n\t"
"call " __ASM_NAME("_aullrem") "\n\t"
"movl %edx,%ebx\n\t"
"pushl %eax\n\t"
"pushl 20(%ebp)\n\t"
"pushl 16(%ebp)\n\t"
"pushl 12(%ebp)\n\t"
"pushl 8(%ebp)\n\t"
"call " __ASM_NAME("_aulldiv") "\n\t"
"popl %ecx\n\t"
"leave\n\t"
__ASM_CFI(".cfi_def_cfa %esp,4\n\t")
__ASM_CFI(".cfi_same_value %ebp\n\t")
"ret $16" )
#endif /* __i386__ */