wine/dlls/rsaenh/mpi.c
2011-08-03 14:15:50 +02:00

4475 lines
103 KiB
C

/*
* dlls/rsaenh/mpi.c
* Multi Precision Integer functions
*
* Copyright 2004 Michael Jung
* Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* This file contains code from the LibTomCrypt cryptographic
* library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
* is in the public domain. The code in this file is tailored to
* special requirements. Take a look at http://libtomcrypt.org for the
* original version.
*/
#include <stdarg.h>
#include "windef.h"
#include "winbase.h"
#include "tomcrypt.h"
/* Known optimal configurations
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
*/
static const int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */
/* trim unused digits */
static void mp_clamp(mp_int *a);
/* compare |a| to |b| */
static int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* Counts the number of lsbs which are zero before the first zero bit */
static int mp_cnt_lsb(const mp_int *a);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
static int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
static int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
/* setups the montgomery reduction */
static int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
static int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
static int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* determines k value for 2k reduction */
static int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* used to setup the Barrett reduction for a given modulus b */
static int mp_reduce_setup(mp_int *a, const mp_int *b);
/* set to a digit */
static void mp_set(mp_int *a, mp_digit b);
/* b = a*a */
static int mp_sqr(const mp_int *a, mp_int *b);
/* c = a * a (mod b) */
static int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);
static void bn_reverse(unsigned char *s, int len);
static int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
static int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
static int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
static int s_mp_sqr(const mp_int *a, mp_int *b);
static int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
static int mp_exptmod_fast(const mp_int *G, const mp_int *X, mp_int *P, mp_int *Y, int mode);
static int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c);
static int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
static int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
/* grow as required */
static int mp_grow (mp_int * a, int size)
{
int i;
mp_digit *tmp;
/* if the alloc size is smaller alloc more ram */
if (a->alloc < size) {
/* ensure there are always at least MP_PREC digits extra on top */
size += (MP_PREC * 2) - (size % MP_PREC);
/* reallocate the array a->dp
*
* We store the return in a temporary variable
* in case the operation failed we don't want
* to overwrite the dp member of a.
*/
tmp = HeapReAlloc(GetProcessHeap(), 0, a->dp, sizeof (mp_digit) * size);
if (tmp == NULL) {
/* reallocation failed but "a" is still valid [can be freed] */
return MP_MEM;
}
/* reallocation succeeded so set a->dp */
a->dp = tmp;
/* zero excess digits */
i = a->alloc;
a->alloc = size;
for (; i < a->alloc; i++) {
a->dp[i] = 0;
}
}
return MP_OKAY;
}
/* b = a/2 */
static int mp_div_2(const mp_int * a, mp_int * b)
{
int x, res, oldused;
/* copy */
if (b->alloc < a->used) {
if ((res = mp_grow (b, a->used)) != MP_OKAY) {
return res;
}
}
oldused = b->used;
b->used = a->used;
{
register mp_digit r, rr, *tmpa, *tmpb;
/* source alias */
tmpa = a->dp + b->used - 1;
/* dest alias */
tmpb = b->dp + b->used - 1;
/* carry */
r = 0;
for (x = b->used - 1; x >= 0; x--) {
/* get the carry for the next iteration */
rr = *tmpa & 1;
/* shift the current digit, add in carry and store */
*tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
/* forward carry to next iteration */
r = rr;
}
/* zero excess digits */
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
}
}
b->sign = a->sign;
mp_clamp (b);
return MP_OKAY;
}
/* swap the elements of two integers, for cases where you can't simply swap the
* mp_int pointers around
*/
static void
mp_exch (mp_int * a, mp_int * b)
{
mp_int t;
t = *a;
*a = *b;
*b = t;
}
/* init a new mp_int */
static int mp_init (mp_int * a)
{
int i;
/* allocate memory required and clear it */
a->dp = HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit) * MP_PREC);
if (a->dp == NULL) {
return MP_MEM;
}
/* set the digits to zero */
for (i = 0; i < MP_PREC; i++) {
a->dp[i] = 0;
}
/* set the used to zero, allocated digits to the default precision
* and sign to positive */
a->used = 0;
a->alloc = MP_PREC;
a->sign = MP_ZPOS;
return MP_OKAY;
}
/* init an mp_init for a given size */
static int mp_init_size (mp_int * a, int size)
{
int x;
/* pad size so there are always extra digits */
size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit) * size);
if (a->dp == NULL) {
return MP_MEM;
}
/* set the members */
a->used = 0;
a->alloc = size;
a->sign = MP_ZPOS;
/* zero the digits */
for (x = 0; x < size; x++) {
a->dp[x] = 0;
}
return MP_OKAY;
}
/* clear one (frees) */
static void
mp_clear (mp_int * a)
{
int i;
/* only do anything if a hasn't been freed previously */
if (a->dp != NULL) {
/* first zero the digits */
for (i = 0; i < a->used; i++) {
a->dp[i] = 0;
}
/* free ram */
HeapFree(GetProcessHeap(), 0, a->dp);
/* reset members to make debugging easier */
a->dp = NULL;
a->alloc = a->used = 0;
a->sign = MP_ZPOS;
}
}
/* set to zero */
static void
mp_zero (mp_int * a)
{
a->sign = MP_ZPOS;
a->used = 0;
memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
}
/* b = |a|
*
* Simple function copies the input and fixes the sign to positive
*/
static int
mp_abs (const mp_int * a, mp_int * b)
{
int res;
/* copy a to b */
if (a != b) {
if ((res = mp_copy (a, b)) != MP_OKAY) {
return res;
}
}
/* force the sign of b to positive */
b->sign = MP_ZPOS;
return MP_OKAY;
}
/* computes the modular inverse via binary extended euclidean algorithm,
* that is c = 1/a mod b
*
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
static int
fast_mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, B, D;
int res, neg;
/* 2. [modified] b must be odd */
if (mp_iseven (b) == 1) {
return MP_VAL;
}
/* init all our temps */
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
return res;
}
/* x == modulus, y == value to invert */
if ((res = mp_copy (b, &x)) != MP_OKAY) {
goto __ERR;
}
/* we need y = |a| */
if ((res = mp_abs (a, &y)) != MP_OKAY) {
goto __ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR;
}
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR;
}
/* 4.2 if B is odd then */
if (mp_isodd (&B) == 1) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
}
}
/* B = B/2 */
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
}
/* 5.2 if D is odd then */
if (mp_isodd (&D) == 1) {
/* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* D = D/2 */
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR;
}
} else {
/* v - v - u, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == 0) {
goto top;
}
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto __ERR;
}
/* b is now the inverse */
neg = a->sign;
while (D.sign == MP_NEG) {
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
goto __ERR;
}
}
mp_exch (&D, c);
c->sign = neg;
res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
return res;
}
/* computes xR**-1 == x (mod N) via Montgomery Reduction
*
* This is an optimized implementation of montgomery_reduce
* which uses the comba method to quickly calculate the columns of the
* reduction.
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
static int
fast_mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
/* get old used count */
olduse = x->used;
/* grow a as required */
if (x->alloc < n->used + 1) {
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
return res;
}
}
/* first we have to get the digits of the input into
* an array of double precision words W[...]
*/
{
register mp_word *_W;
register mp_digit *tmpx;
/* alias for the W[] array */
_W = W;
/* alias for the digits of x*/
tmpx = x->dp;
/* copy the digits of a into W[0..a->used-1] */
for (ix = 0; ix < x->used; ix++) {
*_W++ = *tmpx++;
}
/* zero the high words of W[a->used..m->used*2] */
for (; ix < n->used * 2 + 1; ix++) {
*_W++ = 0;
}
}
/* now we proceed to zero successive digits
* from the least significant upwards
*/
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * m' mod b
*
* We avoid a double precision multiplication (which isn't required)
* by casting the value down to a mp_digit. Note this requires
* that W[ix-1] have the carry cleared (see after the inner loop)
*/
register mp_digit mu;
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
/* a = a + mu * m * b**i
*
* This is computed in place and on the fly. The multiplication
* by b**i is handled by offsetting which columns the results
* are added to.
*
* Note the comba method normally doesn't handle carries in the
* inner loop In this case we fix the carry from the previous
* column since the Montgomery reduction requires digits of the
* result (so far) [see above] to work. This is
* handled by fixing up one carry after the inner loop. The
* carry fixups are done in order so after these loops the
* first m->used words of W[] have the carries fixed
*/
{
register int iy;
register mp_digit *tmpn;
register mp_word *_W;
/* alias for the digits of the modulus */
tmpn = n->dp;
/* Alias for the columns set by an offset of ix */
_W = W + ix;
/* inner loop */
for (iy = 0; iy < n->used; iy++) {
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
}
}
/* now fix carry for next digit, W[ix+1] */
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
}
/* now we have to propagate the carries and
* shift the words downward [all those least
* significant digits we zeroed].
*/
{
register mp_digit *tmpx;
register mp_word *_W, *_W1;
/* nox fix rest of carries */
/* alias for current word */
_W1 = W + ix;
/* alias for next word, where the carry goes */
_W = W + ++ix;
for (; ix <= n->used * 2 + 1; ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
/* copy out, A = A/b**n
*
* The result is A/b**n but instead of converting from an
* array of mp_word to mp_digit than calling mp_rshd
* we just copy them in the right order
*/
/* alias for destination word */
tmpx = x->dp;
/* alias for shifted double precision result */
_W = W + n->used;
for (ix = 0; ix < n->used + 1; ix++) {
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
}
/* zero oldused digits, if the input a was larger than
* m->used+1 we'll have to clear the digits
*/
for (; ix < olduse; ix++) {
*tmpx++ = 0;
}
}
/* set the max used and clamp */
x->used = n->used + 1;
mp_clamp (x);
/* if A >= m then A = A - m */
if (mp_cmp_mag (x, n) != MP_LT) {
return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
/* Fast (comba) multiplier
*
* This is the fast column-array [comba] multiplier. It is
* designed to compute the columns of the product first
* then handle the carries afterwards. This has the effect
* of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.
*
* This has been modified to produce a variable number of
* digits of output so if say only a half-product is required
* you don't have to compute the upper half (a feature
* required for fast Barrett reduction).
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
static int
fast_s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
register mp_word _W;
/* grow the destination as required */
if (c->alloc < digs) {
if ((res = mp_grow (c, digs)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
pa = MIN(digs, a->used + b->used);
/* clear the carry */
_W = 0;
for (ix = 0; ix <= pa; ix++) {
int tx, ty;
int iy;
mp_digit *tmpx, *tmpy;
/* get offsets into the two bignums */
ty = MIN(b->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = b->dp + ty;
/* This is the number of times the loop will iterate, essentially it's
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* execute loop */
for (iz = 0; iz < iy; ++iz) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* store term */
W[ix] = ((mp_digit)_W) & MP_MASK;
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = c->used;
c->used = digs;
{
register mp_digit *tmpc;
tmpc = c->dp;
for (ix = 0; ix < digs; ix++) {
/* now extract the previous digit [below the carry] */
*tmpc++ = W[ix];
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
/* this is a modified version of fast_s_mul_digs that only produces
* output digits *above* digs. See the comments for fast_s_mul_digs
* to see how it works.
*
* This is used in the Barrett reduction since for one of the multiplications
* only the higher digits were needed. This essentially halves the work.
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
static int
fast_s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
mp_word _W;
/* grow the destination as required */
pa = a->used + b->used;
if (c->alloc < pa) {
if ((res = mp_grow (c, pa)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
pa = a->used + b->used;
_W = 0;
for (ix = digs; ix <= pa; ix++) {
int tx, ty, iy;
mp_digit *tmpx, *tmpy;
/* get offsets into the two bignums */
ty = MIN(b->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = b->dp + ty;
/* This is the number of times the loop will iterate, essentially it's
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* store term */
W[ix] = ((mp_digit)_W) & MP_MASK;
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = c->used;
c->used = pa;
{
register mp_digit *tmpc;
tmpc = c->dp + digs;
for (ix = digs; ix <= pa; ix++) {
/* now extract the previous digit [below the carry] */
*tmpc++ = W[ix];
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
/* fast squaring
*
* This is the comba method where the columns of the product
* are computed first then the carries are computed. This
* has the effect of making a very simple inner loop that
* is executed the most
*
* W2 represents the outer products and W the inner.
*
* A further optimizations is made because the inner
* products are of the form "A * B * 2". The *2 part does
* not need to be computed until the end which is good
* because 64-bit shifts are slow!
*
* Based on Algorithm 14.16 on pp.597 of HAC.
*
*/
/* the jist of squaring...
you do like mult except the offset of the tmpx [one that starts closer to zero]
can't equal the offset of tmpy. So basically you set up iy like before then you min it with
(ty-tx) so that it never happens. You double all those you add in the inner loop
After that loop you do the squares and add them in.
Remove W2 and don't memset W
*/
static int fast_s_mp_sqr (const mp_int * a, mp_int * b)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY], *tmpx;
mp_word W1;
/* grow the destination as required */
pa = a->used + a->used;
if (b->alloc < pa) {
if ((res = mp_grow (b, pa)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
W1 = 0;
for (ix = 0; ix <= pa; ix++) {
int tx, ty, iy;
mp_word _W;
mp_digit *tmpy;
/* clear counter */
_W = 0;
/* get offsets into the two bignums */
ty = MIN(a->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = a->dp + ty;
/* This is the number of times the loop will iterate, essentially it's
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* now for squaring tx can never equal ty
* we halve the distance since they approach at a rate of 2x
* and we have to round because odd cases need to be executed
*/
iy = MIN(iy, (ty-tx+1)>>1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* double the inner product and add carry */
_W = _W + _W + W1;
/* even columns have the square term in them */
if ((ix&1) == 0) {
_W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
}
/* store it */
W[ix] = _W;
/* make next carry */
W1 = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = b->used;
b->used = a->used+a->used;
{
mp_digit *tmpb;
tmpb = b->dp;
for (ix = 0; ix < pa; ix++) {
*tmpb++ = W[ix] & MP_MASK;
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpb++ = 0;
}
}
mp_clamp (b);
return MP_OKAY;
}
/* computes a = 2**b
*
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
*/
static int
mp_2expt (mp_int * a, int b)
{
int res;
/* zero a as per default */
mp_zero (a);
/* grow a to accommodate the single bit */
if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
return res;
}
/* set the used count of where the bit will go */
a->used = b / DIGIT_BIT + 1;
/* put the single bit in its place */
a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
return MP_OKAY;
}
/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
/* get sign of both inputs */
sa = a->sign;
sb = b->sign;
/* handle two cases, not four */
if (sa == sb) {
/* both positive or both negative */
/* add their magnitudes, copy the sign */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* one positive, the other negative */
/* subtract the one with the greater magnitude from */
/* the one of the lesser magnitude. The result gets */
/* the sign of the one with the greater magnitude. */
if (mp_cmp_mag (a, b) == MP_LT) {
c->sign = sb;
res = s_mp_sub (b, a, c);
} else {
c->sign = sa;
res = s_mp_sub (a, b, c);
}
}
return res;
}
/* single digit addition */
static int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
int res, ix, oldused;
mp_digit *tmpa, *tmpc, mu;
/* grow c as required */
if (c->alloc < a->used + 1) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* if a is negative and |a| >= b, call c = |a| - b */
if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
/* temporarily fix sign of a */
a->sign = MP_ZPOS;
/* c = |a| - b */
res = mp_sub_d(a, b, c);
/* fix sign */
a->sign = c->sign = MP_NEG;
return res;
}
/* old number of used digits in c */
oldused = c->used;
/* sign always positive */
c->sign = MP_ZPOS;
/* source alias */
tmpa = a->dp;
/* destination alias */
tmpc = c->dp;
/* if a is positive */
if (a->sign == MP_ZPOS) {
/* add digit, after this we're propagating
* the carry.
*/
*tmpc = *tmpa++ + b;
mu = *tmpc >> DIGIT_BIT;
*tmpc++ &= MP_MASK;
/* now handle rest of the digits */
for (ix = 1; ix < a->used; ix++) {
*tmpc = *tmpa++ + mu;
mu = *tmpc >> DIGIT_BIT;
*tmpc++ &= MP_MASK;
}
/* set final carry */
ix++;
*tmpc++ = mu;
/* setup size */
c->used = a->used + 1;
} else {
/* a was negative and |a| < b */
c->used = 1;
/* the result is a single digit */
if (a->used == 1) {
*tmpc++ = b - a->dp[0];
} else {
*tmpc++ = b;
}
/* setup count so the clearing of oldused
* can fall through correctly
*/
ix = 1;
}
/* now zero to oldused */
while (ix++ < oldused) {
*tmpc++ = 0;
}
mp_clamp(c);
return MP_OKAY;
}
/* trim unused digits
*
* This is used to ensure that leading zero digits are
* trimed and the leading "used" digit will be non-zero
* Typically very fast. Also fixes the sign if there
* are no more leading digits
*/
void
mp_clamp (mp_int * a)
{
/* decrease used while the most significant digit is
* zero.
*/
while (a->used > 0 && a->dp[a->used - 1] == 0) {
--(a->used);
}
/* reset the sign flag if used == 0 */
if (a->used == 0) {
a->sign = MP_ZPOS;
}
}
void mp_clear_multi(mp_int *mp, ...)
{
mp_int* next_mp = mp;
va_list args;
va_start(args, mp);
while (next_mp != NULL) {
mp_clear(next_mp);
next_mp = va_arg(args, mp_int*);
}
va_end(args);
}
/* compare two ints (signed)*/
int
mp_cmp (const mp_int * a, const mp_int * b)
{
/* compare based on sign */
if (a->sign != b->sign) {
if (a->sign == MP_NEG) {
return MP_LT;
} else {
return MP_GT;
}
}
/* compare digits */
if (a->sign == MP_NEG) {
/* if negative compare opposite direction */
return mp_cmp_mag(b, a);
} else {
return mp_cmp_mag(a, b);
}
}
/* compare a digit */
int mp_cmp_d(const mp_int * a, mp_digit b)
{
/* compare based on sign */
if (a->sign == MP_NEG) {
return MP_LT;
}
/* compare based on magnitude */
if (a->used > 1) {
return MP_GT;
}
/* compare the only digit of a to b */
if (a->dp[0] > b) {
return MP_GT;
} else if (a->dp[0] < b) {
return MP_LT;
} else {
return MP_EQ;
}
}
/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (const mp_int * a, const mp_int * b)
{
int n;
mp_digit *tmpa, *tmpb;
/* compare based on # of non-zero digits */
if (a->used > b->used) {
return MP_GT;
}
if (a->used < b->used) {
return MP_LT;
}
/* alias for a */
tmpa = a->dp + (a->used - 1);
/* alias for b */
tmpb = b->dp + (a->used - 1);
/* compare based on digits */
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
if (*tmpa > *tmpb) {
return MP_GT;
}
if (*tmpa < *tmpb) {
return MP_LT;
}
}
return MP_EQ;
}
static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
int x;
mp_digit q, qq;
/* easy out */
if (mp_iszero(a) == 1) {
return 0;
}
/* scan lower digits until non-zero */
for (x = 0; x < a->used && a->dp[x] == 0; x++);
q = a->dp[x];
x *= DIGIT_BIT;
/* now scan this digit until a 1 is found */
if ((q & 1) == 0) {
do {
qq = q & 15;
x += lnz[qq];
q >>= 4;
} while (qq == 0);
}
return x;
}
/* copy, b = a */
int
mp_copy (const mp_int * a, mp_int * b)
{
int res, n;
/* if dst == src do nothing */
if (a == b) {
return MP_OKAY;
}
/* grow dest */
if (b->alloc < a->used) {
if ((res = mp_grow (b, a->used)) != MP_OKAY) {
return res;
}
}
/* zero b and copy the parameters over */
{
register mp_digit *tmpa, *tmpb;
/* pointer aliases */
/* source */
tmpa = a->dp;
/* destination */
tmpb = b->dp;
/* copy all the digits */
for (n = 0; n < a->used; n++) {
*tmpb++ = *tmpa++;
}
/* clear high digits */
for (; n < b->used; n++) {
*tmpb++ = 0;
}
}
/* copy used count and sign */
b->used = a->used;
b->sign = a->sign;
return MP_OKAY;
}
/* returns the number of bits in an int */
int
mp_count_bits (const mp_int * a)
{
int r;
mp_digit q;
/* shortcut */
if (a->used == 0) {
return 0;
}
/* get number of digits and add that */
r = (a->used - 1) * DIGIT_BIT;
/* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > 0) {
++r;
q >>= ((mp_digit) 1);
}
return r;
}
/* calc a value mod 2**b */
static int
mp_mod_2d (const mp_int * a, int b, mp_int * c)
{
int x, res;
/* if b is <= 0 then zero the int */
if (b <= 0) {
mp_zero (c);
return MP_OKAY;
}
/* if the modulus is larger than the value than return */
if (b > a->used * DIGIT_BIT) {
res = mp_copy (a, c);
return res;
}
/* copy */
if ((res = mp_copy (a, c)) != MP_OKAY) {
return res;
}
/* zero digits above the last digit of the modulus */
for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
c->dp[x] = 0;
}
/* clear the digit that is not completely outside/inside the modulus */
c->dp[b / DIGIT_BIT] &= (1 << ((mp_digit)b % DIGIT_BIT)) - 1;
mp_clamp (c);
return MP_OKAY;
}
/* shift right a certain amount of digits */
static void mp_rshd (mp_int * a, int b)
{
int x;
/* if b <= 0 then ignore it */
if (b <= 0) {
return;
}
/* if b > used then simply zero it and return */
if (a->used <= b) {
mp_zero (a);
return;
}
{
register mp_digit *bottom, *top;
/* shift the digits down */
/* bottom */
bottom = a->dp;
/* top [offset into digits] */
top = a->dp + b;
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
* the top of the window are copied to the bottom
*
* e.g.
b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
/\ | ---->
\-------------------/ ---->
*/
for (x = 0; x < (a->used - b); x++) {
*bottom++ = *top++;
}
/* zero the top digits */
for (; x < a->used; x++) {
*bottom++ = 0;
}
}
/* remove excess digits */
a->used -= b;
}
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
static int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
{
mp_digit D, r, rr;
int x, res;
mp_int t;
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
res = mp_copy (a, c);
if (d != NULL) {
mp_zero (d);
}
return res;
}
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
/* get the remainder */
if (d != NULL) {
if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
/* copy */
if ((res = mp_copy (a, c)) != MP_OKAY) {
mp_clear (&t);
return res;
}
/* shift by as many digits in the bit count */
if (b >= DIGIT_BIT) {
mp_rshd (c, b / DIGIT_BIT);
}
/* shift any bit count < DIGIT_BIT */
D = (mp_digit) (b % DIGIT_BIT);
if (D != 0) {
register mp_digit *tmpc, mask, shift;
/* mask */
mask = (((mp_digit)1) << D) - 1;
/* shift for lsb */
shift = DIGIT_BIT - D;
/* alias */
tmpc = c->dp + (c->used - 1);
/* carry */
r = 0;
for (x = c->used - 1; x >= 0; x--) {
/* get the lower bits of this word in a temp */
rr = *tmpc & mask;
/* shift the current word and mix in the carry bits from the previous word */
*tmpc = (*tmpc >> D) | (r << shift);
--tmpc;
/* set the carry to the carry bits of the current word found above */
r = rr;
}
}
mp_clamp (c);
if (d != NULL) {
mp_exch (&t, d);
}
mp_clear (&t);
return MP_OKAY;
}
/* shift left a certain amount of digits */
static int mp_lshd (mp_int * a, int b)
{
int x, res;
/* if its less than zero return */
if (b <= 0) {
return MP_OKAY;
}
/* grow to fit the new digits */
if (a->alloc < a->used + b) {
if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
return res;
}
}
{
register mp_digit *top, *bottom;
/* increment the used by the shift amount then copy upwards */
a->used += b;
/* top */
top = a->dp + a->used - 1;
/* base */
bottom = a->dp + a->used - 1 - b;
/* much like mp_rshd this is implemented using a sliding window
* except the window goes the other way around. Copying from
* the bottom to the top. see bn_mp_rshd.c for more info.
*/
for (x = a->used - 1; x >= b; x--) {
*top-- = *bottom--;
}
/* zero the lower digits */
top = a->dp;
for (x = 0; x < b; x++) {
*top++ = 0;
}
}
return MP_OKAY;
}
/* shift left by a certain bit count */
static int mp_mul_2d (const mp_int * a, int b, mp_int * c)
{
mp_digit d;
int res;
/* copy */
if (a != c) {
if ((res = mp_copy (a, c)) != MP_OKAY) {
return res;
}
}
if (c->alloc < c->used + b/DIGIT_BIT + 1) {
if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
return res;
}
}
/* shift by as many digits in the bit count */
if (b >= DIGIT_BIT) {
if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
return res;
}
}
/* shift any bit count < DIGIT_BIT */
d = (mp_digit) (b % DIGIT_BIT);
if (d != 0) {
register mp_digit *tmpc, shift, mask, r, rr;
register int x;
/* bitmask for carries */
mask = (((mp_digit)1) << d) - 1;
/* shift for msbs */
shift = DIGIT_BIT - d;
/* alias */
tmpc = c->dp;
/* carry */
r = 0;
for (x = 0; x < c->used; x++) {
/* get the higher bits of the current word */
rr = (*tmpc >> shift) & mask;
/* shift the current word and OR in the carry */
*tmpc = ((*tmpc << d) | r) & MP_MASK;
++tmpc;
/* set the carry to the carry bits of the current word */
r = rr;
}
/* set final carry */
if (r != 0) {
c->dp[(c->used)++] = r;
}
}
mp_clamp (c);
return MP_OKAY;
}
/* multiply by a digit */
static int
mp_mul_d (const mp_int * a, mp_digit b, mp_int * c)
{
mp_digit u, *tmpa, *tmpc;
mp_word r;
int ix, res, olduse;
/* make sure c is big enough to hold a*b */
if (c->alloc < a->used + 1) {
if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* get the original destinations used count */
olduse = c->used;
/* set the sign */
c->sign = a->sign;
/* alias for a->dp [source] */
tmpa = a->dp;
/* alias for c->dp [dest] */
tmpc = c->dp;
/* zero carry */
u = 0;
/* compute columns */
for (ix = 0; ix < a->used; ix++) {
/* compute product and carry sum for this term */
r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
/* mask off higher bits to get a single digit */
*tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* send carry into next iteration */
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* store final carry [if any] */
*tmpc++ = u;
/* now zero digits above the top */
while (ix++ < olduse) {
*tmpc++ = 0;
}
/* set used count */
c->used = a->used + 1;
mp_clamp(c);
return MP_OKAY;
}
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
static int mp_div (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
{
mp_int q, x, y, t1, t2;
int res, n, t, i, norm, neg;
/* is divisor zero ? */
if (mp_iszero (b) == 1) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag (a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy (a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero (c);
}
return res;
}
if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
return res;
}
q.used = a->used + 2;
if ((res = mp_init (&t1)) != MP_OKAY) {
goto __Q;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto __T1;
}
if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
goto __T2;
}
if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
goto __X;
}
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
x.sign = y.sign = MP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
norm = mp_count_bits(&y) % DIGIT_BIT;
if (norm < DIGIT_BIT-1) {
norm = (DIGIT_BIT-1) - norm;
if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
goto __Y;
}
if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
goto __Y;
}
} else {
norm = 0;
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
n = x.used - 1;
t = y.used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto __Y;
}
while (mp_cmp (&x, &y) != MP_LT) {
++(q.dp[n - t]);
if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
goto __Y;
}
}
/* reset y by shifting it back down */
mp_rshd (&y, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
if (i > x.used) {
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
} else {
mp_word tmp;
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
tmp |= ((mp_word) x.dp[i - 1]);
tmp /= ((mp_word) y.dp[t]);
if (tmp > (mp_word) MP_MASK)
tmp = MP_MASK;
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
do {
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
/* find left hand */
mp_zero (&t1);
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto __Y;
}
/* find right hand */
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto __Y;
}
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto __Y;
}
if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
goto __Y;
}
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) {
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
goto __Y;
}
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto __Y;
}
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
goto __Y;
}
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp (&q);
mp_exch (&q, c);
c->sign = neg;
}
if (d != NULL) {
mp_div_2d (&x, norm, &x, NULL);
mp_exch (&x, d);
}
res = MP_OKAY;
__Y:mp_clear (&y);
__X:mp_clear (&x);
__T2:mp_clear (&t2);
__T1:mp_clear (&t1);
__Q:mp_clear (&q);
return res;
}
static int s_is_power_of_two(mp_digit b, int *p)
{
int x;
for (x = 1; x < DIGIT_BIT; x++) {
if (b == (((mp_digit)1)<<x)) {
*p = x;
return 1;
}
}
return 0;
}
/* single digit division (based on routine from MPI) */
static int mp_div_d (const mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
{
mp_int q;
mp_word w;
mp_digit t;
int res, ix;
/* cannot divide by zero */
if (b == 0) {
return MP_VAL;
}
/* quick outs */
if (b == 1 || mp_iszero(a) == 1) {
if (d != NULL) {
*d = 0;
}
if (c != NULL) {
return mp_copy(a, c);
}
return MP_OKAY;
}
/* power of two ? */
if (s_is_power_of_two(b, &ix) == 1) {
if (d != NULL) {
*d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
}
if (c != NULL) {
return mp_div_2d(a, ix, c, NULL);
}
return MP_OKAY;
}
/* no easy answer [c'est la vie]. Just division */
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
if (w >= b) {
t = (mp_digit)(w / b);
w -= ((mp_word)t) * ((mp_word)b);
} else {
t = 0;
}
q.dp[ix] = t;
}
if (d != NULL) {
*d = (mp_digit)w;
}
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
* "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Loong Lee,
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
*
* Has been modified to use algorithm 7.10 from the LTM book instead
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
static int
mp_dr_reduce (mp_int * x, const mp_int * n, mp_digit k)
{
int err, i, m;
mp_word r;
mp_digit mu, *tmpx1, *tmpx2;
/* m = digits in modulus */
m = n->used;
/* ensure that "x" has at least 2m digits */
if (x->alloc < m + m) {
if ((err = mp_grow (x, m + m)) != MP_OKAY) {
return err;
}
}
/* top of loop, this is where the code resumes if
* another reduction pass is required.
*/
top:
/* aliases for digits */
/* alias for lower half of x */
tmpx1 = x->dp;
/* alias for upper half of x, or x/B**m */
tmpx2 = x->dp + m;
/* set carry to zero */
mu = 0;
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
for (i = 0; i < m; i++) {
r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
*tmpx1++ = (mp_digit)(r & MP_MASK);
mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
}
/* set final carry */
*tmpx1++ = mu;
/* zero words above m */
for (i = m + 1; i < x->used; i++) {
*tmpx1++ = 0;
}
/* clamp, sub and return */
mp_clamp (x);
/* if x >= n then subtract and reduce again
* Each successive "recursion" makes the input smaller and smaller.
*/
if (mp_cmp_mag (x, n) != MP_LT) {
s_mp_sub(x, n, x);
goto top;
}
return MP_OKAY;
}
/* sets the value of "d" required for mp_dr_reduce */
static void mp_dr_setup(const mp_int *a, mp_digit *d)
{
/* the casts are required if DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
*/
*d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
((mp_word)a->dp[0]));
}
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
* embedded in the normal function but that wasted a lot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
int mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
{
int dr;
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
mp_int tmpG, tmpX;
int err;
/* first compute 1/G mod P */
if ((err = mp_init(&tmpG)) != MP_OKAY) {
return err;
}
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
/* now get |X| */
if ((err = mp_init(&tmpX)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
dr = 0;
/* if the modulus is odd or dr != 0 use the fast method */
if (mp_isodd (P) == 1 || dr != 0) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y);
}
}
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
*
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
* The value of k changes based on the size of the exponent.
*
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
*/
int
mp_exptmod_fast (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[256], res;
mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* use a pointer to the reduction algorithm. This allows us to use
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
int (*redux)(mp_int*,const mp_int*,mp_digit);
/* find window size */
x = mp_count_bits (X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init(&M[x])) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* determine and setup reduction code */
if (redmode == 0) {
/* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
goto __M;
}
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
if (((P->used * 2 + 1) < MP_WARRAY) &&
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
redux = fast_mp_montgomery_reduce;
} else {
/* use slower baseline Montgomery method */
redux = mp_montgomery_reduce;
}
} else if (redmode == 1) {
/* setup DR reduction for moduli of the form B**k - b */
mp_dr_setup(P, &mp);
redux = mp_dr_reduce;
} else {
/* setup DR reduction for moduli of the form 2**k - b */
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
goto __M;
}
redux = mp_reduce_2k;
}
/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
goto __M;
}
/* create M table
*
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
if (redmode == 0) {
/* now we need R mod m */
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto __RES;
}
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto __RES;
}
} else {
mp_set(&res, 1);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
goto __RES;
}
}
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
goto __RES;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
goto __RES;
}
}
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
}
}
if (redmode == 0) {
/* fixup result if Montgomery reduction is used
* recall that any value in a Montgomery system is
* actually multiplied by R mod n. So we have
* to reduce one more time to cancel out the factor
* of R.
*/
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
/* swap res with Y */
mp_exch (&res, Y);
err = MP_OKAY;
__RES:mp_clear (&res);
__M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);
}
return err;
}
/* Greatest Common Divisor using the binary method */
int mp_gcd (const mp_int * a, const mp_int * b, mp_int * c)
{
mp_int u, v;
int k, u_lsb, v_lsb, res;
/* either zero than gcd is the largest */
if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
return mp_abs (b, c);
}
if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
return mp_abs (a, c);
}
/* optimized. At this point if a == 0 then
* b must equal zero too
*/
if (mp_iszero (a) == 1) {
mp_zero(c);
return MP_OKAY;
}
/* get copies of a and b we can modify */
if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
goto __U;
}
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MIN(u_lsb, v_lsb);
if (k > 0) {
/* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto __V;
}
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto __V;
}
}
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto __V;
}
}
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto __V;
}
}
while (mp_iszero(&v) == 0) {
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
/* swap u and v to make sure v is >= u */
mp_exch(&u, &v);
}
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto __V;
}
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto __V;
}
}
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
goto __V;
}
c->sign = MP_ZPOS;
res = MP_OKAY;
__V:mp_clear (&u);
__U:mp_clear (&v);
return res;
}
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(const mp_int * a)
{
int i;
unsigned long res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
/* get most significant digit of result */
res = DIGIT(a,i);
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
return res & 0xFFFFFFFFUL;
}
/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, const mp_int * b)
{
int res;
if ((res = mp_init (a)) != MP_OKAY) {
return res;
}
return mp_copy (b, a);
}
int mp_init_multi(mp_int *mp, ...)
{
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
int n = 0; /* Number of ok inits */
mp_int* cur_arg = mp;
va_list args;
va_start(args, mp); /* init args to next argument from caller */
while (cur_arg != NULL) {
if (mp_init(cur_arg) != MP_OKAY) {
/* Oops - error! Back-track and mp_clear what we already
succeeded in init-ing, then return error.
*/
va_list clean_args;
/* end the current list */
va_end(args);
/* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
while (n--) {
mp_clear(cur_arg);
cur_arg = va_arg(clean_args, mp_int*);
}
va_end(clean_args);
res = MP_MEM;
break;
}
n++;
cur_arg = va_arg(args, mp_int*);
}
va_end(args);
return res; /* Assumed ok, if error flagged above. */
}
/* hac 14.61, pp608 */
int mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
{
/* b cannot be negative */
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
return MP_VAL;
}
/* if the modulus is odd we can use a faster routine instead */
if (mp_isodd (b) == 1) {
return fast_mp_invmod (a, b, c);
}
return mp_invmod_slow(a, b, c);
}
/* hac 14.61, pp608 */
int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, A, B, C, D;
int res;
/* b cannot be negative */
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
return MP_VAL;
}
/* init temps */
if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
/* x = a, y = b */
if ((res = mp_copy (a, &x)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto __ERR;
}
/* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
goto __ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR;
}
mp_set (&A, 1);
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR;
}
/* 4.2 if A or B is odd then */
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
}
}
/* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
}
/* 5.2 if C or D is odd then */
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR;
}
} else {
/* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == 0)
goto top;
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto __ERR;
}
/* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto __ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto __ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res;
}
/* c = |a| * |b| using Karatsuba Multiplication using
* three half size multiplications
*
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
* let n represent half of the number of digits in
* the min(a,b)
*
* a = a1 * B**n + a0
* b = b1 * B**n + b0
*
* Then, a * b =>
a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
*
* Note that a1b1 and a0b0 are used twice and only need to be
* computed once. So in total three half size (half # of
* digit) multiplications are performed, a0b0, a1b1 and
* (a1-b1)(a0-b0)
*
* Note that a multiplication of half the digits requires
* 1/4th the number of single precision multiplications so in
* total after one call 25% of the single precision multiplications
* are saved. Note also that the call to mp_mul can end up back
* in this function if the a0, a1, b0, or b1 are above the threshold.
* This is known as divide-and-conquer and leads to the famous
* O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
* the standard O(N**2) that the baseline/comba methods use.
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int mp_karatsuba_mul (const mp_int * a, const mp_int * b, mp_int * c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;
/* default the return code to an error */
err = MP_MEM;
/* min # of digits */
B = MIN (a->used, b->used);
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
if (mp_init_size (&y0, B) != MP_OKAY)
goto X1;
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
goto Y0;
/* init temps */
if (mp_init_size (&t1, B * 2) != MP_OKAY)
goto Y1;
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
goto X0Y0;
/* now shift the digits */
x0.used = y0.used = B;
x1.used = a->used - B;
y1.used = b->used - B;
{
register int x;
register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
/* we copy the digits directly instead of using higher level functions
* since we also need to shift the digits
*/
tmpa = a->dp;
tmpb = b->dp;
tmpx = x0.dp;
tmpy = y0.dp;
for (x = 0; x < B; x++) {
*tmpx++ = *tmpa++;
*tmpy++ = *tmpb++;
}
tmpx = x1.dp;
for (x = B; x < a->used; x++) {
*tmpx++ = *tmpa++;
}
tmpy = y1.dp;
for (x = B; x < b->used; x++) {
*tmpy++ = *tmpb++;
}
}
/* only need to clamp the lower words since by definition the
* upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
/* after this x0 is no longer required, free temp [x0==t2]! */
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
/* now calc x1-x0 and y1-y0 */
if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x1 - x0 */
if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
goto X1Y1; /* t2 = y1 - y0 */
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
/* add x0y0 */
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
goto X1Y1; /* t2 = x0y0 + x1y1 */
if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
goto X1Y1; /* x1y1 = x1y1 << 2*B */
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 */
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
/* Algorithm succeeded set the return code to MP_OKAY */
err = MP_OKAY;
X1Y1:mp_clear (&x1y1);
X0Y0:mp_clear (&x0y0);
T1:mp_clear (&t1);
Y1:mp_clear (&y1);
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
/* Karatsuba squaring, computes b = a*a using three
* half size squarings
*
* See comments of karatsuba_mul for details. It
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr (const mp_int * a, mp_int * b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
err = MP_MEM;
/* min # of digits */
B = a->used;
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
/* init temps */
if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
goto X1;
if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
goto T2;
if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
goto X0X0;
{
register int x;
register mp_digit *dst, *src;
src = a->dp;
/* now shift the digits */
dst = x0.dp;
for (x = 0; x < B; x++) {
*dst++ = *src++;
}
dst = x1.dp;
for (x = B; x < a->used; x++) {
*dst++ = *src++;
}
}
x0.used = B;
x1.used = a->used - B;
mp_clamp (&x0);
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
goto X1X1; /* x1x1 = x1*x1 */
/* now calc (x1-x0)**2 */
if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
goto X1X1; /* t2 = x0x0 + x1x1 */
if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm (const mp_int * a, const mp_int * b, mp_int * c)
{
int res;
mp_int t1, t2;
if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
return res;
}
/* t1 = get the GCD of the two inputs */
if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
goto __T;
}
/* divide the smallest by the GCD */
if (mp_cmp_mag(a, b) == MP_LT) {
/* store quotient in t2 such that t2 * b is the LCM */
if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
goto __T;
}
res = mp_mul(b, &t2, c);
} else {
/* store quotient in t2 such that t2 * a is the LCM */
if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
goto __T;
}
res = mp_mul(a, &t2, c);
}
/* fix the sign to positive */
c->sign = MP_ZPOS;
__T:
mp_clear_multi (&t1, &t2, NULL);
return res;
}
/* c = a mod b, 0 <= c < b */
int
mp_mod (const mp_int * a, mp_int * b, mp_int * c)
{
mp_int t;
int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
if (t.sign != b->sign) {
res = mp_add (b, &t, c);
} else {
res = MP_OKAY;
mp_exch (&t, c);
}
mp_clear (&t);
return res;
}
static int
mp_mod_d (const mp_int * a, mp_digit b, mp_digit * c)
{
return mp_div_d(a, b, NULL, c);
}
/* b = a*2 */
static int mp_mul_2(const mp_int * a, mp_int * b)
{
int x, res, oldused;
/* grow to accommodate result */
if (b->alloc < a->used + 1) {
if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
return res;
}
}
oldused = b->used;
b->used = a->used;
{
register mp_digit r, rr, *tmpa, *tmpb;
/* alias for source */
tmpa = a->dp;
/* alias for dest */
tmpb = b->dp;
/* carry */
r = 0;
for (x = 0; x < a->used; x++) {
/* get what will be the *next* carry bit from the
* MSB of the current digit
*/
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
/* now shift up this digit, add in the carry [from the previous] */
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
/* copy the carry that would be from the source
* digit into the next iteration
*/
r = rr;
}
/* new leading digit? */
if (r != 0) {
/* add a MSB which is always 1 at this point */
*tmpb = 1;
++(b->used);
}
/* now zero any excess digits on the destination
* that we didn't write to
*/
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
}
}
b->sign = a->sign;
return MP_OKAY;
}
/*
* shifts with subtractions when the result is greater than b.
*
* The method is slightly modified to shift B unconditionally up to just under
* the leading bit of b. This saves a lot of multiple precision shifting.
*/
int mp_montgomery_calc_normalization (mp_int * a, const mp_int * b)
{
int x, bits, res;
/* how many bits of last digit does b use */
bits = mp_count_bits (b) % DIGIT_BIT;
if (b->used > 1) {
if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
return res;
}
} else {
mp_set(a, 1);
bits = 1;
}
/* now compute C = A * B mod b */
for (x = bits - 1; x < DIGIT_BIT; x++) {
if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
return res;
}
if (mp_cmp_mag (a, b) != MP_LT) {
if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
return res;
}
}
}
return MP_OKAY;
}
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
{
int ix, res, digs;
mp_digit mu;
/* can the fast reduction [comba] method be used?
*
* Note that unlike in mul you're safely allowed *less*
* than the available columns [255 per default] since carries
* are fixed up in the inner loop.
*/
digs = n->used * 2 + 1;
if ((digs < MP_WARRAY) &&
n->used <
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_mp_montgomery_reduce (x, n, rho);
}
/* grow the input as required */
if (x->alloc < digs) {
if ((res = mp_grow (x, digs)) != MP_OKAY) {
return res;
}
}
x->used = digs;
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * rho mod b
*
* The value of rho must be precalculated via
* montgomery_setup() such that
* it equals -1/n0 mod b this allows the
* following inner loop to reduce the
* input one digit at a time
*/
mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
/* a = a + mu * m * b**i */
{
register int iy;
register mp_digit *tmpn, *tmpx, u;
register mp_word r;
/* alias for digits of the modulus */
tmpn = n->dp;
/* alias for the digits of x [the input] */
tmpx = x->dp + ix;
/* set the carry to zero */
u = 0;
/* Multiply and add in place */
for (iy = 0; iy < n->used; iy++) {
/* compute product and sum */
r = ((mp_word)mu) * ((mp_word)*tmpn++) +
((mp_word) u) + ((mp_word) * tmpx);
/* get carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
/* fix digit */
*tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
}
/* At this point the ix'th digit of x should be zero */
/* propagate carries upwards as required*/
while (u) {
*tmpx += u;
u = *tmpx >> DIGIT_BIT;
*tmpx++ &= MP_MASK;
}
}
}
/* at this point the n.used'th least
* significant digits of x are all zero
* which means we can shift x to the
* right by n.used digits and the
* residue is unchanged.
*/
/* x = x/b**n.used */
mp_clamp(x);
mp_rshd (x, n->used);
/* if x >= n then x = x - n */
if (mp_cmp_mag (x, n) != MP_LT) {
return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
/* setups the montgomery reduction stuff */
int
mp_montgomery_setup (const mp_int * n, mp_digit * rho)
{
mp_digit x, b;
/* fast inversion mod 2**k
*
* Based on the fact that
*
* XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
* => 2*X*A - X*X*A*A = 1
* => 2*(1) - (1) = 1
*/
b = n->dp[0];
if ((b & 1) == 0) {
return MP_VAL;
}
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
/* rho = -1/m mod b */
*rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
return MP_OKAY;
}
/* high level multiplication (handles sign) */
int mp_mul (const mp_int * a, const mp_int * b, mp_int * c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
/* use Karatsuba? */
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else
{
/* can we use the fast multiplier?
*
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
int digs = a->used + b->used + 1;
if ((digs < MP_WARRAY) &&
MIN(a->used, b->used) <=
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
}
c->sign = (c->used > 0) ? neg : MP_ZPOS;
return res;
}
/* d = a * b (mod c) */
int
mp_mulmod (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
{
int res;
mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
res = mp_mod (&t, c, d);
mp_clear (&t);
return res;
}
/* table of first PRIME_SIZE primes */
static const mp_digit __prime_tab[] = {
0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
};
/* determines if an integers is divisible by one
* of the first PRIME_SIZE primes or not
*
* sets result to 0 if not, 1 if yes
*/
static int mp_prime_is_divisible (const mp_int * a, int *result)
{
int err, ix;
mp_digit res;
/* default to not */
*result = MP_NO;
for (ix = 0; ix < PRIME_SIZE; ix++) {
/* what is a mod __prime_tab[ix] */
if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
return err;
}
/* is the residue zero? */
if (res == 0) {
*result = MP_YES;
return MP_OKAY;
}
}
return MP_OKAY;
}
/* Miller-Rabin test of "a" to the base of "b" as described in
* HAC pp. 139 Algorithm 4.24
*
* Sets result to 0 if definitely composite or 1 if probably prime.
* Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
static int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
{
mp_int n1, y, r;
int s, j, err;
/* default */
*result = MP_NO;
/* ensure b > 1 */
if (mp_cmp_d(b, 1) != MP_GT) {
return MP_VAL;
}
/* get n1 = a - 1 */
if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
return err;
}
if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
goto __N1;
}
/* set 2**s * r = n1 */
if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
goto __N1;
}
/* count the number of least significant bits
* which are zero
*/
s = mp_cnt_lsb(&r);
/* now divide n - 1 by 2**s */
if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
goto __R;
}
/* compute y = b**r mod a */
if ((err = mp_init (&y)) != MP_OKAY) {
goto __R;
}
if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
goto __Y;
}
/* if y != 1 and y != n1 do */
if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
j = 1;
/* while j <= s-1 and y != n1 */
while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
goto __Y;
}
/* if y == 1 then composite */
if (mp_cmp_d (&y, 1) == MP_EQ) {
goto __Y;
}
++j;
}
/* if y != n1 then composite */
if (mp_cmp (&y, &n1) != MP_EQ) {
goto __Y;
}
}
/* probably prime now */
*result = MP_YES;
__Y:mp_clear (&y);
__R:mp_clear (&r);
__N1:mp_clear (&n1);
return err;
}
/* performs a variable number of rounds of Miller-Rabin
*
* Probability of error after t rounds is no more than
*
* Sets result to 1 if probably prime, 0 otherwise
*/
static int mp_prime_is_prime (mp_int * a, int t, int *result)
{
mp_int b;
int ix, err, res;
/* default to no */
*result = MP_NO;
/* valid value of t? */
if (t <= 0 || t > PRIME_SIZE) {
return MP_VAL;
}
/* is the input equal to one of the primes in the table? */
for (ix = 0; ix < PRIME_SIZE; ix++) {
if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
*result = 1;
return MP_OKAY;
}
}
/* first perform trial division */
if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
return err;
}
/* return if it was trivially divisible */
if (res == MP_YES) {
return MP_OKAY;
}
/* now perform the miller-rabin rounds */
if ((err = mp_init (&b)) != MP_OKAY) {
return err;
}
for (ix = 0; ix < t; ix++) {
/* set the prime */
mp_set (&b, __prime_tab[ix]);
if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
goto __B;
}
if (res == MP_NO) {
goto __B;
}
}
/* passed the test */
*result = MP_YES;
__B:mp_clear (&b);
return err;
}
static const struct {
int k, t;
} sizes[] = {
{ 128, 28 },
{ 256, 16 },
{ 384, 10 },
{ 512, 7 },
{ 640, 6 },
{ 768, 5 },
{ 896, 4 },
{ 1024, 4 }
};
/* returns # of RM trials required for a given bit size */
int mp_prime_rabin_miller_trials(int size)
{
int x;
for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
if (sizes[x].k == size) {
return sizes[x].t;
} else if (sizes[x].k > size) {
return (x == 0) ? sizes[0].t : sizes[x - 1].t;
}
}
return sizes[x-1].t + 1;
}
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
int res, err, bsize, maskOR_msb_offset;
/* sanity check the input */
if (size <= 1 || t <= 0) {
return MP_VAL;
}
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
if (flags & LTM_PRIME_SAFE) {
flags |= LTM_PRIME_BBS;
}
/* calc the byte size */
bsize = (size>>3)+((size&7)?1:0);
/* we need a buffer of bsize bytes */
tmp = HeapAlloc(GetProcessHeap(), 0, bsize);
if (tmp == NULL) {
return MP_MEM;
}
/* calc the maskAND value for the MSbyte*/
maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
if (flags & LTM_PRIME_2MSB_ON) {
maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) {
maskAND &= ~(1 << ((size - 2) & 7));
}
/* get the maskOR_lsb */
maskOR_lsb = 0;
if (flags & LTM_PRIME_BBS) {
maskOR_lsb |= 3;
}
do {
/* read the bytes */
if (cb(tmp, bsize, dat) != bsize) {
err = MP_VAL;
goto error;
}
/* work over the MSbyte */
tmp[0] &= maskAND;
tmp[0] |= 1 << ((size - 1) & 7);
/* mix in the maskORs */
tmp[maskOR_msb_offset] |= maskOR_msb;
tmp[bsize-1] |= maskOR_lsb;
/* read it in */
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
if (res == MP_NO) {
continue;
}
if (flags & LTM_PRIME_SAFE) {
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
}
} while (res == MP_NO);
if (flags & LTM_PRIME_SAFE) {
/* restore a to the original value */
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
}
err = MP_OKAY;
error:
HeapFree(GetProcessHeap(), 0, tmp);
return err;
}
/* reads an unsigned char array, assumes the msb is stored first [big endian] */
int
mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
int res;
/* make sure there are at least two digits */
if (a->alloc < 2) {
if ((res = mp_grow(a, 2)) != MP_OKAY) {
return res;
}
}
/* zero the int */
mp_zero (a);
/* read the bytes in */
while (c-- > 0) {
if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
return res;
}
a->dp[0] |= *b++;
a->used += 1;
}
mp_clamp (a);
return MP_OKAY;
}
/* reduces x mod m, assumes 0 < x < m**2, mu is
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int
mp_reduce (mp_int * x, const mp_int * m, const mp_int * mu)
{
mp_int q;
int res, um = m->used;
/* q = x */
if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
return res;
}
/* q1 = x / b**(k-1) */
mp_rshd (&q, um - 1);
/* according to HAC this optimization is ok */
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
goto CLEANUP;
}
} else {
if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
goto CLEANUP;
}
}
/* q3 = q2 / b**(k+1) */
mp_rshd (&q, um + 1);
/* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
goto CLEANUP;
}
/* q = q * m mod b**(k+1), quick (no division) */
if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
goto CLEANUP;
}
/* x = x - q */
if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
goto CLEANUP;
}
/* If x < 0, add b**(k+1) to it */
if (mp_cmp_d (x, 0) == MP_LT) {
mp_set (&q, 1);
if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
goto CLEANUP;
if ((res = mp_add (x, &q, x)) != MP_OKAY)
goto CLEANUP;
}
/* Back off if it's too big */
while (mp_cmp (x, m) != MP_LT) {
if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
goto CLEANUP;
}
}
CLEANUP:
mp_clear (&q);
return res;
}
/* reduces a modulo n where n is of the form 2**p - d */
int
mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
if (d != 1) {
/* q = q * d */
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
ERR:
mp_clear(&q);
return res;
}
/* determines the setup value */
static int
mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
p = mp_count_bits(a);
if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
*d = tmp.dp[0];
mp_clear(&tmp);
return MP_OKAY;
}
/* pre-calculate the value required for Barrett reduction
* For a given modulus "b" it calculates the value required in "a"
*/
int mp_reduce_setup (mp_int * a, const mp_int * b)
{
int res;
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
return res;
}
return mp_div (a, b, a, NULL);
}
/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
{
mp_zero (a);
a->dp[0] = b & MP_MASK;
a->used = (a->dp[0] != 0) ? 1 : 0;
}
/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
int x, res;
mp_zero (a);
/* set four bits at a time */
for (x = 0; x < 8; x++) {
/* shift the number up four bits */
if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
return res;
}
/* OR in the top four bits of the source */
a->dp[0] |= (b >> 28) & 15;
/* shift the source up to the next four bits */
b <<= 4;
/* ensure that digits are not clamped off */
a->used += 1;
}
mp_clamp (a);
return MP_OKAY;
}
/* shrink a bignum */
int mp_shrink (mp_int * a)
{
mp_digit *tmp;
if (a->alloc != a->used && a->used > 0) {
if ((tmp = HeapReAlloc(GetProcessHeap(), 0, a->dp, sizeof (mp_digit) * a->used)) == NULL) {
return MP_MEM;
}
a->dp = tmp;
a->alloc = a->used;
}
return MP_OKAY;
}
/* computes b = a*a */
int
mp_sqr (const mp_int * a, mp_int * b)
{
int res;
if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else
{
/* can we use the fast comba multiplier? */
if ((a->used * 2 + 1) < MP_WARRAY &&
a->used <
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
res = fast_s_mp_sqr (a, b);
} else
res = s_mp_sqr (a, b);
}
b->sign = MP_ZPOS;
return res;
}
/* c = a * a (mod b) */
int
mp_sqrmod (const mp_int * a, mp_int * b, mp_int * c)
{
int res;
mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
if ((res = mp_sqr (a, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
res = mp_mod (&t, b, c);
mp_clear (&t);
return res;
}
/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
sa = a->sign;
sb = b->sign;
if (sa != sb) {
/* subtract a negative from a positive, OR */
/* subtract a positive from a negative. */
/* In either case, ADD their magnitudes, */
/* and use the sign of the first number. */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* subtract a positive from a positive, OR */
/* subtract a negative from a negative. */
/* First, take the difference between their */
/* magnitudes, then... */
if (mp_cmp_mag (a, b) != MP_LT) {
/* Copy the sign from the first */
c->sign = sa;
/* The first has a larger or equal magnitude */
res = s_mp_sub (a, b, c);
} else {
/* The result has the *opposite* sign from */
/* the first number. */
c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
/* The second has a larger magnitude */
res = s_mp_sub (b, a, c);
}
}
return res;
}
/* single digit subtraction */
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
mp_digit *tmpa, *tmpc, mu;
int res, ix, oldused;
/* grow c as required */
if (c->alloc < a->used + 1) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* if a is negative just do an unsigned
* addition [with fudged signs]
*/
if (a->sign == MP_NEG) {
a->sign = MP_ZPOS;
res = mp_add_d(a, b, c);
a->sign = c->sign = MP_NEG;
return res;
}
/* setup regs */
oldused = c->used;
tmpa = a->dp;
tmpc = c->dp;
/* if a <= b simply fix the single digit */
if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
if (a->used == 1) {
*tmpc++ = b - *tmpa;
} else {
*tmpc++ = b;
}
ix = 1;
/* negative/1digit */
c->sign = MP_NEG;
c->used = 1;
} else {
/* positive/size */
c->sign = MP_ZPOS;
c->used = a->used;
/* subtract first digit */
*tmpc = *tmpa++ - b;
mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
*tmpc++ &= MP_MASK;
/* handle rest of the digits */
for (ix = 1; ix < a->used; ix++) {
*tmpc = *tmpa++ - mu;
mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
*tmpc++ &= MP_MASK;
}
}
/* zero excess digits */
while (ix++ < oldused) {
*tmpc++ = 0;
}
mp_clamp(c);
return MP_OKAY;
}
/* store in unsigned [big endian] format */
int
mp_to_unsigned_bin (const mp_int * a, unsigned char *b)
{
int x, res;
mp_int t;
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
x = 0;
while (mp_iszero (&t) == 0) {
b[x++] = (unsigned char) (t.dp[0] & 255);
if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
bn_reverse (b, x);
mp_clear (&t);
return MP_OKAY;
}
/* get the size for an unsigned equivalent */
int
mp_unsigned_bin_size (const mp_int * a)
{
int size = mp_count_bits (a);
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
/* reverse an array, used for radix code */
static void
bn_reverse (unsigned char *s, int len)
{
int ix, iy;
unsigned char t;
ix = 0;
iy = len - 1;
while (ix < iy) {
t = s[ix];
s[ix] = s[iy];
s[iy] = t;
++ix;
--iy;
}
}
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
static int
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
mp_int *x;
int olduse, res, min, max;
/* find sizes, we let |a| <= |b| which means we have to sort
* them. "x" will point to the input with the most digits
*/
if (a->used > b->used) {
min = b->used;
max = a->used;
x = a;
} else {
min = a->used;
max = b->used;
x = b;
}
/* init result */
if (c->alloc < max + 1) {
if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
return res;
}
}
/* get old used digit count and set new one */
olduse = c->used;
c->used = max + 1;
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
/* alias for digit pointers */
/* first input */
tmpa = a->dp;
/* second input */
tmpb = b->dp;
/* destination */
tmpc = c->dp;
/* zero the carry */
u = 0;
for (i = 0; i < min; i++) {
/* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
*tmpc = *tmpa++ + *tmpb++ + u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)DIGIT_BIT);
/* take away carry bit from T[i] */
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, that is in A+B
* if A or B has more digits add those in
*/
if (min != max) {
for (; i < max; i++) {
/* T[i] = X[i] + U */
*tmpc = x->dp[i] + u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)DIGIT_BIT);
/* take away carry bit from T[i] */
*tmpc++ &= MP_MASK;
}
}
/* add carry */
*tmpc++ = u;
/* clear digits above oldused */
for (i = c->used; i < olduse; i++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
{
mp_int M[256], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = mp_count_bits (X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init(&M[x])) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* create mu, used for Barrett reduction */
if ((err = mp_init (&mu)) != MP_OKAY) {
goto __M;
}
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto __MU;
}
/* create M table
*
* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
* The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto __MU;
}
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto __MU;
}
}
/* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
* for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
*/
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
goto __MU;
}
}
/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
goto __MU;
}
mp_set (&res, 1);
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits */
if (digidx == -1) {
break;
}
/* read next digit and reset the bitcnt */
buf = X->dp[digidx--];
bitcnt = DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
goto __RES;
}
}
}
}
mp_exch (&res, Y);
err = MP_OKAY;
__RES:mp_clear (&res);
__MU:mp_clear (&mu);
__M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);
}
return err;
}
/* multiplies |a| * |b| and only computes up to digs digits of result
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
static int
s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;
mp_digit u;
mp_word r;
mp_digit tmpx, *tmpt, *tmpy;
/* can we use the fast multiplier? */
if (((digs) < MP_WARRAY) &&
MIN (a->used, b->used) <
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_s_mp_mul_digs (a, b, c, digs);
}
if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
return res;
}
t.used = digs;
/* compute the digits of the product directly */
pa = a->used;
for (ix = 0; ix < pa; ix++) {
/* set the carry to zero */
u = 0;
/* limit ourselves to making digs digits of output */
pb = MIN (b->used, digs - ix);
/* setup some aliases */
/* copy of the digit from a used within the nested loop */
tmpx = a->dp[ix];
/* an alias for the destination shifted ix places */
tmpt = t.dp + ix;
/* an alias for the digits of b */
tmpy = b->dp;
/* compute the columns of the output and propagate the carry */
for (iy = 0; iy < pb; iy++) {
/* compute the column as a mp_word */
r = ((mp_word)*tmpt) +
((mp_word)tmpx) * ((mp_word)*tmpy++) +
((mp_word) u);
/* the new column is the lower part of the result */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* get the carry word from the result */
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* set carry if it is placed below digs */
if (ix + iy < digs) {
*tmpt = u;
}
}
mp_clamp (&t);
mp_exch (&t, c);
mp_clear (&t);
return MP_OKAY;
}
/* multiplies |a| * |b| and does not compute the lower digs digits
* [meant to get the higher part of the product]
*/
static int
s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;
mp_digit u;
mp_word r;
mp_digit tmpx, *tmpt, *tmpy;
/* can we use the fast multiplier? */
if (((a->used + b->used + 1) < MP_WARRAY)
&& MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_s_mp_mul_high_digs (a, b, c, digs);
}
if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
return res;
}
t.used = a->used + b->used + 1;
pa = a->used;
pb = b->used;
for (ix = 0; ix < pa; ix++) {
/* clear the carry */
u = 0;
/* left hand side of A[ix] * B[iy] */
tmpx = a->dp[ix];
/* alias to the address of where the digits will be stored */
tmpt = &(t.dp[digs]);
/* alias for where to read the right hand side from */
tmpy = b->dp + (digs - ix);
for (iy = digs - ix; iy < pb; iy++) {
/* calculate the double precision result */
r = ((mp_word)*tmpt) +
((mp_word)tmpx) * ((mp_word)*tmpy++) +
((mp_word) u);
/* get the lower part */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* carry the carry */
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
*tmpt = u;
}
mp_clamp (&t);
mp_exch (&t, c);
mp_clear (&t);
return MP_OKAY;
}
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
static int
s_mp_sqr (const mp_int * a, mp_int * b)
{
mp_int t;
int res, ix, iy, pa;
mp_word r;
mp_digit u, tmpx, *tmpt;
pa = a->used;
if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
return res;
}
/* default used is maximum possible size */
t.used = 2*pa + 1;
for (ix = 0; ix < pa; ix++) {
/* first calculate the digit at 2*ix */
/* calculate double precision result */
r = ((mp_word) t.dp[2*ix]) +
((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
/* store lower part in result */
t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
/* get the carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
/* left hand side of A[ix] * A[iy] */
tmpx = a->dp[ix];
/* alias for where to store the results */
tmpt = t.dp + (2*ix + 1);
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
/* now calculate the double precision result, note we use
* addition instead of *2 since it's easier to optimize
*/
r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
/* store lower part */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* get carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
}
/* propagate upwards */
while (u != 0) {
r = ((mp_word) *tmpt) + ((mp_word) u);
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
}
}
mp_clamp (&t);
mp_exch (&t, b);
mp_clear (&t);
return MP_OKAY;
}
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int
s_mp_sub (const mp_int * a, const mp_int * b, mp_int * c)
{
int olduse, res, min, max;
/* find sizes */
min = b->used;
max = a->used;
/* init result */
if (c->alloc < max) {
if ((res = mp_grow (c, max)) != MP_OKAY) {
return res;
}
}
olduse = c->used;
c->used = max;
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
/* alias for digit pointers */
tmpa = a->dp;
tmpb = b->dp;
tmpc = c->dp;
/* set carry to zero */
u = 0;
for (i = 0; i < min; i++) {
/* T[i] = A[i] - B[i] - U */
*tmpc = *tmpa++ - *tmpb++ - u;
/* U = carry bit of T[i]
* Note this saves performing an AND operation since
* if a carry does occur it will propagate all the way to the
* MSB. As a result a single shift is enough to get the carry
*/
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, e.g. if A has more digits than B */
for (; i < max; i++) {
/* T[i] = A[i] - U */
*tmpc = *tmpa++ - u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
}
/* clear digits above used (since we may not have grown result above) */
for (i = c->used; i < olduse; i++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}