wine/dlls/msvcrt/math.c
2023-04-10 14:18:08 +02:00

4196 lines
117 KiB
C

/*
* msvcrt.dll math functions
*
* Copyright 2000 Jon Griffiths
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
*
* For functions copied from musl libc (http://musl.libc.org/):
* ====================================================
* Copyright 2005-2020 Rich Felker, et al.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
* ====================================================
*/
#include <assert.h>
#include <complex.h>
#include <stdio.h>
#include <fenv.h>
#include <fpieee.h>
#include <limits.h>
#include <locale.h>
#include <math.h>
#include "msvcrt.h"
#include "winternl.h"
#include "wine/asm.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(msvcrt);
#undef div
#undef ldiv
#define _DOMAIN 1 /* domain error in argument */
#define _SING 2 /* singularity */
#define _OVERFLOW 3 /* range overflow */
#define _UNDERFLOW 4 /* range underflow */
typedef int (CDECL *MSVCRT_matherr_func)(struct _exception *);
static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL;
BOOL sse2_supported;
static BOOL sse2_enabled;
void msvcrt_init_math( void *module )
{
sse2_supported = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE );
#if _MSVCR_VER <=71
sse2_enabled = FALSE;
#else
sse2_enabled = sse2_supported;
#endif
}
/* Copied from musl: src/internal/libm.h */
static inline float fp_barrierf(float x)
{
volatile float y = x;
return y;
}
static inline double fp_barrier(double x)
{
volatile double y = x;
return y;
}
static inline double ret_nan( BOOL update_sw )
{
double x = 1.0;
if (!update_sw) return -NAN;
return (x - x) / (x - x);
}
#define SET_X87_CW(MASK) \
"subl $4, %esp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
"fnstcw (%esp)\n\t" \
"movw (%esp), %ax\n\t" \
"movw %ax, 2(%esp)\n\t" \
"testw $" #MASK ", %ax\n\t" \
"jz 1f\n\t" \
"andw $~" #MASK ", %ax\n\t" \
"movw %ax, 2(%esp)\n\t" \
"fldcw 2(%esp)\n\t" \
"1:\n\t"
#define RESET_X87_CW \
"movw (%esp), %ax\n\t" \
"cmpw %ax, 2(%esp)\n\t" \
"je 1f\n\t" \
"fstpl 8(%esp)\n\t" \
"fldcw (%esp)\n\t" \
"fldl 8(%esp)\n\t" \
"fwait\n\t" \
"1:\n\t" \
"addl $4, %esp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset -4\n\t")
/*********************************************************************
* _matherr (CRTDLL.@)
*/
int CDECL _matherr(struct _exception *e)
{
return 0;
}
double math_error(int type, const char *name, double arg1, double arg2, double retval)
{
struct _exception exception = {type, (char *)name, arg1, arg2, retval};
TRACE("(%d, %s, %g, %g, %g)\n", type, debugstr_a(name), arg1, arg2, retval);
if (MSVCRT_default_matherr_func && MSVCRT_default_matherr_func(&exception))
return exception.retval;
switch (type)
{
case 0:
/* don't set errno */
break;
case _DOMAIN:
*_errno() = EDOM;
break;
case _SING:
case _OVERFLOW:
*_errno() = ERANGE;
break;
case _UNDERFLOW:
/* don't set errno */
break;
default:
ERR("Unhandled math error!\n");
}
return exception.retval;
}
/*********************************************************************
* __setusermatherr (MSVCRT.@)
*/
void CDECL __setusermatherr(MSVCRT_matherr_func func)
{
MSVCRT_default_matherr_func = func;
TRACE("new matherr handler %p\n", func);
}
/*********************************************************************
* _set_SSE2_enable (MSVCRT.@)
*/
int CDECL _set_SSE2_enable(int flag)
{
sse2_enabled = flag && sse2_supported;
return sse2_enabled;
}
#if defined(_WIN64)
# if _MSVCR_VER>=140
/*********************************************************************
* _get_FMA3_enable (UCRTBASE.@)
*/
int CDECL _get_FMA3_enable(void)
{
FIXME("() stub\n");
return 0;
}
# endif
# if _MSVCR_VER>=120
/*********************************************************************
* _set_FMA3_enable (MSVCR120.@)
*/
int CDECL _set_FMA3_enable(int flag)
{
FIXME("(%x) stub\n", flag);
return 0;
}
# endif
#endif
#if !defined(__i386__) || _MSVCR_VER>=120
/*********************************************************************
* _chgsignf (MSVCRT.@)
*/
float CDECL _chgsignf( float num )
{
union { float f; UINT32 i; } u = { num };
u.i ^= 0x80000000;
return u.f;
}
#endif
/*********************************************************************
* _fdclass (MSVCR120.@)
*
* Copied from musl: src/math/__fpclassifyf.c
*/
short CDECL _fdclass(float x)
{
union { float f; UINT32 i; } u = { x };
int e = u.i >> 23 & 0xff;
if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
if (e == 0xff) return u.i << 9 ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
/*********************************************************************
* _dclass (MSVCR120.@)
*
* Copied from musl: src/math/__fpclassify.c
*/
short CDECL _dclass(double x)
{
union { double f; UINT64 i; } u = { x };
int e = u.i >> 52 & 0x7ff;
if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
if (e == 0x7ff) return (u.i << 12) ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
#ifndef __i386__
/*********************************************************************
* _fpclassf (MSVCRT.@)
*/
int CDECL _fpclassf( float num )
{
union { float f; UINT32 i; } u = { num };
int e = u.i >> 23 & 0xff;
int s = u.i >> 31;
switch (e)
{
case 0:
if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD;
return s ? _FPCLASS_NZ : _FPCLASS_PZ;
case 0xff:
if (u.i << 9) return ((u.i >> 22) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN;
return s ? _FPCLASS_NINF : _FPCLASS_PINF;
default:
return s ? _FPCLASS_NN : _FPCLASS_PN;
}
}
/*********************************************************************
* _finitef (MSVCRT.@)
*/
int CDECL _finitef( float num )
{
union { float f; UINT32 i; } u = { num };
return (u.i & 0x7fffffff) < 0x7f800000;
}
/*********************************************************************
* _isnanf (MSVCRT.@)
*/
int CDECL _isnanf( float num )
{
union { float f; UINT32 i; } u = { num };
return (u.i & 0x7fffffff) > 0x7f800000;
}
/*********************************************************************
* atanf (MSVCRT.@)
*
* Copied from musl: src/math/atanf.c
*/
float CDECL atanf( float x )
{
static const float atanhi[] = {
4.6364760399e-01,
7.8539812565e-01,
9.8279368877e-01,
1.5707962513e+00,
};
static const float atanlo[] = {
5.0121582440e-09,
3.7748947079e-08,
3.4473217170e-08,
7.5497894159e-08,
};
static const float aT[] = {
3.3333328366e-01,
-1.9999158382e-01,
1.4253635705e-01,
-1.0648017377e-01,
6.1687607318e-02,
};
float w, s1, s2, z;
unsigned int ix, sign;
int id;
#if _MSVCR_VER == 0
if (isnan(x)) return math_error(_DOMAIN, "atanf", x, 0, x);
#endif
ix = *(unsigned int*)&x;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
if (isnan(x))
return x;
z = atanhi[3] + 7.5231638453e-37;
return sign ? -z : z;
}
if (ix < 0x3ee00000) { /* |x| < 0.4375 */
if (ix < 0x39800000) { /* |x| < 2**-12 */
if (ix < 0x00800000)
/* raise underflow for subnormal x */
fp_barrierf(x*x);
return x;
}
id = -1;
} else {
x = fabsf(x);
if (ix < 0x3f980000) { /* |x| < 1.1875 */
if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0f * x - 1.0f) / (2.0f + x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x - 1.0f) / (x + 1.0f);
}
} else {
if (ix < 0x401c0000) { /* |x| < 2.4375 */
id = 2;
x = (x - 1.5f) / (1.0f + 1.5f * x);
} else { /* 2.4375 <= |x| < 2**26 */
id = 3;
x = -1.0f / x;
}
}
}
/* end of argument reduction */
z = x * x;
w = z * z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z * (aT[0] + w * (aT[2] + w * aT[4]));
s2 = w * (aT[1] + w * aT[3]);
if (id < 0)
return x - x * (s1 + s2);
z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
return sign ? -z : z;
}
static BOOL sqrtf_validate( float *x )
{
short c = _fdclass(*x);
if (c == FP_ZERO) return FALSE;
if (c == FP_NAN) return FALSE;
if (signbit(*x))
{
*x = math_error(_DOMAIN, "sqrtf", *x, 0, ret_nan(TRUE));
return FALSE;
}
if (c == FP_INFINITE) return FALSE;
return TRUE;
}
#if defined(__x86_64__) || defined(__i386__)
float CDECL sse2_sqrtf(float);
__ASM_GLOBAL_FUNC( sse2_sqrtf,
"sqrtss %xmm0, %xmm0\n\t"
"ret" )
#endif
/*********************************************************************
* sqrtf (MSVCRT.@)
*
* Copied from musl: src/math/sqrtf.c
*/
float CDECL sqrtf( float x )
{
#ifdef __x86_64__
if (!sqrtf_validate(&x))
return x;
return sse2_sqrtf(x);
#else
static const float tiny = 1.0e-30;
float z;
int ix,s,q,m,t,i;
unsigned int r;
ix = *(int*)&x;
if (!sqrtf_validate(&x))
return x;
/* normalize x */
m = ix >> 23;
if (m == 0) { /* subnormal x */
for (i = 0; (ix & 0x00800000) == 0; i++)
ix <<= 1;
m -= i - 1;
}
m -= 127; /* unbias exponent */
ix = (ix & 0x007fffff) | 0x00800000;
if (m & 1) /* odd m, double x to make it even */
ix += ix;
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix += ix;
q = s = 0; /* q = sqrt(x) */
r = 0x01000000; /* r = moving bit from right to left */
while (r != 0) {
t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
/* use floating add to find out rounding direction */
if (ix != 0) {
z = 1.0f - tiny; /* raise inexact flag */
if (z >= 1.0f) {
z = 1.0f + tiny;
if (z > 1.0f)
q += 2;
else
q += q & 1;
}
}
ix = (q >> 1) + 0x3f000000;
r = ix + ((unsigned int)m << 23);
z = *(float*)&r;
return z;
#endif
}
/*********************************************************************
* tanhf (MSVCRT.@)
*/
float CDECL tanhf( float x )
{
UINT32 ui = *(UINT32*)&x;
UINT32 sign = ui & 0x80000000;
float t;
/* x = |x| */
ui &= 0x7fffffff;
x = *(float*)&ui;
if (ui > 0x3f0c9f54) {
/* |x| > log(3)/2 ~= 0.5493 or nan */
if (ui > 0x41200000) {
if (ui > 0x7f800000) {
*(UINT32*)&x = ui | sign | 0x400000;
#if _MSVCR_VER < 140
return math_error(_DOMAIN, "tanhf", x, 0, x);
#else
return x;
#endif
}
/* |x| > 10 */
fp_barrierf(x + 0x1p120f);
t = 1 + 0 / x;
} else {
t = expm1f(2 * x);
t = 1 - 2 / (t + 2);
}
} else if (ui > 0x3e82c578) {
/* |x| > log(5/3)/2 ~= 0.2554 */
t = expm1f(2 * x);
t = t / (t + 2);
} else if (ui >= 0x00800000) {
/* |x| >= 0x1p-126 */
t = expm1f(-2 * x);
t = -t / (t + 2);
} else {
/* |x| is subnormal */
fp_barrierf(x * x);
t = x;
}
return sign ? -t : t;
}
#endif
/*********************************************************************
* acos (MSVCRT.@)
*
* Copied from musl: src/math/acos.c
*/
static double acos_R(double z)
{
static const double pS0 = 1.66666666666666657415e-01,
pS1 = -3.25565818622400915405e-01,
pS2 = 2.01212532134862925881e-01,
pS3 = -4.00555345006794114027e-02,
pS4 = 7.91534994289814532176e-04,
pS5 = 3.47933107596021167570e-05,
qS1 = -2.40339491173441421878e+00,
qS2 = 2.02094576023350569471e+00,
qS3 = -6.88283971605453293030e-01,
qS4 = 7.70381505559019352791e-02;
double p, q;
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
return p/q;
}
double CDECL acos( double x )
{
static const double pio2_hi = 1.57079632679489655800e+00,
pio2_lo = 6.12323399573676603587e-17;
double z, w, s, c, df;
unsigned int hx, ix;
ULONGLONG llx;
hx = *(ULONGLONG*)&x >> 32;
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
unsigned int lx;
lx = *(ULONGLONG*)&x;
if (((ix - 0x3ff00000) | lx) == 0) {
/* acos(1)=0, acos(-1)=pi */
if (hx >> 31)
return 2 * pio2_hi + 7.5231638452626401e-37;
return 0;
}
if (isnan(x)) return x;
return math_error(_DOMAIN, "acos", x, 0, 0 / (x - x));
}
/* |x| < 0.5 */
if (ix < 0x3fe00000) {
if (ix <= 0x3c600000) /* |x| < 2**-57 */
return pio2_hi + 7.5231638452626401e-37;
return pio2_hi - (x - (pio2_lo - x * acos_R(x * x)));
}
/* x < -0.5 */
if (hx >> 31) {
z = (1.0 + x) * 0.5;
s = sqrt(z);
w = acos_R(z) * s - pio2_lo;
return 2 * (pio2_hi - (s + w));
}
/* x > 0.5 */
z = (1.0 - x) * 0.5;
s = sqrt(z);
df = s;
llx = (*(ULONGLONG*)&df >> 32) << 32;
df = *(double*)&llx;
c = (z - df * df) / (s + df);
w = acos_R(z) * s + c;
return 2 * (df + w);
}
/*********************************************************************
* asin (MSVCRT.@)
*
* Copied from musl: src/math/asin.c
*/
static double asin_R(double z)
{
/* coefficients for R(x^2) */
static const double pS0 = 1.66666666666666657415e-01,
pS1 = -3.25565818622400915405e-01,
pS2 = 2.01212532134862925881e-01,
pS3 = -4.00555345006794114027e-02,
pS4 = 7.91534994289814532176e-04,
pS5 = 3.47933107596021167570e-05,
qS1 = -2.40339491173441421878e+00,
qS2 = 2.02094576023350569471e+00,
qS3 = -6.88283971605453293030e-01,
qS4 = 7.70381505559019352791e-02;
double p, q;
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
return p / q;
}
#ifdef __i386__
double CDECL x87_asin(double);
__ASM_GLOBAL_FUNC( x87_asin,
"fldl 4(%esp)\n\t"
SET_X87_CW(~0x37f)
"fld %st\n\t"
"fld1\n\t"
"fsubp\n\t"
"fld1\n\t"
"fadd %st(2)\n\t"
"fmulp\n\t"
"fsqrt\n\t"
"fpatan\n\t"
RESET_X87_CW
"ret" )
#endif
double CDECL asin( double x )
{
static const double pio2_hi = 1.57079632679489655800e+00,
pio2_lo = 6.12323399573676603587e-17;
double z, r, s;
unsigned int hx, ix;
ULONGLONG llx;
#ifdef __i386__
unsigned int x87_cw, sse2_cw;
#endif
hx = *(ULONGLONG*)&x >> 32;
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
unsigned int lx;
lx = *(ULONGLONG*)&x;
if (((ix - 0x3ff00000) | lx) == 0)
/* asin(1) = +-pi/2 with inexact */
return x * pio2_hi + 7.5231638452626401e-37;
if (isnan(x))
{
#ifdef __i386__
return math_error(_DOMAIN, "asin", x, 0, x);
#else
return x;
#endif
}
return math_error(_DOMAIN, "asin", x, 0, 0 / (x - x));
}
#ifdef __i386__
__control87_2(0, 0, &x87_cw, &sse2_cw);
if (!sse2_enabled || (x87_cw & _MCW_EM) != _MCW_EM
|| (sse2_cw & (_MCW_EM | _MCW_RC)) != _MCW_EM)
return x87_asin(x);
#endif
/* |x| < 0.5 */
if (ix < 0x3fe00000) {
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
if (ix < 0x3e500000 && ix >= 0x00100000)
return x;
return x + x * asin_R(x * x);
}
/* 1 > |x| >= 0.5 */
z = (1 - fabs(x)) * 0.5;
s = sqrt(z);
r = asin_R(z);
if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
x = pio2_hi - (2 * (s + s * r) - pio2_lo);
} else {
double f, c;
/* f+c = sqrt(z) */
f = s;
llx = (*(ULONGLONG*)&f >> 32) << 32;
f = *(double*)&llx;
c = (z - f * f) / (s + f);
x = 0.5 * pio2_hi - (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f));
}
if (hx >> 31)
return -x;
return x;
}
/*********************************************************************
* atan (MSVCRT.@)
*
* Copied from musl: src/math/atan.c
*/
double CDECL atan( double x )
{
static const double atanhi[] = {
4.63647609000806093515e-01,
7.85398163397448278999e-01,
9.82793723247329054082e-01,
1.57079632679489655800e+00,
};
static const double atanlo[] = {
2.26987774529616870924e-17,
3.06161699786838301793e-17,
1.39033110312309984516e-17,
6.12323399573676603587e-17,
};
static const double aT[] = {
3.33333333333329318027e-01,
-1.99999999998764832476e-01,
1.42857142725034663711e-01,
-1.11111104054623557880e-01,
9.09088713343650656196e-02,
-7.69187620504482999495e-02,
6.66107313738753120669e-02,
-5.83357013379057348645e-02,
4.97687799461593236017e-02,
-3.65315727442169155270e-02,
1.62858201153657823623e-02,
};
double w, s1, s2, z;
unsigned int ix, sign;
int id;
#if _MSVCR_VER == 0
if (isnan(x)) return math_error(_DOMAIN, "atan", x, 0, x);
#endif
ix = *(ULONGLONG*)&x >> 32;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x44100000) { /* if |x| >= 2^66 */
if (isnan(x))
return x;
z = atanhi[3] + 7.5231638452626401e-37;
return sign ? -z : z;
}
if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
if (ix < 0x3e400000) { /* |x| < 2^-27 */
if (ix < 0x00100000)
/* raise underflow for subnormal x */
fp_barrierf((float)x);
return x;
}
id = -1;
} else {
x = fabs(x);
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0 * x - 1.0) / (2.0 + x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x - 1.0) / (x + 1.0);
}
} else {
if (ix < 0x40038000) { /* |x| < 2.4375 */
id = 2;
x = (x - 1.5) / (1.0 + 1.5 * x);
} else { /* 2.4375 <= |x| < 2^66 */
id = 3;
x = -1.0 / x;
}
}
}
/* end of argument reduction */
z = x * x;
w = z * z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
if (id < 0)
return x - x * (s1 + s2);
z = atanhi[id] - (x * (s1 + s2) - atanlo[id] - x);
return sign ? -z : z;
}
/* Copied from musl: src/math/exp_data.c */
static const UINT64 exp_T[] = {
0x0ULL, 0x3ff0000000000000ULL,
0x3c9b3b4f1a88bf6eULL, 0x3feff63da9fb3335ULL,
0xbc7160139cd8dc5dULL, 0x3fefec9a3e778061ULL,
0xbc905e7a108766d1ULL, 0x3fefe315e86e7f85ULL,
0x3c8cd2523567f613ULL, 0x3fefd9b0d3158574ULL,
0xbc8bce8023f98efaULL, 0x3fefd06b29ddf6deULL,
0x3c60f74e61e6c861ULL, 0x3fefc74518759bc8ULL,
0x3c90a3e45b33d399ULL, 0x3fefbe3ecac6f383ULL,
0x3c979aa65d837b6dULL, 0x3fefb5586cf9890fULL,
0x3c8eb51a92fdeffcULL, 0x3fefac922b7247f7ULL,
0x3c3ebe3d702f9cd1ULL, 0x3fefa3ec32d3d1a2ULL,
0xbc6a033489906e0bULL, 0x3fef9b66affed31bULL,
0xbc9556522a2fbd0eULL, 0x3fef9301d0125b51ULL,
0xbc5080ef8c4eea55ULL, 0x3fef8abdc06c31ccULL,
0xbc91c923b9d5f416ULL, 0x3fef829aaea92de0ULL,
0x3c80d3e3e95c55afULL, 0x3fef7a98c8a58e51ULL,
0xbc801b15eaa59348ULL, 0x3fef72b83c7d517bULL,
0xbc8f1ff055de323dULL, 0x3fef6af9388c8deaULL,
0x3c8b898c3f1353bfULL, 0x3fef635beb6fcb75ULL,
0xbc96d99c7611eb26ULL, 0x3fef5be084045cd4ULL,
0x3c9aecf73e3a2f60ULL, 0x3fef54873168b9aaULL,
0xbc8fe782cb86389dULL, 0x3fef4d5022fcd91dULL,
0x3c8a6f4144a6c38dULL, 0x3fef463b88628cd6ULL,
0x3c807a05b0e4047dULL, 0x3fef3f49917ddc96ULL,
0x3c968efde3a8a894ULL, 0x3fef387a6e756238ULL,
0x3c875e18f274487dULL, 0x3fef31ce4fb2a63fULL,
0x3c80472b981fe7f2ULL, 0x3fef2b4565e27cddULL,
0xbc96b87b3f71085eULL, 0x3fef24dfe1f56381ULL,
0x3c82f7e16d09ab31ULL, 0x3fef1e9df51fdee1ULL,
0xbc3d219b1a6fbffaULL, 0x3fef187fd0dad990ULL,
0x3c8b3782720c0ab4ULL, 0x3fef1285a6e4030bULL,
0x3c6e149289cecb8fULL, 0x3fef0cafa93e2f56ULL,
0x3c834d754db0abb6ULL, 0x3fef06fe0a31b715ULL,
0x3c864201e2ac744cULL, 0x3fef0170fc4cd831ULL,
0x3c8fdd395dd3f84aULL, 0x3feefc08b26416ffULL,
0xbc86a3803b8e5b04ULL, 0x3feef6c55f929ff1ULL,
0xbc924aedcc4b5068ULL, 0x3feef1a7373aa9cbULL,
0xbc9907f81b512d8eULL, 0x3feeecae6d05d866ULL,
0xbc71d1e83e9436d2ULL, 0x3feee7db34e59ff7ULL,
0xbc991919b3ce1b15ULL, 0x3feee32dc313a8e5ULL,
0x3c859f48a72a4c6dULL, 0x3feedea64c123422ULL,
0xbc9312607a28698aULL, 0x3feeda4504ac801cULL,
0xbc58a78f4817895bULL, 0x3feed60a21f72e2aULL,
0xbc7c2c9b67499a1bULL, 0x3feed1f5d950a897ULL,
0x3c4363ed60c2ac11ULL, 0x3feece086061892dULL,
0x3c9666093b0664efULL, 0x3feeca41ed1d0057ULL,
0x3c6ecce1daa10379ULL, 0x3feec6a2b5c13cd0ULL,
0x3c93ff8e3f0f1230ULL, 0x3feec32af0d7d3deULL,
0x3c7690cebb7aafb0ULL, 0x3feebfdad5362a27ULL,
0x3c931dbdeb54e077ULL, 0x3feebcb299fddd0dULL,
0xbc8f94340071a38eULL, 0x3feeb9b2769d2ca7ULL,
0xbc87deccdc93a349ULL, 0x3feeb6daa2cf6642ULL,
0xbc78dec6bd0f385fULL, 0x3feeb42b569d4f82ULL,
0xbc861246ec7b5cf6ULL, 0x3feeb1a4ca5d920fULL,
0x3c93350518fdd78eULL, 0x3feeaf4736b527daULL,
0x3c7b98b72f8a9b05ULL, 0x3feead12d497c7fdULL,
0x3c9063e1e21c5409ULL, 0x3feeab07dd485429ULL,
0x3c34c7855019c6eaULL, 0x3feea9268a5946b7ULL,
0x3c9432e62b64c035ULL, 0x3feea76f15ad2148ULL,
0xbc8ce44a6199769fULL, 0x3feea5e1b976dc09ULL,
0xbc8c33c53bef4da8ULL, 0x3feea47eb03a5585ULL,
0xbc845378892be9aeULL, 0x3feea34634ccc320ULL,
0xbc93cedd78565858ULL, 0x3feea23882552225ULL,
0x3c5710aa807e1964ULL, 0x3feea155d44ca973ULL,
0xbc93b3efbf5e2228ULL, 0x3feea09e667f3bcdULL,
0xbc6a12ad8734b982ULL, 0x3feea012750bdabfULL,
0xbc6367efb86da9eeULL, 0x3fee9fb23c651a2fULL,
0xbc80dc3d54e08851ULL, 0x3fee9f7df9519484ULL,
0xbc781f647e5a3ecfULL, 0x3fee9f75e8ec5f74ULL,
0xbc86ee4ac08b7db0ULL, 0x3fee9f9a48a58174ULL,
0xbc8619321e55e68aULL, 0x3fee9feb564267c9ULL,
0x3c909ccb5e09d4d3ULL, 0x3feea0694fde5d3fULL,
0xbc7b32dcb94da51dULL, 0x3feea11473eb0187ULL,
0x3c94ecfd5467c06bULL, 0x3feea1ed0130c132ULL,
0x3c65ebe1abd66c55ULL, 0x3feea2f336cf4e62ULL,
0xbc88a1c52fb3cf42ULL, 0x3feea427543e1a12ULL,
0xbc9369b6f13b3734ULL, 0x3feea589994cce13ULL,
0xbc805e843a19ff1eULL, 0x3feea71a4623c7adULL,
0xbc94d450d872576eULL, 0x3feea8d99b4492edULL,
0x3c90ad675b0e8a00ULL, 0x3feeaac7d98a6699ULL,
0x3c8db72fc1f0eab4ULL, 0x3feeace5422aa0dbULL,
0xbc65b6609cc5e7ffULL, 0x3feeaf3216b5448cULL,
0x3c7bf68359f35f44ULL, 0x3feeb1ae99157736ULL,
0xbc93091fa71e3d83ULL, 0x3feeb45b0b91ffc6ULL,
0xbc5da9b88b6c1e29ULL, 0x3feeb737b0cdc5e5ULL,
0xbc6c23f97c90b959ULL, 0x3feeba44cbc8520fULL,
0xbc92434322f4f9aaULL, 0x3feebd829fde4e50ULL,
0xbc85ca6cd7668e4bULL, 0x3feec0f170ca07baULL,
0x3c71affc2b91ce27ULL, 0x3feec49182a3f090ULL,
0x3c6dd235e10a73bbULL, 0x3feec86319e32323ULL,
0xbc87c50422622263ULL, 0x3feecc667b5de565ULL,
0x3c8b1c86e3e231d5ULL, 0x3feed09bec4a2d33ULL,
0xbc91bbd1d3bcbb15ULL, 0x3feed503b23e255dULL,
0x3c90cc319cee31d2ULL, 0x3feed99e1330b358ULL,
0x3c8469846e735ab3ULL, 0x3feede6b5579fdbfULL,
0xbc82dfcd978e9db4ULL, 0x3feee36bbfd3f37aULL,
0x3c8c1a7792cb3387ULL, 0x3feee89f995ad3adULL,
0xbc907b8f4ad1d9faULL, 0x3feeee07298db666ULL,
0xbc55c3d956dcaebaULL, 0x3feef3a2b84f15fbULL,
0xbc90a40e3da6f640ULL, 0x3feef9728de5593aULL,
0xbc68d6f438ad9334ULL, 0x3feeff76f2fb5e47ULL,
0xbc91eee26b588a35ULL, 0x3fef05b030a1064aULL,
0x3c74ffd70a5fddcdULL, 0x3fef0c1e904bc1d2ULL,
0xbc91bdfbfa9298acULL, 0x3fef12c25bd71e09ULL,
0x3c736eae30af0cb3ULL, 0x3fef199bdd85529cULL,
0x3c8ee3325c9ffd94ULL, 0x3fef20ab5fffd07aULL,
0x3c84e08fd10959acULL, 0x3fef27f12e57d14bULL,
0x3c63cdaf384e1a67ULL, 0x3fef2f6d9406e7b5ULL,
0x3c676b2c6c921968ULL, 0x3fef3720dcef9069ULL,
0xbc808a1883ccb5d2ULL, 0x3fef3f0b555dc3faULL,
0xbc8fad5d3ffffa6fULL, 0x3fef472d4a07897cULL,
0xbc900dae3875a949ULL, 0x3fef4f87080d89f2ULL,
0x3c74a385a63d07a7ULL, 0x3fef5818dcfba487ULL,
0xbc82919e2040220fULL, 0x3fef60e316c98398ULL,
0x3c8e5a50d5c192acULL, 0x3fef69e603db3285ULL,
0x3c843a59ac016b4bULL, 0x3fef7321f301b460ULL,
0xbc82d52107b43e1fULL, 0x3fef7c97337b9b5fULL,
0xbc892ab93b470dc9ULL, 0x3fef864614f5a129ULL,
0x3c74b604603a88d3ULL, 0x3fef902ee78b3ff6ULL,
0x3c83c5ec519d7271ULL, 0x3fef9a51fbc74c83ULL,
0xbc8ff7128fd391f0ULL, 0x3fefa4afa2a490daULL,
0xbc8dae98e223747dULL, 0x3fefaf482d8e67f1ULL,
0x3c8ec3bc41aa2008ULL, 0x3fefba1bee615a27ULL,
0x3c842b94c3a9eb32ULL, 0x3fefc52b376bba97ULL,
0x3c8a64a931d185eeULL, 0x3fefd0765b6e4540ULL,
0xbc8e37bae43be3edULL, 0x3fefdbfdad9cbe14ULL,
0x3c77893b4d91cd9dULL, 0x3fefe7c1819e90d8ULL,
0x3c5305c14160cc89ULL, 0x3feff3c22b8f71f1ULL
};
/*********************************************************************
* exp (MSVCRT.@)
*
* Copied from musl: src/math/exp.c
*/
double CDECL exp( double x )
{
static const double C[] = {
0x1.ffffffffffdbdp-2,
0x1.555555555543cp-3,
0x1.55555cf172b91p-5,
0x1.1111167a4d017p-7
};
static const double invln2N = 0x1.71547652b82fep0 * (1 << 7),
negln2hiN = -0x1.62e42fefa0000p-8,
negln2loN = -0x1.cf79abc9e3b3ap-47;
UINT32 abstop;
UINT64 ki, idx, top, sbits;
double kd, z, r, r2, scale, tail, tmp;
abstop = (*(UINT64*)&x >> 52) & 0x7ff;
if (abstop - 0x3c9 >= 0x408 - 0x3c9) {
if (abstop - 0x3c9 >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return 1.0 + x;
if (abstop >= 0x409) {
if (*(UINT64*)&x == 0xfff0000000000000ULL)
return 0.0;
#if _MSVCR_VER == 0
if (*(UINT64*)&x > 0x7ff0000000000000ULL)
return math_error(_DOMAIN, "exp", x, 0, 1.0 + x);
#endif
if (abstop >= 0x7ff)
return 1.0 + x;
if (*(UINT64*)&x >> 63)
return math_error(_UNDERFLOW, "exp", x, 0, fp_barrier(DBL_MIN) * DBL_MIN);
else
return math_error(_OVERFLOW, "exp", x, 0, fp_barrier(DBL_MAX) * DBL_MAX);
}
/* Large x is special cased below. */
abstop = 0;
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
z = invln2N * x;
kd = round(z);
ki = (INT64)kd;
r = x + kd * negln2hiN + kd * negln2loN;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % (1 << 7));
top = ki << (52 - 7);
tail = *(double*)&exp_T[idx];
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = exp_T[idx + 1] + top;
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.25/N ulp larger. */
/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
tmp = tail + r + r2 * (C[0] + r * C[1]) + r2 * r2 * (C[2] + r * C[3]);
if (abstop == 0) {
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
double scale, y;
if ((ki & 0x80000000) == 0) {
/* k > 0, the exponent of scale might have overflowed by <= 460. */
sbits -= 1009ull << 52;
scale = *(double*)&sbits;
y = 0x1p1009 * (scale + scale * tmp);
if (isinf(y))
return math_error(_OVERFLOW, "exp", x, 0, y);
return y;
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = *(double*)&sbits;
y = scale + scale * tmp;
if (y < 1.0) {
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = hi + lo - 1.0;
/* Avoid -0.0 with downward rounding. */
if (y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
fp_barrier(fp_barrier(0x1p-1022) * 0x1p-1022);
y = 0x1p-1022 * y;
return math_error(_UNDERFLOW, "exp", x, 0, y);
}
y = 0x1p-1022 * y;
return y;
}
scale = *(double*)&sbits;
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
static BOOL sqrt_validate( double *x, BOOL update_sw )
{
short c = _dclass(*x);
if (c == FP_ZERO) return FALSE;
if (c == FP_NAN)
{
#ifdef __i386__
if (update_sw)
*x = math_error(_DOMAIN, "sqrt", *x, 0, *x);
#else
/* set signaling bit */
*(ULONGLONG*)x |= 0x8000000000000ULL;
#endif
return FALSE;
}
if (signbit(*x))
{
*x = math_error(_DOMAIN, "sqrt", *x, 0, ret_nan(update_sw));
return FALSE;
}
if (c == FP_INFINITE) return FALSE;
return TRUE;
}
#if defined(__x86_64__) || defined(__i386__)
double CDECL sse2_sqrt(double);
__ASM_GLOBAL_FUNC( sse2_sqrt,
"sqrtsd %xmm0, %xmm0\n\t"
"ret" )
#endif
#ifdef __i386__
double CDECL x87_sqrt(double);
__ASM_GLOBAL_FUNC( x87_sqrt,
"fldl 4(%esp)\n\t"
SET_X87_CW(0xc00)
"fsqrt\n\t"
RESET_X87_CW
"ret" )
#endif
/*********************************************************************
* sqrt (MSVCRT.@)
*
* Copied from musl: src/math/sqrt.c
*/
double CDECL sqrt( double x )
{
#ifdef __x86_64__
if (!sqrt_validate(&x, TRUE))
return x;
return sse2_sqrt(x);
#elif defined( __i386__ )
if (!sqrt_validate(&x, TRUE))
return x;
return x87_sqrt(x);
#else
static const double tiny = 1.0e-300;
double z;
int sign = 0x80000000;
int ix0,s0,q,m,t,i;
unsigned int r,t1,s1,ix1,q1;
ULONGLONG ix;
if (!sqrt_validate(&x, TRUE))
return x;
ix = *(ULONGLONG*)&x;
ix0 = ix >> 32;
ix1 = ix;
/* normalize x */
m = ix0 >> 20;
if (m == 0) { /* subnormal x */
while (ix0 == 0) {
m -= 21;
ix0 |= (ix1 >> 11);
ix1 <<= 21;
}
for (i=0; (ix0 & 0x00100000) == 0; i++)
ix0 <<= 1;
m -= i - 1;
ix0 |= ix1 >> (32 - i);
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0 & 0x000fffff) | 0x00100000;
if (m & 1) { /* odd m, double x to make it even */
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while (r != 0) {
t = s0 + r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t1 = s1 + r;
t = s0;
if (t < ix0 || (t == ix0 && t1 <= ix1)) {
s1 = t1 + r;
if ((t1&sign) == sign && (s1 & sign) == 0)
s0++;
ix0 -= t;
if (ix1 < t1)
ix0--;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
r >>= 1;
}
/* use floating add to find out rounding direction */
if ((ix0 | ix1) != 0) {
z = 1.0 - tiny; /* raise inexact flag */
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == (unsigned int)0xffffffff) {
q1 = 0;
q++;
} else if (z > 1.0) {
if (q1 == (unsigned int)0xfffffffe)
q++;
q1 += 2;
} else
q1 += q1 & 1;
}
}
ix0 = (q >> 1) + 0x3fe00000;
ix1 = q1 >> 1;
if (q & 1)
ix1 |= sign;
ix = ix0 + ((unsigned int)m << 20);
ix <<= 32;
ix |= ix1;
return *(double*)&ix;
#endif
}
/*********************************************************************
* tanh (MSVCRT.@)
*/
double CDECL tanh( double x )
{
UINT64 ui = *(UINT64*)&x;
UINT64 sign = ui & 0x8000000000000000ULL;
UINT32 w;
double t;
/* x = |x| */
ui &= (UINT64)-1 / 2;
x = *(double*)&ui;
w = ui >> 32;
if (w > 0x3fe193ea) {
/* |x| > log(3)/2 ~= 0.5493 or nan */
if (w > 0x40340000) {
if (ui > 0x7ff0000000000000ULL) {
*(UINT64*)&x = ui | sign | 0x0008000000000000ULL;
#if _MSVCR_VER < 140
return math_error(_DOMAIN, "tanh", x, 0, x);
#else
return x;
#endif
}
/* |x| > 20 */
/* note: this branch avoids raising overflow */
fp_barrier(x + 0x1p120f);
t = 1 - 0 / x;
} else {
t = expm1(2 * x);
t = 1 - 2 / (t + 2);
}
} else if (w > 0x3fd058ae) {
/* |x| > log(5/3)/2 ~= 0.2554 */
t = expm1(2 * x);
t = t / (t + 2);
} else if (w >= 0x00100000) {
/* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
t = expm1(-2 * x);
t = -t / (t + 2);
} else {
/* |x| is subnormal */
/* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */
fp_barrier((float)x);
t = x;
}
return sign ? -t : t;
}
#if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
#define CREATE_FPU_FUNC1(name, call) \
__ASM_GLOBAL_FUNC(name, \
"pushl %ebp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
"movl %esp, %ebp\n\t" \
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
"subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
"fstpl (%esp)\n\t" /* store function argument */ \
"fwait\n\t" \
"movl $1, %ecx\n\t" /* empty FPU stack */ \
"1:\n\t" \
"fxam\n\t" \
"fstsw %ax\n\t" \
"and $0x4500, %ax\n\t" \
"cmp $0x4100, %ax\n\t" \
"je 2f\n\t" \
"fstpl (%esp,%ecx,8)\n\t" \
"fwait\n\t" \
"incl %ecx\n\t" \
"jmp 1b\n\t" \
"2:\n\t" \
"movl %ecx, -4(%ebp)\n\t" \
"call " __ASM_NAME( #call ) "\n\t" \
"movl -4(%ebp), %ecx\n\t" \
"fstpl (%esp)\n\t" /* save result */ \
"3:\n\t" /* restore FPU stack */ \
"decl %ecx\n\t" \
"fldl (%esp,%ecx,8)\n\t" \
"cmpl $0, %ecx\n\t" \
"jne 3b\n\t" \
"leave\n\t" \
__ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
__ASM_CFI(".cfi_same_value %ebp\n\t") \
"ret")
#define CREATE_FPU_FUNC2(name, call) \
__ASM_GLOBAL_FUNC(name, \
"pushl %ebp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
"movl %esp, %ebp\n\t" \
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
"subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
"fstpl 8(%esp)\n\t" /* store function argument */ \
"fwait\n\t" \
"fstpl (%esp)\n\t" \
"fwait\n\t" \
"movl $2, %ecx\n\t" /* empty FPU stack */ \
"1:\n\t" \
"fxam\n\t" \
"fstsw %ax\n\t" \
"and $0x4500, %ax\n\t" \
"cmp $0x4100, %ax\n\t" \
"je 2f\n\t" \
"fstpl (%esp,%ecx,8)\n\t" \
"fwait\n\t" \
"incl %ecx\n\t" \
"jmp 1b\n\t" \
"2:\n\t" \
"movl %ecx, -4(%ebp)\n\t" \
"call " __ASM_NAME( #call ) "\n\t" \
"movl -4(%ebp), %ecx\n\t" \
"fstpl 8(%esp)\n\t" /* save result */ \
"3:\n\t" /* restore FPU stack */ \
"decl %ecx\n\t" \
"fldl (%esp,%ecx,8)\n\t" \
"cmpl $1, %ecx\n\t" \
"jne 3b\n\t" \
"leave\n\t" \
__ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
__ASM_CFI(".cfi_same_value %ebp\n\t") \
"ret")
CREATE_FPU_FUNC1(_CIacos, acos)
CREATE_FPU_FUNC1(_CIasin, asin)
CREATE_FPU_FUNC1(_CIatan, atan)
CREATE_FPU_FUNC2(_CIatan2, atan2)
CREATE_FPU_FUNC1(_CIcos, cos)
CREATE_FPU_FUNC1(_CIcosh, cosh)
CREATE_FPU_FUNC1(_CIexp, exp)
CREATE_FPU_FUNC2(_CIfmod, fmod)
CREATE_FPU_FUNC1(_CIlog, log)
CREATE_FPU_FUNC1(_CIlog10, log10)
CREATE_FPU_FUNC2(_CIpow, pow)
CREATE_FPU_FUNC1(_CIsin, sin)
CREATE_FPU_FUNC1(_CIsinh, sinh)
CREATE_FPU_FUNC1(_CIsqrt, sqrt)
CREATE_FPU_FUNC1(_CItan, tan)
CREATE_FPU_FUNC1(_CItanh, tanh)
__ASM_GLOBAL_FUNC(_ftol,
"pushl %ebp\n\t"
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t")
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t")
"movl %esp, %ebp\n\t"
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t")
"subl $12, %esp\n\t" /* sizeof(LONGLONG) + 2*sizeof(WORD) */
"fnstcw (%esp)\n\t"
"mov (%esp), %ax\n\t"
"or $0xc00, %ax\n\t"
"mov %ax, 2(%esp)\n\t"
"fldcw 2(%esp)\n\t"
"fistpq 4(%esp)\n\t"
"fldcw (%esp)\n\t"
"movl 4(%esp), %eax\n\t"
"movl 8(%esp), %edx\n\t"
"leave\n\t"
__ASM_CFI(".cfi_def_cfa %esp,4\n\t")
__ASM_CFI(".cfi_same_value %ebp\n\t")
"ret")
#endif /* (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) */
/*********************************************************************
* _fpclass (MSVCRT.@)
*/
int CDECL _fpclass(double num)
{
union { double f; UINT64 i; } u = { num };
int e = u.i >> 52 & 0x7ff;
int s = u.i >> 63;
switch (e)
{
case 0:
if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD;
return s ? _FPCLASS_NZ : _FPCLASS_PZ;
case 0x7ff:
if (u.i << 12) return ((u.i >> 51) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN;
return s ? _FPCLASS_NINF : _FPCLASS_PINF;
default:
return s ? _FPCLASS_NN : _FPCLASS_PN;
}
}
/*********************************************************************
* _rotl (MSVCRT.@)
*/
unsigned int CDECL MSVCRT__rotl(unsigned int num, int shift)
{
shift &= 31;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotl (MSVCRT.@)
*/
__msvcrt_ulong CDECL MSVCRT__lrotl(__msvcrt_ulong num, int shift)
{
shift &= 0x1f;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotr (MSVCRT.@)
*/
__msvcrt_ulong CDECL MSVCRT__lrotr(__msvcrt_ulong num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotr (MSVCRT.@)
*/
unsigned int CDECL MSVCRT__rotr(unsigned int num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotl64 (MSVCRT.@)
*/
unsigned __int64 CDECL MSVCRT__rotl64(unsigned __int64 num, int shift)
{
shift &= 63;
return (num << shift) | (num >> (64-shift));
}
/*********************************************************************
* _rotr64 (MSVCRT.@)
*/
unsigned __int64 CDECL MSVCRT__rotr64(unsigned __int64 num, int shift)
{
shift &= 63;
return (num >> shift) | (num << (64-shift));
}
/*********************************************************************
* abs (MSVCRT.@)
*/
int CDECL abs( int n )
{
return n >= 0 ? n : -n;
}
/*********************************************************************
* labs (MSVCRT.@)
*/
__msvcrt_long CDECL labs( __msvcrt_long n )
{
return n >= 0 ? n : -n;
}
#if _MSVCR_VER>=100
/*********************************************************************
* llabs (MSVCR100.@)
*/
__int64 CDECL llabs( __int64 n )
{
return n >= 0 ? n : -n;
}
#endif
#if _MSVCR_VER>=120
/*********************************************************************
* imaxabs (MSVCR120.@)
*/
intmax_t CDECL imaxabs( intmax_t n )
{
return n >= 0 ? n : -n;
}
#endif
/*********************************************************************
* _abs64 (MSVCRT.@)
*/
__int64 CDECL _abs64( __int64 n )
{
return n >= 0 ? n : -n;
}
#if defined(__i386__) || defined(__x86_64__)
static void _setfp_sse( unsigned int *cw, unsigned int cw_mask,
unsigned int *sw, unsigned int sw_mask )
{
#if defined(__GNUC__) || defined(__clang__)
unsigned long old_fpword, fpword;
unsigned int flags;
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
old_fpword = fpword;
cw_mask &= _MCW_EM | _MCW_RC | _MCW_DN;
sw_mask &= _MCW_EM;
if (sw)
{
flags = 0;
if (fpword & 0x1) flags |= _SW_INVALID;
if (fpword & 0x2) flags |= _SW_DENORMAL;
if (fpword & 0x4) flags |= _SW_ZERODIVIDE;
if (fpword & 0x8) flags |= _SW_OVERFLOW;
if (fpword & 0x10) flags |= _SW_UNDERFLOW;
if (fpword & 0x20) flags |= _SW_INEXACT;
*sw = (flags & ~sw_mask) | (*sw & sw_mask);
TRACE("sse2 update sw %08x to %08x\n", flags, *sw);
fpword &= ~0x3f;
if (*sw & _SW_INVALID) fpword |= 0x1;
if (*sw & _SW_DENORMAL) fpword |= 0x2;
if (*sw & _SW_ZERODIVIDE) fpword |= 0x4;
if (*sw & _SW_OVERFLOW) fpword |= 0x8;
if (*sw & _SW_UNDERFLOW) fpword |= 0x10;
if (*sw & _SW_INEXACT) fpword |= 0x20;
*sw = flags;
}
if (cw)
{
flags = 0;
if (fpword & 0x80) flags |= _EM_INVALID;
if (fpword & 0x100) flags |= _EM_DENORMAL;
if (fpword & 0x200) flags |= _EM_ZERODIVIDE;
if (fpword & 0x400) flags |= _EM_OVERFLOW;
if (fpword & 0x800) flags |= _EM_UNDERFLOW;
if (fpword & 0x1000) flags |= _EM_INEXACT;
switch (fpword & 0x6000)
{
case 0x6000: flags |= _RC_UP|_RC_DOWN; break;
case 0x4000: flags |= _RC_UP; break;
case 0x2000: flags |= _RC_DOWN; break;
}
switch (fpword & 0x8040)
{
case 0x0040: flags |= _DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
case 0x8000: flags |= _DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
case 0x8040: flags |= _DN_FLUSH; break;
}
*cw = (flags & ~cw_mask) | (*cw & cw_mask);
TRACE("sse2 update cw %08x to %08x\n", flags, *cw);
fpword &= ~0xffc0;
if (*cw & _EM_INVALID) fpword |= 0x80;
if (*cw & _EM_DENORMAL) fpword |= 0x100;
if (*cw & _EM_ZERODIVIDE) fpword |= 0x200;
if (*cw & _EM_OVERFLOW) fpword |= 0x400;
if (*cw & _EM_UNDERFLOW) fpword |= 0x800;
if (*cw & _EM_INEXACT) fpword |= 0x1000;
switch (*cw & _MCW_RC)
{
case _RC_UP|_RC_DOWN: fpword |= 0x6000; break;
case _RC_UP: fpword |= 0x4000; break;
case _RC_DOWN: fpword |= 0x2000; break;
}
switch (*cw & _MCW_DN)
{
case _DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
case _DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
case _DN_FLUSH: fpword |= 0x8040; break;
}
/* clear status word if anything changes */
if (fpword != old_fpword && !sw)
{
TRACE("sse2 clear status word\n");
fpword &= ~0x3f;
}
}
if (fpword != old_fpword)
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
#else
FIXME("not implemented\n");
if (cw) *cw = 0;
if (sw) *sw = 0;
#endif
}
#endif
static void _setfp( unsigned int *cw, unsigned int cw_mask,
unsigned int *sw, unsigned int sw_mask )
{
#if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
unsigned long oldcw = 0, newcw = 0;
unsigned long oldsw = 0, newsw = 0;
unsigned int flags;
cw_mask &= _MCW_EM | _MCW_IC | _MCW_RC | _MCW_PC;
sw_mask &= _MCW_EM;
if (sw)
{
__asm__ __volatile__( "fstsw %0" : "=m" (newsw) );
oldsw = newsw;
flags = 0;
if (newsw & 0x1) flags |= _SW_INVALID;
if (newsw & 0x2) flags |= _SW_DENORMAL;
if (newsw & 0x4) flags |= _SW_ZERODIVIDE;
if (newsw & 0x8) flags |= _SW_OVERFLOW;
if (newsw & 0x10) flags |= _SW_UNDERFLOW;
if (newsw & 0x20) flags |= _SW_INEXACT;
*sw = (flags & ~sw_mask) | (*sw & sw_mask);
TRACE("x86 update sw %08x to %08x\n", flags, *sw);
newsw &= ~0x3f;
if (*sw & _SW_INVALID) newsw |= 0x1;
if (*sw & _SW_DENORMAL) newsw |= 0x2;
if (*sw & _SW_ZERODIVIDE) newsw |= 0x4;
if (*sw & _SW_OVERFLOW) newsw |= 0x8;
if (*sw & _SW_UNDERFLOW) newsw |= 0x10;
if (*sw & _SW_INEXACT) newsw |= 0x20;
*sw = flags;
}
if (cw)
{
__asm__ __volatile__( "fstcw %0" : "=m" (newcw) );
oldcw = newcw;
flags = 0;
if (newcw & 0x1) flags |= _EM_INVALID;
if (newcw & 0x2) flags |= _EM_DENORMAL;
if (newcw & 0x4) flags |= _EM_ZERODIVIDE;
if (newcw & 0x8) flags |= _EM_OVERFLOW;
if (newcw & 0x10) flags |= _EM_UNDERFLOW;
if (newcw & 0x20) flags |= _EM_INEXACT;
switch (newcw & 0xc00)
{
case 0xc00: flags |= _RC_UP|_RC_DOWN; break;
case 0x800: flags |= _RC_UP; break;
case 0x400: flags |= _RC_DOWN; break;
}
switch (newcw & 0x300)
{
case 0x0: flags |= _PC_24; break;
case 0x200: flags |= _PC_53; break;
case 0x300: flags |= _PC_64; break;
}
if (newcw & 0x1000) flags |= _IC_AFFINE;
*cw = (flags & ~cw_mask) | (*cw & cw_mask);
TRACE("x86 update cw %08x to %08x\n", flags, *cw);
newcw &= ~0x1f3f;
if (*cw & _EM_INVALID) newcw |= 0x1;
if (*cw & _EM_DENORMAL) newcw |= 0x2;
if (*cw & _EM_ZERODIVIDE) newcw |= 0x4;
if (*cw & _EM_OVERFLOW) newcw |= 0x8;
if (*cw & _EM_UNDERFLOW) newcw |= 0x10;
if (*cw & _EM_INEXACT) newcw |= 0x20;
switch (*cw & _MCW_RC)
{
case _RC_UP|_RC_DOWN: newcw |= 0xc00; break;
case _RC_UP: newcw |= 0x800; break;
case _RC_DOWN: newcw |= 0x400; break;
}
switch (*cw & _MCW_PC)
{
case _PC_64: newcw |= 0x300; break;
case _PC_53: newcw |= 0x200; break;
case _PC_24: newcw |= 0x0; break;
}
if (*cw & _IC_AFFINE) newcw |= 0x1000;
}
if (oldsw != newsw && (newsw & 0x3f))
{
struct {
WORD control_word;
WORD unused1;
WORD status_word;
WORD unused2;
WORD tag_word;
WORD unused3;
DWORD instruction_pointer;
WORD code_segment;
WORD unused4;
DWORD operand_addr;
WORD data_segment;
WORD unused5;
} fenv;
assert(cw);
__asm__ __volatile__( "fnstenv %0" : "=m" (fenv) );
fenv.control_word = newcw;
fenv.status_word = newsw;
__asm__ __volatile__( "fldenv %0" : : "m" (fenv) : "st", "st(1)",
"st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)" );
return;
}
if (oldsw != newsw)
__asm__ __volatile__( "fnclex" );
if (oldcw != newcw)
__asm__ __volatile__( "fldcw %0" : : "m" (newcw) );
#elif defined(__x86_64__)
_setfp_sse(cw, cw_mask, sw, sw_mask);
#elif defined(__aarch64__)
ULONG_PTR old_fpsr = 0, fpsr = 0, old_fpcr = 0, fpcr = 0;
unsigned int flags;
cw_mask &= _MCW_EM | _MCW_RC;
sw_mask &= _MCW_EM;
if (sw)
{
__asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) );
old_fpsr = fpsr;
flags = 0;
if (fpsr & 0x1) flags |= _SW_INVALID;
if (fpsr & 0x2) flags |= _SW_ZERODIVIDE;
if (fpsr & 0x4) flags |= _SW_OVERFLOW;
if (fpsr & 0x8) flags |= _SW_UNDERFLOW;
if (fpsr & 0x10) flags |= _SW_INEXACT;
if (fpsr & 0x80) flags |= _SW_DENORMAL;
*sw = (flags & ~sw_mask) | (*sw & sw_mask);
TRACE("aarch64 update sw %08x to %08x\n", flags, *sw);
fpsr &= ~0x9f;
if (*sw & _SW_INVALID) fpsr |= 0x1;
if (*sw & _SW_ZERODIVIDE) fpsr |= 0x2;
if (*sw & _SW_OVERFLOW) fpsr |= 0x4;
if (*sw & _SW_UNDERFLOW) fpsr |= 0x8;
if (*sw & _SW_INEXACT) fpsr |= 0x10;
if (*sw & _SW_DENORMAL) fpsr |= 0x80;
*sw = flags;
}
if (cw)
{
__asm__ __volatile__( "mrs %0, fpcr" : "=r" (fpcr) );
old_fpcr = fpcr;
flags = 0;
if (!(fpcr & 0x100)) flags |= _EM_INVALID;
if (!(fpcr & 0x200)) flags |= _EM_ZERODIVIDE;
if (!(fpcr & 0x400)) flags |= _EM_OVERFLOW;
if (!(fpcr & 0x800)) flags |= _EM_UNDERFLOW;
if (!(fpcr & 0x1000)) flags |= _EM_INEXACT;
if (!(fpcr & 0x8000)) flags |= _EM_DENORMAL;
switch (fpcr & 0xc00000)
{
case 0x400000: flags |= _RC_UP; break;
case 0x800000: flags |= _RC_DOWN; break;
case 0xc00000: flags |= _RC_CHOP; break;
}
*cw = (flags & ~cw_mask) | (*cw & cw_mask);
TRACE("aarch64 update cw %08x to %08x\n", flags, *cw);
fpcr &= ~0xc09f00ul;
if (!(*cw & _EM_INVALID)) fpcr |= 0x100;
if (!(*cw & _EM_ZERODIVIDE)) fpcr |= 0x200;
if (!(*cw & _EM_OVERFLOW)) fpcr |= 0x400;
if (!(*cw & _EM_UNDERFLOW)) fpcr |= 0x800;
if (!(*cw & _EM_INEXACT)) fpcr |= 0x1000;
if (!(*cw & _EM_DENORMAL)) fpcr |= 0x8000;
switch (*cw & _MCW_RC)
{
case _RC_CHOP: fpcr |= 0xc00000; break;
case _RC_UP: fpcr |= 0x400000; break;
case _RC_DOWN: fpcr |= 0x800000; break;
}
}
/* mask exceptions if needed */
if (old_fpcr != fpcr && ~(old_fpcr >> 8) & fpsr & 0x9f != fpsr & 0x9f)
{
ULONG_PTR mask = fpcr & ~0x9f00;
__asm__ __volatile__( "msr fpcr, %0" :: "r" (mask) );
}
if (old_fpsr != fpsr)
__asm__ __volatile__( "msr fpsr, %0" :: "r" (fpsr) );
if (old_fpcr != fpcr)
__asm__ __volatile__( "msr fpcr, %0" :: "r" (fpcr) );
#elif defined(__arm__) && !defined(__SOFTFP__)
DWORD old_fpscr, fpscr;
unsigned int flags;
__asm__ __volatile__( "vmrs %0, fpscr" : "=r" (fpscr) );
old_fpscr = fpscr;
cw_mask &= _MCW_EM | _MCW_RC;
sw_mask &= _MCW_EM;
if (sw)
{
flags = 0;
if (fpscr & 0x1) flags |= _SW_INVALID;
if (fpscr & 0x2) flags |= _SW_ZERODIVIDE;
if (fpscr & 0x4) flags |= _SW_OVERFLOW;
if (fpscr & 0x8) flags |= _SW_UNDERFLOW;
if (fpscr & 0x10) flags |= _SW_INEXACT;
if (fpscr & 0x80) flags |= _SW_DENORMAL;
*sw = (flags & ~sw_mask) | (*sw & sw_mask);
TRACE("arm update sw %08x to %08x\n", flags, *sw);
fpscr &= ~0x9f;
if (*sw & _SW_INVALID) fpscr |= 0x1;
if (*sw & _SW_ZERODIVIDE) fpscr |= 0x2;
if (*sw & _SW_OVERFLOW) fpscr |= 0x4;
if (*sw & _SW_UNDERFLOW) fpscr |= 0x8;
if (*sw & _SW_INEXACT) fpscr |= 0x10;
if (*sw & _SW_DENORMAL) fpscr |= 0x80;
*sw = flags;
}
if (cw)
{
flags = 0;
if (!(fpscr & 0x100)) flags |= _EM_INVALID;
if (!(fpscr & 0x200)) flags |= _EM_ZERODIVIDE;
if (!(fpscr & 0x400)) flags |= _EM_OVERFLOW;
if (!(fpscr & 0x800)) flags |= _EM_UNDERFLOW;
if (!(fpscr & 0x1000)) flags |= _EM_INEXACT;
if (!(fpscr & 0x8000)) flags |= _EM_DENORMAL;
switch (fpscr & 0xc00000)
{
case 0x400000: flags |= _RC_UP; break;
case 0x800000: flags |= _RC_DOWN; break;
case 0xc00000: flags |= _RC_CHOP; break;
}
*cw = (flags & ~cw_mask) | (*cw & cw_mask);
TRACE("arm update cw %08x to %08x\n", flags, *cw);
fpscr &= ~0xc09f00ul;
if (!(*cw & _EM_INVALID)) fpscr |= 0x100;
if (!(*cw & _EM_ZERODIVIDE)) fpscr |= 0x200;
if (!(*cw & _EM_OVERFLOW)) fpscr |= 0x400;
if (!(*cw & _EM_UNDERFLOW)) fpscr |= 0x800;
if (!(*cw & _EM_INEXACT)) fpscr |= 0x1000;
if (!(*cw & _EM_DENORMAL)) fpscr |= 0x8000;
switch (*cw & _MCW_RC)
{
case _RC_CHOP: fpscr |= 0xc00000; break;
case _RC_UP: fpscr |= 0x400000; break;
case _RC_DOWN: fpscr |= 0x800000; break;
}
}
if (old_fpscr != fpscr)
__asm__ __volatile__( "vmsr fpscr, %0" :: "r" (fpscr) );
#else
FIXME("not implemented\n");
if (cw) *cw = 0;
if (sw) *sw = 0;
#endif
}
/**********************************************************************
* _statusfp2 (MSVCR80.@)
*/
#if defined(__i386__)
void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw )
{
if (x86_sw)
_setfp(NULL, 0, x86_sw, 0);
if (!sse2_sw) return;
if (sse2_supported)
_setfp_sse(NULL, 0, sse2_sw, 0);
else *sse2_sw = 0;
}
#endif
/**********************************************************************
* _statusfp (MSVCRT.@)
*/
unsigned int CDECL _statusfp(void)
{
unsigned int flags = 0;
#if defined(__i386__)
unsigned int x86_sw, sse2_sw;
_statusfp2( &x86_sw, &sse2_sw );
/* FIXME: there's no definition for ambiguous status, just return all status bits for now */
flags = x86_sw | sse2_sw;
#else
_setfp(NULL, 0, &flags, 0);
#endif
return flags;
}
/*********************************************************************
* _clearfp (MSVCRT.@)
*/
unsigned int CDECL _clearfp(void)
{
unsigned int flags = 0;
#ifdef __i386__
_setfp(NULL, 0, &flags, _MCW_EM);
if (sse2_supported)
{
unsigned int sse_sw = 0;
_setfp_sse(NULL, 0, &sse_sw, _MCW_EM);
flags |= sse_sw;
}
#else
_setfp(NULL, 0, &flags, _MCW_EM);
#endif
return flags;
}
/*********************************************************************
* __fpecode (MSVCRT.@)
*/
int * CDECL __fpecode(void)
{
return &msvcrt_get_thread_data()->fpecode;
}
/*********************************************************************
* ldexp (MSVCRT.@)
*/
double CDECL ldexp(double num, int exp)
{
double z = scalbn(num, exp);
if (isfinite(num) && !isfinite(z))
return math_error(_OVERFLOW, "ldexp", num, exp, z);
if (num && isfinite(num) && !z)
return math_error(_UNDERFLOW, "ldexp", num, exp, z);
return z;
}
/*********************************************************************
* _cabs (MSVCRT.@)
*/
double CDECL _cabs(struct _complex num)
{
return sqrt(num.x * num.x + num.y * num.y);
}
/*********************************************************************
* _chgsign (MSVCRT.@)
*/
double CDECL _chgsign(double num)
{
union { double f; UINT64 i; } u = { num };
u.i ^= 1ull << 63;
return u.f;
}
/*********************************************************************
* __control87_2 (MSVCR80.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#ifdef __i386__
int CDECL __control87_2( unsigned int newval, unsigned int mask,
unsigned int *x86_cw, unsigned int *sse2_cw )
{
if (x86_cw)
{
*x86_cw = newval;
_setfp(x86_cw, mask, NULL, 0);
}
if (!sse2_cw) return 1;
if (sse2_supported)
{
*sse2_cw = newval;
_setfp_sse(sse2_cw, mask, NULL, 0);
}
else *sse2_cw = 0;
return 1;
}
#endif
/*********************************************************************
* _control87 (MSVCRT.@)
*/
unsigned int CDECL _control87(unsigned int newval, unsigned int mask)
{
unsigned int flags = 0;
#ifdef __i386__
unsigned int sse2_cw;
__control87_2( newval, mask, &flags, &sse2_cw );
if (sse2_supported)
{
if ((flags ^ sse2_cw) & (_MCW_EM | _MCW_RC)) flags |= _EM_AMBIGUOUS;
flags |= sse2_cw;
}
#else
flags = newval;
_setfp(&flags, mask, NULL, 0);
#endif
return flags;
}
/*********************************************************************
* _controlfp (MSVCRT.@)
*/
unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask)
{
return _control87( newval, mask & ~_EM_DENORMAL );
}
/*********************************************************************
* _set_controlfp (MSVCRT.@)
*/
void CDECL _set_controlfp( unsigned int newval, unsigned int mask )
{
_controlfp( newval, mask );
}
/*********************************************************************
* _controlfp_s (MSVCRT.@)
*/
int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask)
{
static const unsigned int all_flags = (_MCW_EM | _MCW_IC | _MCW_RC |
_MCW_PC | _MCW_DN);
unsigned int val;
if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) ))
{
if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */
return EINVAL;
}
val = _controlfp( newval, mask );
if (cur) *cur = val;
return 0;
}
#if _MSVCR_VER >= 140 && (defined(__i386__) || defined(__x86_64__))
enum fenv_masks
{
FENV_X_INVALID = 0x00100010,
FENV_X_DENORMAL = 0x00200020,
FENV_X_ZERODIVIDE = 0x00080008,
FENV_X_OVERFLOW = 0x00040004,
FENV_X_UNDERFLOW = 0x00020002,
FENV_X_INEXACT = 0x00010001,
FENV_X_AFFINE = 0x00004000,
FENV_X_UP = 0x00800200,
FENV_X_DOWN = 0x00400100,
FENV_X_24 = 0x00002000,
FENV_X_53 = 0x00001000,
FENV_Y_INVALID = 0x10000010,
FENV_Y_DENORMAL = 0x20000020,
FENV_Y_ZERODIVIDE = 0x08000008,
FENV_Y_OVERFLOW = 0x04000004,
FENV_Y_UNDERFLOW = 0x02000002,
FENV_Y_INEXACT = 0x01000001,
FENV_Y_UP = 0x80000200,
FENV_Y_DOWN = 0x40000100,
FENV_Y_FLUSH = 0x00000400,
FENV_Y_FLUSH_SAVE = 0x00000800
};
/* encodes x87/sse control/status word in ulong */
static __msvcrt_ulong fenv_encode(unsigned int x, unsigned int y)
{
__msvcrt_ulong ret = 0;
#ifdef __i386__
if (x & _EM_INVALID) ret |= FENV_X_INVALID;
if (x & _EM_DENORMAL) ret |= FENV_X_DENORMAL;
if (x & _EM_ZERODIVIDE) ret |= FENV_X_ZERODIVIDE;
if (x & _EM_OVERFLOW) ret |= FENV_X_OVERFLOW;
if (x & _EM_UNDERFLOW) ret |= FENV_X_UNDERFLOW;
if (x & _EM_INEXACT) ret |= FENV_X_INEXACT;
if (x & _IC_AFFINE) ret |= FENV_X_AFFINE;
if (x & _RC_UP) ret |= FENV_X_UP;
if (x & _RC_DOWN) ret |= FENV_X_DOWN;
if (x & _PC_24) ret |= FENV_X_24;
if (x & _PC_53) ret |= FENV_X_53;
#endif
x &= ~(_MCW_EM | _MCW_IC | _MCW_RC | _MCW_PC);
if (y & _EM_INVALID) ret |= FENV_Y_INVALID;
if (y & _EM_DENORMAL) ret |= FENV_Y_DENORMAL;
if (y & _EM_ZERODIVIDE) ret |= FENV_Y_ZERODIVIDE;
if (y & _EM_OVERFLOW) ret |= FENV_Y_OVERFLOW;
if (y & _EM_UNDERFLOW) ret |= FENV_Y_UNDERFLOW;
if (y & _EM_INEXACT) ret |= FENV_Y_INEXACT;
if (y & _RC_UP) ret |= FENV_Y_UP;
if (y & _RC_DOWN) ret |= FENV_Y_DOWN;
if (y & _DN_FLUSH) ret |= FENV_Y_FLUSH;
if (y & _DN_FLUSH_OPERANDS_SAVE_RESULTS) ret |= FENV_Y_FLUSH_SAVE;
y &= ~(_MCW_EM | _MCW_IC | _MCW_RC | _MCW_DN);
if(x || y) FIXME("unsupported flags: %x, %x\n", x, y);
return ret;
}
/* decodes x87/sse control/status word, returns FALSE on error */
static BOOL fenv_decode(__msvcrt_ulong enc, unsigned int *x, unsigned int *y)
{
*x = *y = 0;
if ((enc & FENV_X_INVALID) == FENV_X_INVALID) *x |= _EM_INVALID;
if ((enc & FENV_X_DENORMAL) == FENV_X_DENORMAL) *x |= _EM_DENORMAL;
if ((enc & FENV_X_ZERODIVIDE) == FENV_X_ZERODIVIDE) *x |= _EM_ZERODIVIDE;
if ((enc & FENV_X_OVERFLOW) == FENV_X_OVERFLOW) *x |= _EM_OVERFLOW;
if ((enc & FENV_X_UNDERFLOW) == FENV_X_UNDERFLOW) *x |= _EM_UNDERFLOW;
if ((enc & FENV_X_INEXACT) == FENV_X_INEXACT) *x |= _EM_INEXACT;
if ((enc & FENV_X_AFFINE) == FENV_X_AFFINE) *x |= _IC_AFFINE;
if ((enc & FENV_X_UP) == FENV_X_UP) *x |= _RC_UP;
if ((enc & FENV_X_DOWN) == FENV_X_DOWN) *x |= _RC_DOWN;
if ((enc & FENV_X_24) == FENV_X_24) *x |= _PC_24;
if ((enc & FENV_X_53) == FENV_X_53) *x |= _PC_53;
if ((enc & FENV_Y_INVALID) == FENV_Y_INVALID) *y |= _EM_INVALID;
if ((enc & FENV_Y_DENORMAL) == FENV_Y_DENORMAL) *y |= _EM_DENORMAL;
if ((enc & FENV_Y_ZERODIVIDE) == FENV_Y_ZERODIVIDE) *y |= _EM_ZERODIVIDE;
if ((enc & FENV_Y_OVERFLOW) == FENV_Y_OVERFLOW) *y |= _EM_OVERFLOW;
if ((enc & FENV_Y_UNDERFLOW) == FENV_Y_UNDERFLOW) *y |= _EM_UNDERFLOW;
if ((enc & FENV_Y_INEXACT) == FENV_Y_INEXACT) *y |= _EM_INEXACT;
if ((enc & FENV_Y_UP) == FENV_Y_UP) *y |= _RC_UP;
if ((enc & FENV_Y_DOWN) == FENV_Y_DOWN) *y |= _RC_DOWN;
if ((enc & FENV_Y_FLUSH) == FENV_Y_FLUSH) *y |= _DN_FLUSH;
if ((enc & FENV_Y_FLUSH_SAVE) == FENV_Y_FLUSH_SAVE) *y |= _DN_FLUSH_OPERANDS_SAVE_RESULTS;
if (fenv_encode(*x, *y) != enc)
{
WARN("can't decode: %lx\n", enc);
return FALSE;
}
return TRUE;
}
#elif _MSVCR_VER >= 120
static __msvcrt_ulong fenv_encode(unsigned int x, unsigned int y)
{
if (y & _EM_DENORMAL)
y = (y & ~_EM_DENORMAL) | 0x20;
return x | y;
}
static BOOL fenv_decode(__msvcrt_ulong enc, unsigned int *x, unsigned int *y)
{
if (enc & 0x20)
enc = (enc & ~0x20) | _EM_DENORMAL;
*x = *y = enc;
return TRUE;
}
#endif
#if _MSVCR_VER>=120
/*********************************************************************
* fegetenv (MSVCR120.@)
*/
int CDECL fegetenv(fenv_t *env)
{
#if _MSVCR_VER>=140 && defined(__i386__)
unsigned int x87, sse;
__control87_2(0, 0, &x87, &sse);
env->_Fe_ctl = fenv_encode(x87, sse);
_statusfp2(&x87, &sse);
env->_Fe_stat = fenv_encode(x87, sse);
#elif _MSVCR_VER>=140
env->_Fe_ctl = fenv_encode(0, _control87(0, 0));
env->_Fe_stat = fenv_encode(0, _statusfp());
#else
env->_Fe_ctl = _controlfp(0, 0) & (_EM_INEXACT | _EM_UNDERFLOW |
_EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID | _MCW_RC);
env->_Fe_stat = _statusfp();
#endif
return 0;
}
/*********************************************************************
* feupdateenv (MSVCR120.@)
*/
int CDECL feupdateenv(const fenv_t *env)
{
fenv_t set;
fegetenv(&set);
set._Fe_ctl = env->_Fe_ctl;
set._Fe_stat |= env->_Fe_stat;
return fesetenv(&set);
}
/*********************************************************************
* fetestexcept (MSVCR120.@)
*/
int CDECL fetestexcept(int flags)
{
return _statusfp() & flags;
}
/*********************************************************************
* fesetexceptflag (MSVCR120.@)
*/
int CDECL fesetexceptflag(const fexcept_t *status, int excepts)
{
fenv_t env;
excepts &= FE_ALL_EXCEPT;
if(!excepts)
return 0;
fegetenv(&env);
env._Fe_stat &= ~fenv_encode(excepts, excepts);
env._Fe_stat |= *status & fenv_encode(excepts, excepts);
return fesetenv(&env);
}
/*********************************************************************
* feraiseexcept (MSVCR120.@)
*/
int CDECL feraiseexcept(int flags)
{
fenv_t env;
flags &= FE_ALL_EXCEPT;
fegetenv(&env);
env._Fe_stat |= fenv_encode(flags, flags);
return fesetenv(&env);
}
/*********************************************************************
* feclearexcept (MSVCR120.@)
*/
int CDECL feclearexcept(int flags)
{
fenv_t env;
fegetenv(&env);
flags &= FE_ALL_EXCEPT;
env._Fe_stat &= ~fenv_encode(flags, flags);
return fesetenv(&env);
}
/*********************************************************************
* fegetexceptflag (MSVCR120.@)
*/
int CDECL fegetexceptflag(fexcept_t *status, int excepts)
{
#if _MSVCR_VER>=140 && defined(__i386__)
unsigned int x87, sse;
_statusfp2(&x87, &sse);
*status = fenv_encode(x87 & excepts, sse & excepts);
#else
*status = fenv_encode(0, _statusfp() & excepts);
#endif
return 0;
}
#endif
#if _MSVCR_VER>=140
/*********************************************************************
* __fpe_flt_rounds (UCRTBASE.@)
*/
int CDECL __fpe_flt_rounds(void)
{
unsigned int fpc = _controlfp(0, 0) & _RC_CHOP;
TRACE("()\n");
switch(fpc) {
case _RC_CHOP: return 0;
case _RC_NEAR: return 1;
case _RC_UP: return 2;
default: return 3;
}
}
#endif
#if _MSVCR_VER>=120
/*********************************************************************
* fegetround (MSVCR120.@)
*/
int CDECL fegetround(void)
{
return _controlfp(0, 0) & _MCW_RC;
}
/*********************************************************************
* fesetround (MSVCR120.@)
*/
int CDECL fesetround(int round_mode)
{
if (round_mode & (~_MCW_RC))
return 1;
_controlfp(round_mode, _MCW_RC);
return 0;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _finite (MSVCRT.@)
*/
int CDECL _finite(double num)
{
union { double f; UINT64 i; } u = { num };
return (u.i & ~0ull >> 1) < 0x7ffull << 52;
}
/*********************************************************************
* _fpreset (MSVCRT.@)
*/
void CDECL _fpreset(void)
{
#if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
const unsigned int x86_cw = 0x27f;
__asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) );
if (sse2_supported)
{
unsigned int cw = _MCW_EM, sw = 0;
_setfp_sse(&cw, ~0, &sw, ~0);
}
#else
unsigned int cw = _MCW_EM, sw = 0;
_setfp(&cw, ~0, &sw, ~0);
#endif
}
#if _MSVCR_VER>=120
/*********************************************************************
* fesetenv (MSVCR120.@)
*/
int CDECL fesetenv(const fenv_t *env)
{
unsigned int x87_cw, cw, x87_stat, stat;
unsigned int mask;
TRACE( "(%p)\n", env );
if (!env->_Fe_ctl && !env->_Fe_stat) {
_fpreset();
return 0;
}
if (!fenv_decode(env->_Fe_ctl, &x87_cw, &cw))
return 1;
if (!fenv_decode(env->_Fe_stat, &x87_stat, &stat))
return 1;
#if _MSVCR_VER >= 140
mask = ~0;
#else
mask = _EM_INEXACT | _EM_UNDERFLOW | _EM_OVERFLOW
| _EM_ZERODIVIDE | _EM_INVALID | _MCW_RC;
#endif
#ifdef __i386__
_setfp(&x87_cw, mask, &x87_stat, ~0);
if (sse2_supported)
_setfp_sse(&cw, mask, &stat, ~0);
return 0;
#else
_setfp(&cw, mask, &stat, ~0);
return 0;
#endif
}
#endif
/*********************************************************************
* _isnan (MSVCRT.@)
*/
int CDECL _isnan(double num)
{
union { double f; UINT64 i; } u = { num };
return (u.i & ~0ull >> 1) > 0x7ffull << 52;
}
#if _MSVCR_VER>=120
/*********************************************************************
* rint (MSVCR120.@)
*/
double CDECL MSVCRT_rint(double x)
{
unsigned cw;
double y;
cw = _controlfp(0, 0);
if ((cw & _MCW_PC) != _PC_53)
_controlfp(_PC_53, _MCW_PC);
y = rint(x);
if ((cw & _MCW_PC) != _PC_53)
_controlfp(cw, _MCW_PC);
return y;
}
/*********************************************************************
* _nearbyint (MSVCR120.@)
*
* Based on musl: src/math/nearbyteint.c
*/
double CDECL nearbyint(double x)
{
BOOL update_cw, update_sw;
unsigned int cw, sw;
_setfp(&cw, 0, &sw, 0);
update_cw = !(cw & _EM_INEXACT);
update_sw = !(sw & _SW_INEXACT);
if (update_cw)
{
cw |= _EM_INEXACT;
_setfp(&cw, _EM_INEXACT, NULL, 0);
}
x = MSVCRT_rint(x);
if (update_cw || update_sw)
{
sw = 0;
cw &= ~_EM_INEXACT;
_setfp(update_cw ? &cw : NULL, _EM_INEXACT,
update_sw ? &sw : NULL, _SW_INEXACT);
}
return x;
}
/*********************************************************************
* _nearbyintf (MSVCR120.@)
*
* Based on musl: src/math/nearbyteintf.c
*/
float CDECL nearbyintf(float x)
{
BOOL update_cw, update_sw;
unsigned int cw, sw;
_setfp(&cw, 0, &sw, 0);
update_cw = !(cw & _EM_INEXACT);
update_sw = !(sw & _SW_INEXACT);
if (update_cw)
{
cw |= _EM_INEXACT;
_setfp(&cw, _EM_INEXACT, NULL, 0);
}
x = rintf(x);
if (update_cw || update_sw)
{
sw = 0;
cw &= ~_EM_INEXACT;
_setfp(update_cw ? &cw : NULL, _EM_INEXACT,
update_sw ? &sw : NULL, _SW_INEXACT);
}
return x;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _ecvt (MSVCRT.@)
*/
char * CDECL _ecvt( double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
thread_data_t *data = msvcrt_get_thread_data();
/* FIXME: check better for overflow (native supports over 300 chars) */
ndigits = min( ndigits, 80 - 8); /* 8 : space for sign, dec point, "e",
* 4 for exponent and one for
* terminating '\0' */
if (!data->efcvt_buffer)
data->efcvt_buffer = malloc( 80 ); /* ought to be enough */
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
len = _snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number);
if (data->efcvt_buffer[0] == '-') {
memmove( data->efcvt_buffer, data->efcvt_buffer + 1, len-- );
*sign = 1;
} else *sign = 0;
/* take the decimal "point away */
if( prec != 1)
memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 );
/* take the exponential "e" out */
data->efcvt_buffer[ prec] = '\0';
/* read the exponent */
sscanf( data->efcvt_buffer + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( data->efcvt_buffer[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( data->efcvt_buffer[ 0] >= '5')
(*decpt)++;
data->efcvt_buffer[ 0] = '\0';
}
TRACE("out=\"%s\"\n",data->efcvt_buffer);
return data->efcvt_buffer;
}
/*********************************************************************
* _ecvt_s (MSVCRT.@)
*/
int CDECL _ecvt_s( char *buffer, size_t length, double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
char *result;
if (!MSVCRT_CHECK_PMT(buffer != NULL)) return EINVAL;
if (!MSVCRT_CHECK_PMT(decpt != NULL)) return EINVAL;
if (!MSVCRT_CHECK_PMT(sign != NULL)) return EINVAL;
if (!MSVCRT_CHECK_PMT_ERR( length > 2, ERANGE )) return ERANGE;
if (!MSVCRT_CHECK_PMT_ERR(ndigits < (int)length - 1, ERANGE )) return ERANGE;
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
result = malloc(prec + 8);
len = _snprintf(result, prec + 8, "%.*le", prec - 1, number);
if (result[0] == '-') {
memmove( result, result + 1, len-- );
*sign = 1;
} else *sign = 0;
/* take the decimal "point away */
if( prec != 1)
memmove( result + 1, result + 2, len - 1 );
/* take the exponential "e" out */
result[ prec] = '\0';
/* read the exponent */
sscanf( result + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( result[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( result[ 0] >= '5')
(*decpt)++;
result[ 0] = '\0';
}
memcpy( buffer, result, max(ndigits + 1, 1) );
free( result );
return 0;
}
/***********************************************************************
* _fcvt (MSVCRT.@)
*/
char * CDECL _fcvt( double number, int ndigits, int *decpt, int *sign )
{
thread_data_t *data = msvcrt_get_thread_data();
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
char decimal_separator = get_locinfo()->lconv->decimal_point[0];
if (!data->efcvt_buffer)
data->efcvt_buffer = malloc( 80 ); /* ought to be enough */
stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = data->efcvt_buffer;
first = NULL;
dec1 = 0;
dec2 = 0;
if (*ptr1 == '-') {
*sign = 1;
ptr1++;
} else *sign = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop += ndigits;
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != decimal_separator) {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
*ptr2++ = *ptr1++;
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
*ptr2++ = *ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
*ptr2++ = *ptr1++;
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first) {
if (number > 0.0) {
first = ptr2;
} else {
first = data->efcvt_buffer;
dec1 = 0;
}
}
*decpt = dec2 ? dec2 : dec1;
return first;
}
/***********************************************************************
* _fcvt_s (MSVCRT.@)
*/
int CDECL _fcvt_s(char* outbuffer, size_t size, double number, int ndigits, int *decpt, int *sign)
{
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
char decimal_separator = get_locinfo()->lconv->decimal_point[0];
if (!outbuffer || !decpt || !sign || size == 0)
{
*_errno() = EINVAL;
return EINVAL;
}
stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = outbuffer;
first = NULL;
dec1 = 0;
dec2 = 0;
if (*ptr1 == '-') {
*sign = 1;
ptr1++;
} else *sign = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop += ndigits;
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != decimal_separator) {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
if (number == 0.0 && size > 1) {
*ptr2++ = '0';
size--;
}
ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first && (number <= 0.0))
dec1 = 0;
*decpt = dec2 ? dec2 : dec1;
return 0;
}
/***********************************************************************
* _gcvt (MSVCRT.@)
*/
char * CDECL _gcvt( double number, int ndigit, char *buff )
{
if(!buff) {
*_errno() = EINVAL;
return NULL;
}
if(ndigit < 0) {
*_errno() = ERANGE;
return NULL;
}
sprintf(buff, "%.*g", ndigit, number);
return buff;
}
/***********************************************************************
* _gcvt_s (MSVCRT.@)
*/
int CDECL _gcvt_s(char *buff, size_t size, double number, int digits)
{
int len;
if(!buff) {
*_errno() = EINVAL;
return EINVAL;
}
if( digits<0 || digits>=size) {
if(size)
buff[0] = '\0';
*_errno() = ERANGE;
return ERANGE;
}
len = _scprintf("%.*g", digits, number);
if(len > size) {
buff[0] = '\0';
*_errno() = ERANGE;
return ERANGE;
}
sprintf(buff, "%.*g", digits, number);
return 0;
}
#include <stdlib.h> /* div_t, ldiv_t */
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL div(int num, int denom)
{
union {
div_t div;
unsigned __int64 uint64;
} ret;
ret.div.quot = num / denom;
ret.div.rem = num % denom;
return ret.uint64;
}
#else
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
div_t CDECL div(int num, int denom)
{
div_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
#endif /* ifdef __i386__ */
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL ldiv(__msvcrt_long num, __msvcrt_long denom)
{
union {
ldiv_t ldiv;
unsigned __int64 uint64;
} ret;
ret.ldiv.quot = num / denom;
ret.ldiv.rem = num % denom;
return ret.uint64;
}
#else
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
ldiv_t CDECL ldiv(__msvcrt_long num, __msvcrt_long denom)
{
ldiv_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
#endif /* ifdef __i386__ */
#if _MSVCR_VER>=100
/*********************************************************************
* lldiv (MSVCR100.@)
*/
lldiv_t CDECL lldiv(__int64 num, __int64 denom)
{
lldiv_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
#endif
#ifdef __i386__
/*********************************************************************
* _adjust_fdiv (MSVCRT.@)
* Used by the MSVC compiler to work around the Pentium FDIV bug.
*/
int MSVCRT__adjust_fdiv = 0;
/***********************************************************************
* _adj_fdiv_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_r (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fdiv_r(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fpatan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fpatan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem1 (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fptan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fptan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdiv (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdiv(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdivr (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdivr(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem1 (MSVCRT.@)
*
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* __libm_sse2_acos (MSVCRT.@)
*/
void __cdecl __libm_sse2_acos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = acos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_acosf (MSVCRT.@)
*/
void __cdecl __libm_sse2_acosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = acosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_asin (MSVCRT.@)
*/
void __cdecl __libm_sse2_asin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = asin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_asinf (MSVCRT.@)
*/
void __cdecl __libm_sse2_asinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = asinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_atan (MSVCRT.@)
*/
void __cdecl __libm_sse2_atan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = atan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_atan2 (MSVCRT.@)
*/
void __cdecl __libm_sse2_atan2(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = atan2( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_atanf (MSVCRT.@)
*/
void __cdecl __libm_sse2_atanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = atanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_cos (MSVCRT.@)
*/
void __cdecl __libm_sse2_cos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = cos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_cosf (MSVCRT.@)
*/
void __cdecl __libm_sse2_cosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = cosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_exp (MSVCRT.@)
*/
void __cdecl __libm_sse2_exp(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = exp( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_expf (MSVCRT.@)
*/
void __cdecl __libm_sse2_expf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = expf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_log (MSVCRT.@)
*/
void __cdecl __libm_sse2_log(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10 (MSVCRT.@)
*/
void __cdecl __libm_sse2_log10(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log10( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10f (MSVCRT.@)
*/
void __cdecl __libm_sse2_log10f(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = log10f( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_logf (MSVCRT.@)
*/
void __cdecl __libm_sse2_logf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = logf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_pow (MSVCRT.@)
*/
void __cdecl __libm_sse2_pow(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = pow( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_powf (MSVCRT.@)
*/
void __cdecl __libm_sse2_powf(void)
{
float f1, f2;
__asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) );
f1 = powf( f1, f2 );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) );
}
/***********************************************************************
* __libm_sse2_sin (MSVCRT.@)
*/
void __cdecl __libm_sse2_sin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = sin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_sinf (MSVCRT.@)
*/
void __cdecl __libm_sse2_sinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = sinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_tan (MSVCRT.@)
*/
void __cdecl __libm_sse2_tan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = tan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_tanf (MSVCRT.@)
*/
void __cdecl __libm_sse2_tanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = tanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_sqrt_precise (MSVCR110.@)
*/
void __cdecl __libm_sse2_sqrt_precise(void)
{
unsigned int cw;
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
__control87_2(0, 0, NULL, &cw);
if (cw & _MCW_RC)
{
d = sqrt(d);
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
return;
}
if (!sqrt_validate(&d, FALSE))
{
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
return;
}
__asm__ __volatile__( "call " __ASM_NAME( "sse2_sqrt" ) );
}
#endif /* __i386__ */
#if _MSVCR_VER>=120
/*********************************************************************
* lrint (MSVCR120.@)
*/
__msvcrt_long CDECL lrint(double x)
{
double d;
d = MSVCRT_rint(x);
if ((d < 0 && d != (double)(__msvcrt_long)d)
|| (d >= 0 && d != (double)(__msvcrt_ulong)d)) {
*_errno() = EDOM;
return 0;
}
return d;
}
/*********************************************************************
* lrintf (MSVCR120.@)
*/
__msvcrt_long CDECL lrintf(float x)
{
float f;
f = rintf(x);
if ((f < 0 && f != (float)(__msvcrt_long)f)
|| (f >= 0 && f != (float)(__msvcrt_ulong)f)) {
*_errno() = EDOM;
return 0;
}
return f;
}
/*********************************************************************
* llrint (MSVCR120.@)
*/
__int64 CDECL llrint(double x)
{
double d;
d = MSVCRT_rint(x);
if ((d < 0 && d != (double)(__int64)d)
|| (d >= 0 && d != (double)(unsigned __int64)d)) {
*_errno() = EDOM;
return 0;
}
return d;
}
/*********************************************************************
* llrintf (MSVCR120.@)
*/
__int64 CDECL llrintf(float x)
{
float f;
f = rintf(x);
if ((f < 0 && f != (float)(__int64)f)
|| (f >= 0 && f != (float)(unsigned __int64)f)) {
*_errno() = EDOM;
return 0;
}
return f;
}
/*********************************************************************
* lround (MSVCR120.@)
*
* Copied from musl: src/math/lround.c
*/
__msvcrt_long CDECL lround(double x)
{
double d = round(x);
if (d != (double)(__msvcrt_long)d) {
*_errno() = EDOM;
return 0;
}
return d;
}
/*********************************************************************
* lroundf (MSVCR120.@)
*
* Copied from musl: src/math/lroundf.c
*/
__msvcrt_long CDECL lroundf(float x)
{
float f = roundf(x);
if (f != (float)(__msvcrt_long)f) {
*_errno() = EDOM;
return 0;
}
return f;
}
/*********************************************************************
* llround (MSVCR120.@)
*
* Copied from musl: src/math/llround.c
*/
__int64 CDECL llround(double x)
{
double d = round(x);
if (d != (double)(__int64)d) {
*_errno() = EDOM;
return 0;
}
return d;
}
/*********************************************************************
* llroundf (MSVCR120.@)
*
* Copied from musl: src/math/llroundf.c
*/
__int64 CDECL llroundf(float x)
{
float f = roundf(x);
if (f != (float)(__int64)f) {
*_errno() = EDOM;
return 0;
}
return f;
}
/*********************************************************************
* _dtest (MSVCR120.@)
*/
short CDECL _dtest(double *x)
{
return _dclass(*x);
}
/*********************************************************************
* _fdtest (MSVCR120.@)
*/
short CDECL _fdtest(float *x)
{
return _fdclass(*x);
}
static double erfc1(double x)
{
static const double erx = 8.45062911510467529297e-01,
pa0 = -2.36211856075265944077e-03,
pa1 = 4.14856118683748331666e-01,
pa2 = -3.72207876035701323847e-01,
pa3 = 3.18346619901161753674e-01,
pa4 = -1.10894694282396677476e-01,
pa5 = 3.54783043256182359371e-02,
pa6 = -2.16637559486879084300e-03,
qa1 = 1.06420880400844228286e-01,
qa2 = 5.40397917702171048937e-01,
qa3 = 7.18286544141962662868e-02,
qa4 = 1.26171219808761642112e-01,
qa5 = 1.36370839120290507362e-02,
qa6 = 1.19844998467991074170e-02;
double s, P, Q;
s = fabs(x) - 1;
P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
return 1 - erx - P / Q;
}
static double erfc2(UINT32 ix, double x)
{
static const double ra0 = -9.86494403484714822705e-03,
ra1 = -6.93858572707181764372e-01,
ra2 = -1.05586262253232909814e+01,
ra3 = -6.23753324503260060396e+01,
ra4 = -1.62396669462573470355e+02,
ra5 = -1.84605092906711035994e+02,
ra6 = -8.12874355063065934246e+01,
ra7 = -9.81432934416914548592e+00,
sa1 = 1.96512716674392571292e+01,
sa2 = 1.37657754143519042600e+02,
sa3 = 4.34565877475229228821e+02,
sa4 = 6.45387271733267880336e+02,
sa5 = 4.29008140027567833386e+02,
sa6 = 1.08635005541779435134e+02,
sa7 = 6.57024977031928170135e+00,
sa8 = -6.04244152148580987438e-02,
rb0 = -9.86494292470009928597e-03,
rb1 = -7.99283237680523006574e-01,
rb2 = -1.77579549177547519889e+01,
rb3 = -1.60636384855821916062e+02,
rb4 = -6.37566443368389627722e+02,
rb5 = -1.02509513161107724954e+03,
rb6 = -4.83519191608651397019e+02,
sb1 = 3.03380607434824582924e+01,
sb2 = 3.25792512996573918826e+02,
sb3 = 1.53672958608443695994e+03,
sb4 = 3.19985821950859553908e+03,
sb5 = 2.55305040643316442583e+03,
sb6 = 4.74528541206955367215e+02,
sb7 = -2.24409524465858183362e+01;
double s, R, S, z;
UINT64 iz;
if (ix < 0x3ff40000) /* |x| < 1.25 */
return erfc1(x);
x = fabs(x);
s = 1 / (x * x);
if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s *
(ra5 + s * (ra6 + s * ra7))))));
S = 1.0 + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s *
(sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
} else { /* |x| > 1/.35 */
R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s *
(rb5 + s * rb6)))));
S = 1.0 + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s *
(sb5 + s * (sb6 + s * sb7))))));
}
z = x;
iz = *(ULONGLONG*)&z;
iz &= 0xffffffff00000000ULL;
z = *(double*)&iz;
return exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S) / x;
}
/*********************************************************************
* erf (MSVCR120.@)
*/
double CDECL erf(double x)
{
static const double efx8 = 1.02703333676410069053e+00,
pp0 = 1.28379167095512558561e-01,
pp1 = -3.25042107247001499370e-01,
pp2 = -2.84817495755985104766e-02,
pp3 = -5.77027029648944159157e-03,
pp4 = -2.37630166566501626084e-05,
qq1 = 3.97917223959155352819e-01,
qq2 = 6.50222499887672944485e-02,
qq3 = 5.08130628187576562776e-03,
qq4 = 1.32494738004321644526e-04,
qq5 = -3.96022827877536812320e-06;
double r, s, z, y;
UINT32 ix;
int sign;
ix = *(UINT64*)&x >> 32;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x7ff00000) {
/* erf(nan)=nan, erf(+-inf)=+-1 */
return 1 - 2 * sign + 1 / x;
}
if (ix < 0x3feb0000) { /* |x| < 0.84375 */
if (ix < 0x3e300000) { /* |x| < 2**-28 */
/* avoid underflow */
return 0.125 * (8 * x + efx8 * x);
}
z = x * x;
r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
y = r / s;
return x + x * y;
}
if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
y = 1 - erfc2(ix, x);
else
y = 1 - DBL_MIN;
return sign ? -y : y;
}
static float erfc1f(float x)
{
static const float erx = 8.4506291151e-01,
pa0 = -2.3621185683e-03,
pa1 = 4.1485610604e-01,
pa2 = -3.7220788002e-01,
pa3 = 3.1834661961e-01,
pa4 = -1.1089469492e-01,
pa5 = 3.5478305072e-02,
pa6 = -2.1663755178e-03,
qa1 = 1.0642088205e-01,
qa2 = 5.4039794207e-01,
qa3 = 7.1828655899e-02,
qa4 = 1.2617121637e-01,
qa5 = 1.3637083583e-02,
qa6 = 1.1984500103e-02;
float s, P, Q;
s = fabsf(x) - 1;
P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
return 1 - erx - P / Q;
}
static float erfc2f(UINT32 ix, float x)
{
static const float ra0 = -9.8649440333e-03,
ra1 = -6.9385856390e-01,
ra2 = -1.0558626175e+01,
ra3 = -6.2375331879e+01,
ra4 = -1.6239666748e+02,
ra5 = -1.8460508728e+02,
ra6 = -8.1287437439e+01,
ra7 = -9.8143291473e+00,
sa1 = 1.9651271820e+01,
sa2 = 1.3765776062e+02,
sa3 = 4.3456588745e+02,
sa4 = 6.4538726807e+02,
sa5 = 4.2900814819e+02,
sa6 = 1.0863500214e+02,
sa7 = 6.5702495575e+00,
sa8 = -6.0424413532e-02,
rb0 = -9.8649431020e-03,
rb1 = -7.9928326607e-01,
rb2 = -1.7757955551e+01,
rb3 = -1.6063638306e+02,
rb4 = -6.3756646729e+02,
rb5 = -1.0250950928e+03,
rb6 = -4.8351919556e+02,
sb1 = 3.0338060379e+01,
sb2 = 3.2579251099e+02,
sb3 = 1.5367296143e+03,
sb4 = 3.1998581543e+03,
sb5 = 2.5530502930e+03,
sb6 = 4.7452853394e+02,
sb7 = -2.2440952301e+01;
float s, R, S, z;
if (ix < 0x3fa00000) /* |x| < 1.25 */
return erfc1f(x);
x = fabsf(x);
s = 1 / (x * x);
if (ix < 0x4036db6d) { /* |x| < 1/0.35 */
R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s *
(ra5 + s * (ra6 + s * ra7))))));
S = 1.0f + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s *
(sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
} else { /* |x| >= 1/0.35 */
R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
S = 1.0f + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s *
(sb5 + s * (sb6 + s * sb7))))));
}
ix = *(UINT32*)&x & 0xffffe000;
z = *(float*)&ix;
return expf(-z * z - 0.5625f) * expf((z - x) * (z + x) + R / S) / x;
}
/*********************************************************************
* erff (MSVCR120.@)
*
* Copied from musl: src/math/erff.c
*/
float CDECL erff(float x)
{
static const float efx8 = 1.0270333290e+00,
pp0 = 1.2837916613e-01,
pp1 = -3.2504209876e-01,
pp2 = -2.8481749818e-02,
pp3 = -5.7702702470e-03,
pp4 = -2.3763017452e-05,
qq1 = 3.9791721106e-01,
qq2 = 6.5022252500e-02,
qq3 = 5.0813062117e-03,
qq4 = 1.3249473704e-04,
qq5 = -3.9602282413e-06;
float r, s, z, y;
UINT32 ix;
int sign;
ix = *(UINT32*)&x;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x7f800000) {
/* erf(nan)=nan, erf(+-inf)=+-1 */
return 1 - 2 * sign + 1 / x;
}
if (ix < 0x3f580000) { /* |x| < 0.84375 */
if (ix < 0x31800000) { /* |x| < 2**-28 */
/*avoid underflow */
return 0.125f * (8 * x + efx8 * x);
}
z = x * x;
r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
s = 1 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
y = r / s;
return x + x * y;
}
if (ix < 0x40c00000) /* |x| < 6 */
y = 1 - erfc2f(ix, x);
else
y = 1 - FLT_MIN;
return sign ? -y : y;
}
/*********************************************************************
* erfc (MSVCR120.@)
*
* Copied from musl: src/math/erf.c
*/
double CDECL erfc(double x)
{
static const double pp0 = 1.28379167095512558561e-01,
pp1 = -3.25042107247001499370e-01,
pp2 = -2.84817495755985104766e-02,
pp3 = -5.77027029648944159157e-03,
pp4 = -2.37630166566501626084e-05,
qq1 = 3.97917223959155352819e-01,
qq2 = 6.50222499887672944485e-02,
qq3 = 5.08130628187576562776e-03,
qq4 = 1.32494738004321644526e-04,
qq5 = -3.96022827877536812320e-06;
double r, s, z, y;
UINT32 ix;
int sign;
ix = *(ULONGLONG*)&x >> 32;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x7ff00000) {
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
return 2 * sign + 1 / x;
}
if (ix < 0x3feb0000) { /* |x| < 0.84375 */
if (ix < 0x3c700000) /* |x| < 2**-56 */
return 1.0 - x;
z = x * x;
r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
y = r / s;
if (sign || ix < 0x3fd00000) { /* x < 1/4 */
return 1.0 - (x + x * y);
}
return 0.5 - (x - 0.5 + x * y);
}
if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
}
if (sign)
return 2 - DBL_MIN;
*_errno() = ERANGE;
return fp_barrier(DBL_MIN) * DBL_MIN;
}
/*********************************************************************
* erfcf (MSVCR120.@)
*
* Copied from musl: src/math/erff.c
*/
float CDECL erfcf(float x)
{
static const float pp0 = 1.2837916613e-01,
pp1 = -3.2504209876e-01,
pp2 = -2.8481749818e-02,
pp3 = -5.7702702470e-03,
pp4 = -2.3763017452e-05,
qq1 = 3.9791721106e-01,
qq2 = 6.5022252500e-02,
qq3 = 5.0813062117e-03,
qq4 = 1.3249473704e-04,
qq5 = -3.9602282413e-06;
float r, s, z, y;
UINT32 ix;
int sign;
ix = *(UINT32*)&x;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x7f800000) {
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
return 2 * sign + 1 / x;
}
if (ix < 0x3f580000) { /* |x| < 0.84375 */
if (ix < 0x23800000) /* |x| < 2**-56 */
return 1.0f - x;
z = x * x;
r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
s = 1.0f + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
y = r / s;
if (sign || ix < 0x3e800000) /* x < 1/4 */
return 1.0f - (x + x * y);
return 0.5f - (x - 0.5f + x * y);
}
if (ix < 0x41e00000) { /* |x| < 28 */
return sign ? 2 - erfc2f(ix, x) : erfc2f(ix, x);
}
if (sign)
return 2 - FLT_MIN;
*_errno() = ERANGE;
return FLT_MIN * FLT_MIN;
}
/*********************************************************************
* _fdsign (MSVCR120.@)
*/
int CDECL _fdsign(float x)
{
union { float f; UINT32 i; } u = { x };
return (u.i >> 16) & 0x8000;
}
/*********************************************************************
* _dsign (MSVCR120.@)
*/
int CDECL _dsign(double x)
{
union { double f; UINT64 i; } u = { x };
return (u.i >> 48) & 0x8000;
}
/*********************************************************************
* _dpcomp (MSVCR120.@)
*/
int CDECL _dpcomp(double x, double y)
{
if(isnan(x) || isnan(y))
return 0;
if(x == y) return 2;
return x < y ? 1 : 4;
}
/*********************************************************************
* _fdpcomp (MSVCR120.@)
*/
int CDECL _fdpcomp(float x, float y)
{
return _dpcomp(x, y);
}
/*********************************************************************
* asinh (MSVCR120.@)
*
* Copied from musl: src/math/asinh.c
*/
double CDECL asinh(double x)
{
UINT64 ux = *(UINT64*)&x;
int e = ux >> 52 & 0x7ff;
int s = ux >> 63;
/* |x| */
ux &= (UINT64)-1 / 2;
x = *(double*)&ux;
if (e >= 0x3ff + 26) /* |x| >= 0x1p26 or inf or nan */
x = log(x) + 0.693147180559945309417232121458176568;
else if (e >= 0x3ff + 1) /* |x| >= 2 */
x = log(2 * x + 1 / (sqrt(x * x + 1) + x));
else if (e >= 0x3ff - 26) /* |x| >= 0x1p-26 */
x = log1p(x + x * x / (sqrt(x * x + 1) + 1));
else /* |x| < 0x1p-26, raise inexact if x != 0 */
fp_barrier(x + 0x1p120f);
return s ? -x : x;
}
/*********************************************************************
* asinhf (MSVCR120.@)
*
* Copied from musl: src/math/asinhf.c
*/
float CDECL asinhf(float x)
{
UINT32 ux = *(UINT32*)&x;
UINT32 i = ux & 0x7fffffff;
int s = ux >> 31;
/* |x| */
x = *(float*)&i;
if (i >= 0x3f800000 + (12 << 23))/* |x| >= 0x1p12 or inf or nan */
x = logf(x) + 0.693147180559945309417232121458176568f;
else if (i >= 0x3f800000 + (1 << 23)) /* |x| >= 2 */
x = logf(2 * x + 1 / (sqrtf(x * x + 1) + x));
else if (i >= 0x3f800000 - (12 << 23)) /* |x| >= 0x1p-12 */
x = log1pf(x + x * x / (sqrtf(x * x + 1) + 1));
else /* |x| < 0x1p-12, raise inexact if x!=0 */
fp_barrierf(x + 0x1p120f);
return s ? -x : x;
}
/*********************************************************************
* acosh (MSVCR120.@)
*
* Copied from musl: src/math/acosh.c
*/
double CDECL acosh(double x)
{
int e = *(UINT64*)&x >> 52 & 0x7ff;
if (x < 1)
{
*_errno() = EDOM;
feraiseexcept(FE_INVALID);
return NAN;
}
if (e < 0x3ff + 1) /* |x| < 2, up to 2ulp error in [1,1.125] */
return log1p(x - 1 + sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
if (e < 0x3ff + 26) /* |x| < 0x1p26 */
return log(2 * x - 1 / (x + sqrt(x * x - 1)));
/* |x| >= 0x1p26 or nan */
return log(x) + 0.693147180559945309417232121458176568;
}
/*********************************************************************
* acoshf (MSVCR120.@)
*
* Copied from musl: src/math/acoshf.c
*/
float CDECL acoshf(float x)
{
UINT32 a = *(UINT32*)&x & 0x7fffffff;
if (x < 1)
{
*_errno() = EDOM;
feraiseexcept(FE_INVALID);
return NAN;
}
if (a < 0x3f800000 + (1 << 23)) /* |x| < 2, up to 2ulp error in [1,1.125] */
return log1pf(x - 1 + sqrtf((x - 1) * (x - 1) + 2 * (x - 1)));
if (*(UINT32*)&x < 0x3f800000 + (12 << 23)) /* 2 <= x < 0x1p12 */
return logf(2 * x - 1 / (x + sqrtf(x * x - 1)));
/* x >= 0x1p12 or x <= -2 or nan */
return logf(x) + 0.693147180559945309417232121458176568f;
}
/*********************************************************************
* atanh (MSVCR120.@)
*
* Copied from musl: src/math/atanh.c
*/
double CDECL atanh(double x)
{
UINT64 ux = *(UINT64*)&x;
int e = ux >> 52 & 0x7ff;
int s = ux >> 63;
/* |x| */
ux &= (UINT64)-1 / 2;
x = *(double*)&ux;
if (x > 1) {
*_errno() = EDOM;
feraiseexcept(FE_INVALID);
return NAN;
}
if (e < 0x3ff - 1) {
if (e < 0x3ff - 32) {
fp_barrier(x + 0x1p120f);
if (e == 0) /* handle underflow */
fp_barrier(x * x);
} else { /* |x| < 0.5, up to 1.7ulp error */
x = 0.5 * log1p(2 * x + 2 * x * x / (1 - x));
}
} else { /* avoid overflow */
x = 0.5 * log1p(2 * (x / (1 - x)));
if (isinf(x)) *_errno() = ERANGE;
}
return s ? -x : x;
}
/*********************************************************************
* atanhf (MSVCR120.@)
*
* Copied from musl: src/math/atanhf.c
*/
float CDECL atanhf(float x)
{
UINT32 ux = *(UINT32*)&x;
int s = ux >> 31;
/* |x| */
ux &= 0x7fffffff;
x = *(float*)&ux;
if (x > 1) {
*_errno() = EDOM;
feraiseexcept(FE_INVALID);
return NAN;
}
if (ux < 0x3f800000 - (1 << 23)) {
if (ux < 0x3f800000 - (32 << 23)) {
fp_barrierf(x + 0x1p120f);
if (ux < (1 << 23)) /* handle underflow */
fp_barrierf(x * x);
} else { /* |x| < 0.5, up to 1.7ulp error */
x = 0.5f * log1pf(2 * x + 2 * x * x / (1 - x));
}
} else { /* avoid overflow */
x = 0.5f * log1pf(2 * (x / (1 - x)));
if (isinf(x)) *_errno() = ERANGE;
}
return s ? -x : x;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _scalb (MSVCRT.@)
* scalbn (MSVCR120.@)
* scalbln (MSVCR120.@)
*/
double CDECL _scalb(double num, __msvcrt_long power)
{
return ldexp(num, power);
}
/*********************************************************************
* _scalbf (MSVCRT.@)
* scalbnf (MSVCR120.@)
* scalblnf (MSVCR120.@)
*/
float CDECL _scalbf(float num, __msvcrt_long power)
{
return ldexp(num, power);
}
#if _MSVCR_VER>=120
/*********************************************************************
* remainder (MSVCR120.@)
*
* Copied from musl: src/math/remainder.c
*/
double CDECL remainder(double x, double y)
{
int q;
#if _MSVCR_VER == 120 && defined(__x86_64__)
if (isnan(x) || isnan(y)) *_errno() = EDOM;
#endif
return remquo(x, y, &q);
}
/*********************************************************************
* remainderf (MSVCR120.@)
*
* Copied from musl: src/math/remainderf.c
*/
float CDECL remainderf(float x, float y)
{
int q;
#if _MSVCR_VER == 120 && defined(__x86_64__)
if (isnan(x) || isnan(y)) *_errno() = EDOM;
#endif
return remquof(x, y, &q);
}
/*********************************************************************
* _except1 (MSVCR120.@)
* TODO:
* - find meaning of ignored cw and operation bits
* - unk parameter
*/
double CDECL _except1(DWORD fpe, _FP_OPERATION_CODE op, double arg, double res, DWORD cw, void *unk)
{
ULONG_PTR exception_arg;
DWORD exception = 0;
unsigned int fpword = 0;
WORD operation;
int raise = 0;
TRACE("(%lx %x %lf %lf %lx %p)\n", fpe, op, arg, res, cw, unk);
#ifdef _WIN64
cw = ((cw >> 7) & 0x3f) | ((cw >> 3) & 0xc00);
#endif
operation = op << 5;
exception_arg = (ULONG_PTR)&operation;
if (fpe & 0x1) { /* overflow */
if ((fpe == 0x1 && (cw & 0x8)) || (fpe==0x11 && (cw & 0x28))) {
/* 32-bit version also sets SW_INEXACT here */
raise |= FE_OVERFLOW;
if (fpe & 0x10) raise |= FE_INEXACT;
res = signbit(res) ? -INFINITY : INFINITY;
} else {
exception = EXCEPTION_FLT_OVERFLOW;
}
} else if (fpe & 0x2) { /* underflow */
if ((fpe == 0x2 && (cw & 0x10)) || (fpe==0x12 && (cw & 0x30))) {
raise |= FE_UNDERFLOW;
if (fpe & 0x10) raise |= FE_INEXACT;
res = signbit(res) ? -0.0 : 0.0;
} else {
exception = EXCEPTION_FLT_UNDERFLOW;
}
} else if (fpe & 0x4) { /* zerodivide */
if ((fpe == 0x4 && (cw & 0x4)) || (fpe==0x14 && (cw & 0x24))) {
raise |= FE_DIVBYZERO;
if (fpe & 0x10) raise |= FE_INEXACT;
} else {
exception = EXCEPTION_FLT_DIVIDE_BY_ZERO;
}
} else if (fpe & 0x8) { /* invalid */
if (fpe == 0x8 && (cw & 0x1)) {
raise |= FE_INVALID;
} else {
exception = EXCEPTION_FLT_INVALID_OPERATION;
}
} else if (fpe & 0x10) { /* inexact */
if (fpe == 0x10 && (cw & 0x20)) {
raise |= FE_INEXACT;
} else {
exception = EXCEPTION_FLT_INEXACT_RESULT;
}
}
if (exception)
raise = 0;
feraiseexcept(raise);
if (exception)
RaiseException(exception, 0, 1, &exception_arg);
if (cw & 0x1) fpword |= _EM_INVALID;
if (cw & 0x2) fpword |= _EM_DENORMAL;
if (cw & 0x4) fpword |= _EM_ZERODIVIDE;
if (cw & 0x8) fpword |= _EM_OVERFLOW;
if (cw & 0x10) fpword |= _EM_UNDERFLOW;
if (cw & 0x20) fpword |= _EM_INEXACT;
switch (cw & 0xc00)
{
case 0xc00: fpword |= _RC_UP|_RC_DOWN; break;
case 0x800: fpword |= _RC_UP; break;
case 0x400: fpword |= _RC_DOWN; break;
}
switch (cw & 0x300)
{
case 0x0: fpword |= _PC_24; break;
case 0x200: fpword |= _PC_53; break;
case 0x300: fpword |= _PC_64; break;
}
if (cw & 0x1000) fpword |= _IC_AFFINE;
_setfp(&fpword, _MCW_EM | _MCW_RC | _MCW_PC | _MCW_IC, NULL, 0);
return res;
}
_Dcomplex* CDECL _Cbuild(_Dcomplex *ret, double r, double i)
{
ret->_Val[0] = r;
ret->_Val[1] = i;
return ret;
}
double CDECL MSVCR120_creal(_Dcomplex z)
{
return z._Val[0];
}
#endif /* _MSVCR_VER>=120 */