wine/dlls/winepulse.drv/pulse.c

3044 lines
90 KiB
C

/*
* Copyright 2011-2012 Maarten Lankhorst
* Copyright 2010-2011 Maarten Lankhorst for CodeWeavers
* Copyright 2011 Andrew Eikum for CodeWeavers
* Copyright 2022 Huw Davies
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#if 0
#pragma makedep unix
#endif
#include <stdarg.h>
#include <pthread.h>
#include <math.h>
#include <poll.h>
#include <pulse/pulseaudio.h>
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "winternl.h"
#include "mmdeviceapi.h"
#include "initguid.h"
#include "audioclient.h"
#include "wine/debug.h"
#include "wine/list.h"
#include "wine/unixlib.h"
#include "../mmdevapi/unixlib.h"
#include "mult.h"
WINE_DEFAULT_DEBUG_CHANNEL(pulse);
enum phys_device_bus_type {
phys_device_bus_invalid = -1,
phys_device_bus_pci,
phys_device_bus_usb
};
struct pulse_stream
{
EDataFlow dataflow;
pa_stream *stream;
pa_sample_spec ss;
pa_channel_map map;
pa_buffer_attr attr;
DWORD flags;
AUDCLNT_SHAREMODE share;
HANDLE event;
float vol[PA_CHANNELS_MAX];
REFERENCE_TIME def_period;
INT32 locked;
BOOL started;
SIZE_T bufsize_frames, real_bufsize_bytes, period_bytes;
SIZE_T peek_ofs, read_offs_bytes, lcl_offs_bytes, pa_offs_bytes;
SIZE_T tmp_buffer_bytes, held_bytes, peek_len, peek_buffer_len, pa_held_bytes;
BYTE *local_buffer, *tmp_buffer, *peek_buffer;
void *locked_ptr;
BOOL please_quit, just_started, just_underran;
pa_usec_t mmdev_period_usec;
INT64 clock_lastpos, clock_written;
struct list packet_free_head;
struct list packet_filled_head;
};
typedef struct _ACPacket
{
struct list entry;
UINT64 qpcpos;
BYTE *data;
UINT32 discont;
} ACPacket;
typedef struct _PhysDevice {
struct list entry;
WCHAR *name;
enum phys_device_bus_type bus_type;
USHORT vendor_id, product_id;
EndpointFormFactor form;
UINT channel_mask;
UINT index;
REFERENCE_TIME min_period, def_period;
WAVEFORMATEXTENSIBLE fmt;
char pulse_name[0];
} PhysDevice;
static pa_context *pulse_ctx;
static pa_mainloop *pulse_ml;
static struct list g_phys_speakers = LIST_INIT(g_phys_speakers);
static struct list g_phys_sources = LIST_INIT(g_phys_sources);
static const REFERENCE_TIME MinimumPeriod = 30000;
static const REFERENCE_TIME DefaultPeriod = 100000;
static pthread_mutex_t pulse_mutex;
static pthread_cond_t pulse_cond = PTHREAD_COND_INITIALIZER;
static ULONG_PTR zero_bits = 0;
static NTSTATUS pulse_not_implemented(void *args)
{
return STATUS_SUCCESS;
}
static void pulse_lock(void)
{
pthread_mutex_lock(&pulse_mutex);
}
static void pulse_unlock(void)
{
pthread_mutex_unlock(&pulse_mutex);
}
static int pulse_cond_wait(void)
{
return pthread_cond_wait(&pulse_cond, &pulse_mutex);
}
static void pulse_broadcast(void)
{
pthread_cond_broadcast(&pulse_cond);
}
static struct pulse_stream *handle_get_stream(stream_handle h)
{
return (struct pulse_stream *)(UINT_PTR)h;
}
static void dump_attr(const pa_buffer_attr *attr)
{
TRACE("maxlength: %u\n", attr->maxlength);
TRACE("minreq: %u\n", attr->minreq);
TRACE("fragsize: %u\n", attr->fragsize);
TRACE("tlength: %u\n", attr->tlength);
TRACE("prebuf: %u\n", attr->prebuf);
}
static void free_phys_device_lists(void)
{
static struct list *const lists[] = { &g_phys_speakers, &g_phys_sources, NULL };
struct list *const *list = lists;
PhysDevice *dev, *dev_next;
do {
LIST_FOR_EACH_ENTRY_SAFE(dev, dev_next, *list, PhysDevice, entry) {
free(dev->name);
free(dev);
}
} while (*(++list));
}
/* copied from kernelbase */
static int muldiv(int a, int b, int c)
{
LONGLONG ret;
if (!c) return -1;
/* We want to deal with a positive divisor to simplify the logic. */
if (c < 0)
{
a = -a;
c = -c;
}
/* If the result is positive, we "add" to round. else, we subtract to round. */
if ((a < 0 && b < 0) || (a >= 0 && b >= 0))
ret = (((LONGLONG)a * b) + (c / 2)) / c;
else
ret = (((LONGLONG)a * b) - (c / 2)) / c;
if (ret > 2147483647 || ret < -2147483647) return -1;
return ret;
}
static char *wstr_to_str(const WCHAR *wstr)
{
const int len = wcslen(wstr);
char *str = malloc(len * 3 + 1);
ntdll_wcstoumbs(wstr, len + 1, str, len * 3 + 1, FALSE);
return str;
}
/* Following pulseaudio design here, mainloop has the lock taken whenever
* it is handling something for pulse, and the lock is required whenever
* doing any pa_* call that can affect the state in any way
*
* pa_cond_wait is used when waiting on results, because the mainloop needs
* the same lock taken to affect the state
*
* This is basically the same as the pa_threaded_mainloop implementation,
* but that cannot be used because it uses pthread_create directly
*
* pa_threaded_mainloop_(un)lock -> pthread_mutex_(un)lock
* pa_threaded_mainloop_signal -> pthread_cond_broadcast
* pa_threaded_mainloop_wait -> pthread_cond_wait
*/
static int pulse_poll_func(struct pollfd *ufds, unsigned long nfds, int timeout, void *userdata)
{
int r;
pulse_unlock();
r = poll(ufds, nfds, timeout);
pulse_lock();
return r;
}
static NTSTATUS pulse_process_attach(void *args)
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
if (pthread_mutex_init(&pulse_mutex, &attr) != 0)
pthread_mutex_init(&pulse_mutex, NULL);
#ifdef _WIN64
if (NtCurrentTeb()->WowTebOffset)
{
SYSTEM_BASIC_INFORMATION info;
NtQuerySystemInformation(SystemEmulationBasicInformation, &info, sizeof(info), NULL);
zero_bits = (ULONG_PTR)info.HighestUserAddress | 0x7fffffff;
}
#endif
return STATUS_SUCCESS;
}
static NTSTATUS pulse_process_detach(void *args)
{
free_phys_device_lists();
if (pulse_ctx)
{
pa_context_disconnect(pulse_ctx);
pa_context_unref(pulse_ctx);
}
if (pulse_ml)
pa_mainloop_quit(pulse_ml, 0);
return STATUS_SUCCESS;
}
static NTSTATUS pulse_main_loop(void *args)
{
struct main_loop_params *params = args;
int ret;
pulse_lock();
pulse_ml = pa_mainloop_new();
pa_mainloop_set_poll_func(pulse_ml, pulse_poll_func, NULL);
NtSetEvent(params->event, NULL);
pa_mainloop_run(pulse_ml, &ret);
pa_mainloop_free(pulse_ml);
pulse_unlock();
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_endpoint_ids(void *args)
{
struct get_endpoint_ids_params *params = args;
struct list *list = (params->flow == eRender) ? &g_phys_speakers : &g_phys_sources;
struct endpoint *endpoint = params->endpoints;
size_t len, name_len, needed;
unsigned int offset;
PhysDevice *dev;
params->num = list_count(list);
offset = needed = params->num * sizeof(*params->endpoints);
LIST_FOR_EACH_ENTRY(dev, list, PhysDevice, entry) {
name_len = lstrlenW(dev->name) + 1;
len = strlen(dev->pulse_name) + 1;
needed += name_len * sizeof(WCHAR) + ((len + 1) & ~1);
if (needed <= params->size) {
endpoint->name = offset;
memcpy((char *)params->endpoints + offset, dev->name, name_len * sizeof(WCHAR));
offset += name_len * sizeof(WCHAR);
endpoint->device = offset;
memcpy((char *)params->endpoints + offset, dev->pulse_name, len);
offset += (len + 1) & ~1;
endpoint++;
}
}
params->default_idx = 0;
if (needed > params->size) {
params->size = needed;
params->result = HRESULT_FROM_WIN32(ERROR_INSUFFICIENT_BUFFER);
} else
params->result = S_OK;
return STATUS_SUCCESS;
}
static void pulse_contextcallback(pa_context *c, void *userdata)
{
switch (pa_context_get_state(c)) {
default:
FIXME("Unhandled state: %i\n", pa_context_get_state(c));
return;
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
case PA_CONTEXT_TERMINATED:
TRACE("State change to %i\n", pa_context_get_state(c));
return;
case PA_CONTEXT_READY:
TRACE("Ready\n");
break;
case PA_CONTEXT_FAILED:
WARN("Context failed: %s\n", pa_strerror(pa_context_errno(c)));
break;
}
pulse_broadcast();
}
static void pulse_stream_state(pa_stream *s, void *user)
{
pa_stream_state_t state = pa_stream_get_state(s);
TRACE("Stream state changed to %i\n", state);
pulse_broadcast();
}
static void pulse_attr_update(pa_stream *s, void *user) {
const pa_buffer_attr *attr = pa_stream_get_buffer_attr(s);
TRACE("New attributes or device moved:\n");
dump_attr(attr);
}
static void pulse_underflow_callback(pa_stream *s, void *userdata)
{
struct pulse_stream *stream = userdata;
WARN("%p: Underflow\n", userdata);
stream->just_underran = TRUE;
}
static void pulse_started_callback(pa_stream *s, void *userdata)
{
TRACE("%p: (Re)started playing\n", userdata);
}
static void pulse_op_cb(pa_stream *s, int success, void *user)
{
TRACE("Success: %i\n", success);
*(int*)user = success;
pulse_broadcast();
}
static void silence_buffer(pa_sample_format_t format, BYTE *buffer, UINT32 bytes)
{
memset(buffer, format == PA_SAMPLE_U8 ? 0x80 : 0, bytes);
}
static BOOL pulse_stream_valid(struct pulse_stream *stream)
{
return pa_stream_get_state(stream->stream) == PA_STREAM_READY;
}
static HRESULT pulse_connect(const char *name)
{
pa_context_state_t state;
if (pulse_ctx && PA_CONTEXT_IS_GOOD(pa_context_get_state(pulse_ctx)))
return S_OK;
if (pulse_ctx)
pa_context_unref(pulse_ctx);
pulse_ctx = pa_context_new(pa_mainloop_get_api(pulse_ml), name);
if (!pulse_ctx) {
ERR("Failed to create context\n");
return E_FAIL;
}
pa_context_set_state_callback(pulse_ctx, pulse_contextcallback, NULL);
TRACE("libpulse protocol version: %u. API Version %u\n", pa_context_get_protocol_version(pulse_ctx), PA_API_VERSION);
if (pa_context_connect(pulse_ctx, NULL, 0, NULL) < 0)
goto fail;
/* Wait for connection */
while ((state = pa_context_get_state(pulse_ctx)) != PA_CONTEXT_READY &&
state != PA_CONTEXT_FAILED && state != PA_CONTEXT_TERMINATED)
pulse_cond_wait();
if (state != PA_CONTEXT_READY)
goto fail;
TRACE("Connected to server %s with protocol version: %i.\n",
pa_context_get_server(pulse_ctx),
pa_context_get_server_protocol_version(pulse_ctx));
return S_OK;
fail:
pa_context_unref(pulse_ctx);
pulse_ctx = NULL;
return E_FAIL;
}
static UINT pulse_channel_map_to_channel_mask(const pa_channel_map *map)
{
int i;
UINT mask = 0;
for (i = 0; i < map->channels; ++i) {
switch (map->map[i]) {
default: FIXME("Unhandled channel %s\n", pa_channel_position_to_string(map->map[i])); break;
case PA_CHANNEL_POSITION_FRONT_LEFT: mask |= SPEAKER_FRONT_LEFT; break;
case PA_CHANNEL_POSITION_MONO:
case PA_CHANNEL_POSITION_FRONT_CENTER: mask |= SPEAKER_FRONT_CENTER; break;
case PA_CHANNEL_POSITION_FRONT_RIGHT: mask |= SPEAKER_FRONT_RIGHT; break;
case PA_CHANNEL_POSITION_REAR_LEFT: mask |= SPEAKER_BACK_LEFT; break;
case PA_CHANNEL_POSITION_REAR_CENTER: mask |= SPEAKER_BACK_CENTER; break;
case PA_CHANNEL_POSITION_REAR_RIGHT: mask |= SPEAKER_BACK_RIGHT; break;
case PA_CHANNEL_POSITION_LFE: mask |= SPEAKER_LOW_FREQUENCY; break;
case PA_CHANNEL_POSITION_SIDE_LEFT: mask |= SPEAKER_SIDE_LEFT; break;
case PA_CHANNEL_POSITION_SIDE_RIGHT: mask |= SPEAKER_SIDE_RIGHT; break;
case PA_CHANNEL_POSITION_TOP_CENTER: mask |= SPEAKER_TOP_CENTER; break;
case PA_CHANNEL_POSITION_TOP_FRONT_LEFT: mask |= SPEAKER_TOP_FRONT_LEFT; break;
case PA_CHANNEL_POSITION_TOP_FRONT_CENTER: mask |= SPEAKER_TOP_FRONT_CENTER; break;
case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: mask |= SPEAKER_TOP_FRONT_RIGHT; break;
case PA_CHANNEL_POSITION_TOP_REAR_LEFT: mask |= SPEAKER_TOP_BACK_LEFT; break;
case PA_CHANNEL_POSITION_TOP_REAR_CENTER: mask |= SPEAKER_TOP_BACK_CENTER; break;
case PA_CHANNEL_POSITION_TOP_REAR_RIGHT: mask |= SPEAKER_TOP_BACK_RIGHT; break;
case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: mask |= SPEAKER_FRONT_LEFT_OF_CENTER; break;
case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: mask |= SPEAKER_FRONT_RIGHT_OF_CENTER; break;
}
}
return mask;
}
#define MAX_DEVICE_NAME_LEN 62
static WCHAR *get_device_name(const char *desc, pa_proplist *proplist)
{
/*
Some broken apps (e.g. Split/Second with fmodex) can't handle names that
are too long and crash even on native. If the device desc is too long,
we'll attempt to incrementally build it to try to stay under the limit.
( + 1 is to check against truncated buffer after ntdll_umbstowcs )
*/
WCHAR buf[MAX_DEVICE_NAME_LEN + 1];
/* For monitors of sinks; this does not seem to be localized in PA either */
static const WCHAR monitor_of[] = {'M','o','n','i','t','o','r',' ','o','f',' '};
size_t len = strlen(desc);
WCHAR *name, *tmp;
if (!(name = malloc((len + 1) * sizeof(WCHAR))))
return NULL;
if (!(len = ntdll_umbstowcs(desc, len, name, len))) {
free(name);
return NULL;
}
if (len > MAX_DEVICE_NAME_LEN && proplist) {
const char *prop = pa_proplist_gets(proplist, PA_PROP_DEVICE_CLASS);
unsigned prop_len, rem = ARRAY_SIZE(buf);
BOOL monitor = FALSE;
if (prop && !strcmp(prop, "monitor")) {
rem -= ARRAY_SIZE(monitor_of);
monitor = TRUE;
}
prop = pa_proplist_gets(proplist, PA_PROP_DEVICE_PRODUCT_NAME);
if (!prop || !prop[0] ||
!(prop_len = ntdll_umbstowcs(prop, strlen(prop), buf, rem)) || prop_len == rem) {
prop = pa_proplist_gets(proplist, "alsa.card_name");
if (!prop || !prop[0] ||
!(prop_len = ntdll_umbstowcs(prop, strlen(prop), buf, rem)) || prop_len == rem)
prop = NULL;
}
if (prop) {
/* We know we have a name that fits within the limit now */
WCHAR *p = name;
if (monitor) {
memcpy(p, monitor_of, sizeof(monitor_of));
p += ARRAY_SIZE(monitor_of);
}
len = ntdll_umbstowcs(prop, strlen(prop), p, rem);
rem -= len;
p += len;
if (rem > 2) {
rem--; /* space */
prop = pa_proplist_gets(proplist, PA_PROP_DEVICE_PROFILE_DESCRIPTION);
if (prop && prop[0] && (len = ntdll_umbstowcs(prop, strlen(prop), p + 1, rem)) && len != rem) {
*p++ = ' ';
p += len;
}
}
len = p - name;
}
}
name[len] = '\0';
if ((tmp = realloc(name, (len + 1) * sizeof(WCHAR))))
name = tmp;
return name;
}
static void fill_device_info(PhysDevice *dev, pa_proplist *p)
{
const char *buffer;
dev->bus_type = phys_device_bus_invalid;
dev->vendor_id = 0;
dev->product_id = 0;
if (!p)
return;
if ((buffer = pa_proplist_gets(p, PA_PROP_DEVICE_BUS))) {
if (!strcmp(buffer, "usb"))
dev->bus_type = phys_device_bus_usb;
else if (!strcmp(buffer, "pci"))
dev->bus_type = phys_device_bus_pci;
}
if ((buffer = pa_proplist_gets(p, PA_PROP_DEVICE_VENDOR_ID)))
dev->vendor_id = strtol(buffer, NULL, 16);
if ((buffer = pa_proplist_gets(p, PA_PROP_DEVICE_PRODUCT_ID)))
dev->product_id = strtol(buffer, NULL, 16);
}
static void pulse_add_device(struct list *list, pa_proplist *proplist, int index, EndpointFormFactor form,
UINT channel_mask, const char *pulse_name, const char *desc)
{
size_t len = strlen(pulse_name);
PhysDevice *dev = malloc(FIELD_OFFSET(PhysDevice, pulse_name[len + 1]));
if (!dev)
return;
if (!(dev->name = get_device_name(desc, proplist))) {
free(dev);
return;
}
dev->form = form;
dev->index = index;
dev->channel_mask = channel_mask;
dev->def_period = 0;
dev->min_period = 0;
fill_device_info(dev, proplist);
memcpy(dev->pulse_name, pulse_name, len + 1);
list_add_tail(list, &dev->entry);
TRACE("%s\n", debugstr_w(dev->name));
}
static void pulse_phys_speakers_cb(pa_context *c, const pa_sink_info *i, int eol, void *userdata)
{
struct list *speaker;
UINT channel_mask;
if (!i || !i->name || !i->name[0])
return;
channel_mask = pulse_channel_map_to_channel_mask(&i->channel_map);
/* For default PulseAudio render device, OR together all of the
* PKEY_AudioEndpoint_PhysicalSpeakers values of the sinks. */
speaker = list_head(&g_phys_speakers);
if (speaker)
LIST_ENTRY(speaker, PhysDevice, entry)->channel_mask |= channel_mask;
pulse_add_device(&g_phys_speakers, i->proplist, i->index, Speakers, channel_mask, i->name, i->description);
}
static void pulse_phys_sources_cb(pa_context *c, const pa_source_info *i, int eol, void *userdata)
{
if (!i || !i->name || !i->name[0])
return;
pulse_add_device(&g_phys_sources, i->proplist, i->index,
(i->monitor_of_sink == PA_INVALID_INDEX) ? Microphone : LineLevel, 0, i->name, i->description);
}
/* For most hardware on Windows, users must choose a configuration with an even
* number of channels (stereo, quad, 5.1, 7.1). Users can then disable
* channels, but those channels are still reported to applications from
* GetMixFormat! Some applications behave badly if given an odd number of
* channels (e.g. 2.1). Here, we find the nearest configuration that Windows
* would report for a given channel layout. */
static void convert_channel_map(const pa_channel_map *pa_map, WAVEFORMATEXTENSIBLE *fmt)
{
UINT pa_mask = pulse_channel_map_to_channel_mask(pa_map);
TRACE("got mask for PA: 0x%x\n", pa_mask);
if (pa_map->channels == 1)
{
fmt->Format.nChannels = 1;
fmt->dwChannelMask = pa_mask;
return;
}
/* compare against known configurations and find smallest configuration
* which is a superset of the given speakers */
if (pa_map->channels <= 2 &&
(pa_mask & ~KSAUDIO_SPEAKER_STEREO) == 0)
{
fmt->Format.nChannels = 2;
fmt->dwChannelMask = KSAUDIO_SPEAKER_STEREO;
return;
}
if (pa_map->channels <= 4 &&
(pa_mask & ~KSAUDIO_SPEAKER_QUAD) == 0)
{
fmt->Format.nChannels = 4;
fmt->dwChannelMask = KSAUDIO_SPEAKER_QUAD;
return;
}
if (pa_map->channels <= 4 &&
(pa_mask & ~KSAUDIO_SPEAKER_SURROUND) == 0)
{
fmt->Format.nChannels = 4;
fmt->dwChannelMask = KSAUDIO_SPEAKER_SURROUND;
return;
}
if (pa_map->channels <= 6 &&
(pa_mask & ~KSAUDIO_SPEAKER_5POINT1) == 0)
{
fmt->Format.nChannels = 6;
fmt->dwChannelMask = KSAUDIO_SPEAKER_5POINT1;
return;
}
if (pa_map->channels <= 6 &&
(pa_mask & ~KSAUDIO_SPEAKER_5POINT1_SURROUND) == 0)
{
fmt->Format.nChannels = 6;
fmt->dwChannelMask = KSAUDIO_SPEAKER_5POINT1_SURROUND;
return;
}
if (pa_map->channels <= 8 &&
(pa_mask & ~KSAUDIO_SPEAKER_7POINT1) == 0)
{
fmt->Format.nChannels = 8;
fmt->dwChannelMask = KSAUDIO_SPEAKER_7POINT1;
return;
}
if (pa_map->channels <= 8 &&
(pa_mask & ~KSAUDIO_SPEAKER_7POINT1_SURROUND) == 0)
{
fmt->Format.nChannels = 8;
fmt->dwChannelMask = KSAUDIO_SPEAKER_7POINT1_SURROUND;
return;
}
/* oddball format, report truthfully */
fmt->Format.nChannels = pa_map->channels;
fmt->dwChannelMask = pa_mask;
}
static void pulse_probe_settings(int render, const char *pulse_name, WAVEFORMATEXTENSIBLE *fmt, REFERENCE_TIME *def_period, REFERENCE_TIME *min_period)
{
WAVEFORMATEX *wfx = &fmt->Format;
pa_stream *stream;
pa_channel_map map;
pa_sample_spec ss;
pa_buffer_attr attr;
int ret;
unsigned int length = 0;
if (pulse_name && !pulse_name[0])
pulse_name = NULL;
pa_channel_map_init_auto(&map, 2, PA_CHANNEL_MAP_ALSA);
ss.rate = 48000;
ss.format = PA_SAMPLE_FLOAT32LE;
ss.channels = map.channels;
attr.maxlength = -1;
attr.tlength = -1;
attr.minreq = attr.fragsize = pa_frame_size(&ss);
attr.prebuf = 0;
stream = pa_stream_new(pulse_ctx, "format test stream", &ss, &map);
if (stream)
pa_stream_set_state_callback(stream, pulse_stream_state, NULL);
if (!stream)
ret = -1;
else if (render)
ret = pa_stream_connect_playback(stream, pulse_name, &attr,
PA_STREAM_START_CORKED|PA_STREAM_FIX_RATE|PA_STREAM_FIX_CHANNELS|PA_STREAM_EARLY_REQUESTS, NULL, NULL);
else
ret = pa_stream_connect_record(stream, pulse_name, &attr, PA_STREAM_START_CORKED|PA_STREAM_FIX_RATE|PA_STREAM_FIX_CHANNELS|PA_STREAM_EARLY_REQUESTS);
if (ret >= 0) {
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_stream_get_state(stream) == PA_STREAM_CREATING)
{}
if (pa_stream_get_state(stream) == PA_STREAM_READY) {
ss = *pa_stream_get_sample_spec(stream);
map = *pa_stream_get_channel_map(stream);
if (render)
length = pa_stream_get_buffer_attr(stream)->minreq;
else
length = pa_stream_get_buffer_attr(stream)->fragsize;
pa_stream_disconnect(stream);
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_stream_get_state(stream) == PA_STREAM_READY)
{}
}
}
if (stream)
pa_stream_unref(stream);
if (length)
*def_period = *min_period = pa_bytes_to_usec(10 * length, &ss);
if (*min_period < MinimumPeriod)
*min_period = MinimumPeriod;
if (*def_period < DefaultPeriod)
*def_period = DefaultPeriod;
wfx->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
wfx->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
convert_channel_map(&map, fmt);
wfx->wBitsPerSample = 8 * pa_sample_size_of_format(ss.format);
wfx->nSamplesPerSec = ss.rate;
wfx->nBlockAlign = wfx->nChannels * wfx->wBitsPerSample / 8;
wfx->nAvgBytesPerSec = wfx->nSamplesPerSec * wfx->nBlockAlign;
if (ss.format != PA_SAMPLE_S24_32LE)
fmt->Samples.wValidBitsPerSample = wfx->wBitsPerSample;
else
fmt->Samples.wValidBitsPerSample = 24;
if (ss.format == PA_SAMPLE_FLOAT32LE)
fmt->SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT;
else
fmt->SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
}
/* some poorly-behaved applications call audio functions during DllMain, so we
* have to do as much as possible without creating a new thread. this function
* sets up a synchronous connection to verify the server is running and query
* static data. */
static NTSTATUS pulse_test_connect(void *args)
{
struct test_connect_params *params = args;
PhysDevice *dev;
pa_operation *o;
int ret;
char *name = wstr_to_str(params->name);
pulse_lock();
pulse_ml = pa_mainloop_new();
pa_mainloop_set_poll_func(pulse_ml, pulse_poll_func, NULL);
pulse_ctx = pa_context_new(pa_mainloop_get_api(pulse_ml), name);
free(name);
if (!pulse_ctx) {
ERR("Failed to create context\n");
pa_mainloop_free(pulse_ml);
pulse_ml = NULL;
pulse_unlock();
params->priority = Priority_Unavailable;
return STATUS_SUCCESS;
}
pa_context_set_state_callback(pulse_ctx, pulse_contextcallback, NULL);
TRACE("libpulse protocol version: %u. API Version %u\n", pa_context_get_protocol_version(pulse_ctx), PA_API_VERSION);
if (pa_context_connect(pulse_ctx, NULL, 0, NULL) < 0)
goto fail;
/* Wait for connection */
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0) {
pa_context_state_t state = pa_context_get_state(pulse_ctx);
if (state == PA_CONTEXT_FAILED || state == PA_CONTEXT_TERMINATED)
goto fail;
if (state == PA_CONTEXT_READY)
break;
}
if (pa_context_get_state(pulse_ctx) != PA_CONTEXT_READY)
goto fail;
TRACE("Test-connected to server %s with protocol version: %i.\n",
pa_context_get_server(pulse_ctx),
pa_context_get_server_protocol_version(pulse_ctx));
free_phys_device_lists();
list_init(&g_phys_speakers);
list_init(&g_phys_sources);
pulse_add_device(&g_phys_speakers, NULL, 0, Speakers, 0, "", "PulseAudio");
pulse_add_device(&g_phys_sources, NULL, 0, Microphone, 0, "", "PulseAudio");
o = pa_context_get_sink_info_list(pulse_ctx, &pulse_phys_speakers_cb, NULL);
if (o) {
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_operation_get_state(o) == PA_OPERATION_RUNNING)
{}
pa_operation_unref(o);
}
o = pa_context_get_source_info_list(pulse_ctx, &pulse_phys_sources_cb, NULL);
if (o) {
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_operation_get_state(o) == PA_OPERATION_RUNNING)
{}
pa_operation_unref(o);
}
LIST_FOR_EACH_ENTRY(dev, &g_phys_speakers, PhysDevice, entry) {
pulse_probe_settings(1, dev->pulse_name, &dev->fmt, &dev->def_period, &dev->min_period);
}
LIST_FOR_EACH_ENTRY(dev, &g_phys_sources, PhysDevice, entry) {
pulse_probe_settings(0, dev->pulse_name, &dev->fmt, &dev->def_period, &dev->min_period);
}
pa_context_unref(pulse_ctx);
pulse_ctx = NULL;
pa_mainloop_free(pulse_ml);
pulse_ml = NULL;
pulse_unlock();
params->priority = Priority_Preferred;
return STATUS_SUCCESS;
fail:
pa_context_unref(pulse_ctx);
pulse_ctx = NULL;
pa_mainloop_free(pulse_ml);
pulse_ml = NULL;
pulse_unlock();
params->priority = Priority_Unavailable;
return STATUS_SUCCESS;
}
static UINT get_channel_mask(unsigned int channels)
{
switch(channels) {
case 0:
return 0;
case 1:
return KSAUDIO_SPEAKER_MONO;
case 2:
return KSAUDIO_SPEAKER_STEREO;
case 3:
return KSAUDIO_SPEAKER_STEREO | SPEAKER_LOW_FREQUENCY;
case 4:
return KSAUDIO_SPEAKER_QUAD; /* not _SURROUND */
case 5:
return KSAUDIO_SPEAKER_QUAD | SPEAKER_LOW_FREQUENCY;
case 6:
return KSAUDIO_SPEAKER_5POINT1; /* not 5POINT1_SURROUND */
case 7:
return KSAUDIO_SPEAKER_5POINT1 | SPEAKER_BACK_CENTER;
case 8:
return KSAUDIO_SPEAKER_7POINT1_SURROUND; /* Vista deprecates 7POINT1 */
}
FIXME("Unknown speaker configuration: %u\n", channels);
return 0;
}
static const enum pa_channel_position pulse_pos_from_wfx[] = {
PA_CHANNEL_POSITION_FRONT_LEFT,
PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER,
PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT,
PA_CHANNEL_POSITION_REAR_RIGHT,
PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
PA_CHANNEL_POSITION_REAR_CENTER,
PA_CHANNEL_POSITION_SIDE_LEFT,
PA_CHANNEL_POSITION_SIDE_RIGHT,
PA_CHANNEL_POSITION_TOP_CENTER,
PA_CHANNEL_POSITION_TOP_FRONT_LEFT,
PA_CHANNEL_POSITION_TOP_FRONT_CENTER,
PA_CHANNEL_POSITION_TOP_FRONT_RIGHT,
PA_CHANNEL_POSITION_TOP_REAR_LEFT,
PA_CHANNEL_POSITION_TOP_REAR_CENTER,
PA_CHANNEL_POSITION_TOP_REAR_RIGHT
};
static HRESULT pulse_spec_from_waveformat(struct pulse_stream *stream, const WAVEFORMATEX *fmt)
{
pa_channel_map_init(&stream->map);
stream->ss.rate = fmt->nSamplesPerSec;
stream->ss.format = PA_SAMPLE_INVALID;
switch(fmt->wFormatTag) {
case WAVE_FORMAT_IEEE_FLOAT:
if (!fmt->nChannels || fmt->nChannels > 2 || fmt->wBitsPerSample != 32)
break;
stream->ss.format = PA_SAMPLE_FLOAT32LE;
pa_channel_map_init_auto(&stream->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
break;
case WAVE_FORMAT_PCM:
if (!fmt->nChannels || fmt->nChannels > 2)
break;
if (fmt->wBitsPerSample == 8)
stream->ss.format = PA_SAMPLE_U8;
else if (fmt->wBitsPerSample == 16)
stream->ss.format = PA_SAMPLE_S16LE;
else
return AUDCLNT_E_UNSUPPORTED_FORMAT;
pa_channel_map_init_auto(&stream->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
break;
case WAVE_FORMAT_EXTENSIBLE: {
WAVEFORMATEXTENSIBLE *wfe = (WAVEFORMATEXTENSIBLE*)fmt;
UINT mask = wfe->dwChannelMask;
unsigned i = 0, j;
if (fmt->cbSize != (sizeof(*wfe) - sizeof(*fmt)) && fmt->cbSize != sizeof(*wfe))
break;
if (IsEqualGUID(&wfe->SubFormat, &KSDATAFORMAT_SUBTYPE_IEEE_FLOAT) &&
(!wfe->Samples.wValidBitsPerSample || wfe->Samples.wValidBitsPerSample == 32) &&
fmt->wBitsPerSample == 32)
stream->ss.format = PA_SAMPLE_FLOAT32LE;
else if (IsEqualGUID(&wfe->SubFormat, &KSDATAFORMAT_SUBTYPE_PCM)) {
DWORD valid = wfe->Samples.wValidBitsPerSample;
if (!valid)
valid = fmt->wBitsPerSample;
if (!valid || valid > fmt->wBitsPerSample)
break;
switch (fmt->wBitsPerSample) {
case 8:
if (valid == 8)
stream->ss.format = PA_SAMPLE_U8;
break;
case 16:
if (valid == 16)
stream->ss.format = PA_SAMPLE_S16LE;
break;
case 24:
if (valid == 24)
stream->ss.format = PA_SAMPLE_S24LE;
break;
case 32:
if (valid == 24)
stream->ss.format = PA_SAMPLE_S24_32LE;
else if (valid == 32)
stream->ss.format = PA_SAMPLE_S32LE;
break;
default:
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
}
stream->map.channels = fmt->nChannels;
if (!mask || (mask & (SPEAKER_ALL|SPEAKER_RESERVED)))
mask = get_channel_mask(fmt->nChannels);
for (j = 0; j < ARRAY_SIZE(pulse_pos_from_wfx) && i < fmt->nChannels; ++j) {
if (mask & (1 << j))
stream->map.map[i++] = pulse_pos_from_wfx[j];
}
/* Special case for mono since pulse appears to map it differently */
if (mask == SPEAKER_FRONT_CENTER)
stream->map.map[0] = PA_CHANNEL_POSITION_MONO;
if (i < fmt->nChannels || (mask & SPEAKER_RESERVED)) {
stream->map.channels = 0;
ERR("Invalid channel mask: %i/%i and %x(%x)\n", i, fmt->nChannels, mask, (unsigned)wfe->dwChannelMask);
break;
}
break;
}
case WAVE_FORMAT_ALAW:
case WAVE_FORMAT_MULAW:
if (fmt->wBitsPerSample != 8) {
FIXME("Unsupported bpp %u for LAW\n", fmt->wBitsPerSample);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
if (fmt->nChannels != 1 && fmt->nChannels != 2) {
FIXME("Unsupported channels %u for LAW\n", fmt->nChannels);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
stream->ss.format = fmt->wFormatTag == WAVE_FORMAT_MULAW ? PA_SAMPLE_ULAW : PA_SAMPLE_ALAW;
pa_channel_map_init_auto(&stream->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
break;
default:
WARN("Unhandled tag %x\n", fmt->wFormatTag);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
stream->ss.channels = stream->map.channels;
if (!pa_channel_map_valid(&stream->map) || stream->ss.format == PA_SAMPLE_INVALID) {
ERR("Invalid format! Channel spec valid: %i, format: %i\n",
pa_channel_map_valid(&stream->map), stream->ss.format);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
return S_OK;
}
static HRESULT pulse_stream_connect(struct pulse_stream *stream, const char *pulse_name, UINT32 period_bytes)
{
pa_stream_flags_t flags = PA_STREAM_START_CORKED | PA_STREAM_START_UNMUTED | PA_STREAM_ADJUST_LATENCY;
int ret;
char buffer[64];
static LONG number;
pa_buffer_attr attr;
ret = InterlockedIncrement(&number);
sprintf(buffer, "audio stream #%i", ret);
stream->stream = pa_stream_new(pulse_ctx, buffer, &stream->ss, &stream->map);
if (!stream->stream) {
WARN("pa_stream_new returned error %i\n", pa_context_errno(pulse_ctx));
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
}
pa_stream_set_state_callback(stream->stream, pulse_stream_state, stream);
pa_stream_set_buffer_attr_callback(stream->stream, pulse_attr_update, stream);
pa_stream_set_moved_callback(stream->stream, pulse_attr_update, stream);
/* PulseAudio will fill in correct values */
attr.minreq = attr.fragsize = period_bytes;
attr.tlength = period_bytes * 3;
attr.maxlength = stream->bufsize_frames * pa_frame_size(&stream->ss);
attr.prebuf = pa_frame_size(&stream->ss);
dump_attr(&attr);
/* If specific device was requested, use it exactly */
if (pulse_name[0])
flags |= PA_STREAM_DONT_MOVE;
else
pulse_name = NULL; /* use default */
if (stream->dataflow == eRender)
ret = pa_stream_connect_playback(stream->stream, pulse_name, &attr, flags, NULL, NULL);
else
ret = pa_stream_connect_record(stream->stream, pulse_name, &attr, flags);
if (ret < 0) {
WARN("Returns %i\n", ret);
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
}
while (pa_stream_get_state(stream->stream) == PA_STREAM_CREATING)
pulse_cond_wait();
if (pa_stream_get_state(stream->stream) != PA_STREAM_READY)
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
if (stream->dataflow == eRender) {
pa_stream_set_underflow_callback(stream->stream, pulse_underflow_callback, stream);
pa_stream_set_started_callback(stream->stream, pulse_started_callback, stream);
}
return S_OK;
}
static HRESULT get_device_period_helper(EDataFlow flow, const char *pulse_name, REFERENCE_TIME *def, REFERENCE_TIME *min)
{
struct list *list = (flow == eRender) ? &g_phys_speakers : &g_phys_sources;
PhysDevice *dev;
if (!def && !min) {
return E_POINTER;
}
LIST_FOR_EACH_ENTRY(dev, list, PhysDevice, entry) {
if (strcmp(pulse_name, dev->pulse_name))
continue;
if (def)
*def = dev->def_period;
if (min)
*min = dev->min_period;
return S_OK;
}
return E_FAIL;
}
static NTSTATUS pulse_create_stream(void *args)
{
struct create_stream_params *params = args;
REFERENCE_TIME period, duration = params->duration;
struct pulse_stream *stream;
unsigned int i, bufsize_bytes;
HRESULT hr;
char *name;
if (params->share == AUDCLNT_SHAREMODE_EXCLUSIVE) {
params->result = AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED;
return STATUS_SUCCESS;
}
pulse_lock();
name = wstr_to_str(params->name);
params->result = pulse_connect(name);
free(name);
if (FAILED(params->result))
{
pulse_unlock();
return STATUS_SUCCESS;
}
if (!(stream = calloc(1, sizeof(*stream))))
{
pulse_unlock();
params->result = E_OUTOFMEMORY;
return STATUS_SUCCESS;
}
stream->dataflow = params->flow;
for (i = 0; i < ARRAY_SIZE(stream->vol); ++i)
stream->vol[i] = 1.f;
hr = pulse_spec_from_waveformat(stream, params->fmt);
TRACE("Obtaining format returns %08x\n", (unsigned)hr);
if (FAILED(hr))
goto exit;
period = 0;
hr = get_device_period_helper(params->flow, params->device, &period, NULL);
if (FAILED(hr))
goto exit;
if (duration < 3 * period)
duration = 3 * period;
stream->def_period = period;
stream->period_bytes = pa_frame_size(&stream->ss) * muldiv(period, stream->ss.rate, 10000000);
stream->bufsize_frames = ceil((duration / 10000000.) * params->fmt->nSamplesPerSec);
bufsize_bytes = stream->bufsize_frames * pa_frame_size(&stream->ss);
stream->mmdev_period_usec = period / 10;
stream->share = params->share;
stream->flags = params->flags;
hr = pulse_stream_connect(stream, params->device, stream->period_bytes);
if (SUCCEEDED(hr)) {
UINT32 unalign;
const pa_buffer_attr *attr = pa_stream_get_buffer_attr(stream->stream);
SIZE_T size;
stream->attr = *attr;
/* Update frames according to new size */
dump_attr(attr);
if (stream->dataflow == eRender) {
size = stream->real_bufsize_bytes =
stream->bufsize_frames * 2 * pa_frame_size(&stream->ss);
if (NtAllocateVirtualMemory(GetCurrentProcess(), (void **)&stream->local_buffer,
zero_bits, &size, MEM_COMMIT, PAGE_READWRITE))
hr = E_OUTOFMEMORY;
} else {
UINT32 i, capture_packets;
if ((unalign = bufsize_bytes % stream->period_bytes))
bufsize_bytes += stream->period_bytes - unalign;
stream->bufsize_frames = bufsize_bytes / pa_frame_size(&stream->ss);
stream->real_bufsize_bytes = bufsize_bytes;
capture_packets = stream->real_bufsize_bytes / stream->period_bytes;
size = stream->real_bufsize_bytes + capture_packets * sizeof(ACPacket);
if (NtAllocateVirtualMemory(GetCurrentProcess(), (void **)&stream->local_buffer,
zero_bits, &size, MEM_COMMIT, PAGE_READWRITE))
hr = E_OUTOFMEMORY;
else {
ACPacket *cur_packet = (ACPacket*)((char*)stream->local_buffer + stream->real_bufsize_bytes);
BYTE *data = stream->local_buffer;
silence_buffer(stream->ss.format, stream->local_buffer, stream->real_bufsize_bytes);
list_init(&stream->packet_free_head);
list_init(&stream->packet_filled_head);
for (i = 0; i < capture_packets; ++i, ++cur_packet) {
list_add_tail(&stream->packet_free_head, &cur_packet->entry);
cur_packet->data = data;
data += stream->period_bytes;
}
}
}
}
*params->channel_count = stream->ss.channels;
*params->stream = (stream_handle)(UINT_PTR)stream;
exit:
if (FAILED(params->result = hr)) {
free(stream->local_buffer);
if (stream->stream) {
pa_stream_disconnect(stream->stream);
pa_stream_unref(stream->stream);
}
free(stream);
}
pulse_unlock();
return STATUS_SUCCESS;
}
static NTSTATUS pulse_release_stream(void *args)
{
struct release_stream_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
SIZE_T size;
if(params->timer_thread) {
stream->please_quit = TRUE;
NtWaitForSingleObject(params->timer_thread, FALSE, NULL);
NtClose(params->timer_thread);
}
pulse_lock();
if (PA_STREAM_IS_GOOD(pa_stream_get_state(stream->stream))) {
pa_stream_disconnect(stream->stream);
while (PA_STREAM_IS_GOOD(pa_stream_get_state(stream->stream)))
pulse_cond_wait();
}
pa_stream_unref(stream->stream);
pulse_unlock();
if (stream->tmp_buffer) {
size = 0;
NtFreeVirtualMemory(GetCurrentProcess(), (void **)&stream->tmp_buffer,
&size, MEM_RELEASE);
}
if (stream->local_buffer) {
size = 0;
NtFreeVirtualMemory(GetCurrentProcess(), (void **)&stream->local_buffer,
&size, MEM_RELEASE);
}
free(stream->peek_buffer);
free(stream);
return STATUS_SUCCESS;
}
static int write_buffer(const struct pulse_stream *stream, BYTE *buffer, UINT32 bytes)
{
const float *vol = stream->vol;
UINT32 i, channels, mute = 0;
BOOL adjust = FALSE;
BYTE *end;
if (!bytes) return 0;
/* Adjust the buffer based on the volume for each channel */
channels = stream->ss.channels;
for (i = 0; i < channels; i++)
{
adjust |= vol[i] != 1.0f;
if (vol[i] == 0.0f)
mute++;
}
if (mute == channels)
{
silence_buffer(stream->ss.format, buffer, bytes);
goto write;
}
if (!adjust) goto write;
end = buffer + bytes;
switch (stream->ss.format)
{
#ifndef WORDS_BIGENDIAN
#define PROCESS_BUFFER(type) do \
{ \
type *p = (type*)buffer; \
do \
{ \
for (i = 0; i < channels; i++) \
p[i] = p[i] * vol[i]; \
p += i; \
} while ((BYTE*)p != end); \
} while (0)
case PA_SAMPLE_S16LE:
PROCESS_BUFFER(INT16);
break;
case PA_SAMPLE_S32LE:
PROCESS_BUFFER(INT32);
break;
case PA_SAMPLE_FLOAT32LE:
PROCESS_BUFFER(float);
break;
#undef PROCESS_BUFFER
case PA_SAMPLE_S24_32LE:
{
UINT32 *p = (UINT32*)buffer;
do
{
for (i = 0; i < channels; i++)
{
p[i] = (INT32)((INT32)(p[i] << 8) * vol[i]);
p[i] >>= 8;
}
p += i;
} while ((BYTE*)p != end);
break;
}
case PA_SAMPLE_S24LE:
{
/* do it 12 bytes at a time until it is no longer possible */
UINT32 *q = (UINT32*)buffer;
BYTE *p;
i = 0;
while (end - (BYTE*)q >= 12)
{
UINT32 v[4], k;
v[0] = q[0] << 8;
v[1] = q[1] << 16 | (q[0] >> 16 & ~0xff);
v[2] = q[2] << 24 | (q[1] >> 8 & ~0xff);
v[3] = q[2] & ~0xff;
for (k = 0; k < 4; k++)
{
v[k] = (INT32)((INT32)v[k] * vol[i]);
if (++i == channels) i = 0;
}
*q++ = v[0] >> 8 | (v[1] & ~0xff) << 16;
*q++ = v[1] >> 16 | (v[2] & ~0xff) << 8;
*q++ = v[2] >> 24 | (v[3] & ~0xff);
}
p = (BYTE*)q;
while (p != end)
{
UINT32 v = (INT32)((INT32)(p[0] << 8 | p[1] << 16 | p[2] << 24) * vol[i]);
*p++ = v >> 8 & 0xff;
*p++ = v >> 16 & 0xff;
*p++ = v >> 24;
if (++i == channels) i = 0;
}
break;
}
#endif
case PA_SAMPLE_U8:
{
UINT8 *p = (UINT8*)buffer;
do
{
for (i = 0; i < channels; i++)
p[i] = (int)((p[i] - 128) * vol[i]) + 128;
p += i;
} while ((BYTE*)p != end);
break;
}
case PA_SAMPLE_ALAW:
{
UINT8 *p = (UINT8*)buffer;
do
{
for (i = 0; i < channels; i++)
p[i] = mult_alaw_sample(p[i], vol[i]);
p += i;
} while ((BYTE*)p != end);
break;
}
case PA_SAMPLE_ULAW:
{
UINT8 *p = (UINT8*)buffer;
do
{
for (i = 0; i < channels; i++)
p[i] = mult_ulaw_sample(p[i], vol[i]);
p += i;
} while ((BYTE*)p != end);
break;
}
default:
TRACE("Unhandled format %i, not adjusting volume.\n", stream->ss.format);
break;
}
write:
return pa_stream_write(stream->stream, buffer, bytes, NULL, 0, PA_SEEK_RELATIVE);
}
static void pulse_write(struct pulse_stream *stream)
{
/* write as much data to PA as we can */
UINT32 to_write;
BYTE *buf = stream->local_buffer + stream->pa_offs_bytes;
UINT32 bytes = pa_stream_writable_size(stream->stream);
if (stream->just_underran)
{
/* prebuffer with silence if needed */
if(stream->pa_held_bytes < bytes){
to_write = bytes - stream->pa_held_bytes;
TRACE("prebuffering %u frames of silence\n",
(int)(to_write / pa_frame_size(&stream->ss)));
buf = calloc(1, to_write);
pa_stream_write(stream->stream, buf, to_write, NULL, 0, PA_SEEK_RELATIVE);
free(buf);
}
stream->just_underran = FALSE;
}
buf = stream->local_buffer + stream->pa_offs_bytes;
TRACE("held: %lu, avail: %u\n", stream->pa_held_bytes, bytes);
bytes = min(stream->pa_held_bytes, bytes);
if (stream->pa_offs_bytes + bytes > stream->real_bufsize_bytes)
{
to_write = stream->real_bufsize_bytes - stream->pa_offs_bytes;
TRACE("writing small chunk of %u bytes\n", to_write);
write_buffer(stream, buf, to_write);
stream->pa_held_bytes -= to_write;
to_write = bytes - to_write;
stream->pa_offs_bytes = 0;
buf = stream->local_buffer;
}
else
to_write = bytes;
TRACE("writing main chunk of %u bytes\n", to_write);
write_buffer(stream, buf, to_write);
stream->pa_offs_bytes += to_write;
stream->pa_offs_bytes %= stream->real_bufsize_bytes;
stream->pa_held_bytes -= to_write;
}
static void pulse_read(struct pulse_stream *stream)
{
size_t bytes = pa_stream_readable_size(stream->stream);
TRACE("Readable total: %zu, fragsize: %u\n", bytes, pa_stream_get_buffer_attr(stream->stream)->fragsize);
bytes += stream->peek_len - stream->peek_ofs;
while (bytes >= stream->period_bytes)
{
BYTE *dst = NULL, *src;
size_t src_len, copy, rem = stream->period_bytes;
if (stream->started)
{
LARGE_INTEGER stamp, freq;
ACPacket *p, *next;
if (!(p = (ACPacket*)list_head(&stream->packet_free_head)))
{
p = (ACPacket*)list_head(&stream->packet_filled_head);
if (!p) return;
if (!p->discont) {
next = (ACPacket*)p->entry.next;
next->discont = 1;
} else
p = (ACPacket*)list_tail(&stream->packet_filled_head);
}
else
{
stream->held_bytes += stream->period_bytes;
}
NtQueryPerformanceCounter(&stamp, &freq);
p->qpcpos = (stamp.QuadPart * (INT64)10000000) / freq.QuadPart;
p->discont = 0;
list_remove(&p->entry);
list_add_tail(&stream->packet_filled_head, &p->entry);
dst = p->data;
}
while (rem)
{
if (stream->peek_len)
{
copy = min(rem, stream->peek_len - stream->peek_ofs);
if (dst)
{
memcpy(dst, stream->peek_buffer + stream->peek_ofs, copy);
dst += copy;
}
rem -= copy;
stream->peek_ofs += copy;
if(stream->peek_len == stream->peek_ofs)
stream->peek_len = stream->peek_ofs = 0;
}
else if (pa_stream_peek(stream->stream, (const void**)&src, &src_len) == 0 && src_len)
{
copy = min(rem, src_len);
if (dst) {
if(src)
memcpy(dst, src, copy);
else
silence_buffer(stream->ss.format, dst, copy);
dst += copy;
}
rem -= copy;
if (copy < src_len)
{
if (src_len > stream->peek_buffer_len)
{
free(stream->peek_buffer);
stream->peek_buffer = malloc(src_len);
stream->peek_buffer_len = src_len;
}
if(src)
memcpy(stream->peek_buffer, src + copy, src_len - copy);
else
silence_buffer(stream->ss.format, stream->peek_buffer, src_len - copy);
stream->peek_len = src_len - copy;
stream->peek_ofs = 0;
}
pa_stream_drop(stream->stream);
}
}
bytes -= stream->period_bytes;
}
}
static NTSTATUS pulse_timer_loop(void *args)
{
struct timer_loop_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
LARGE_INTEGER delay;
pa_usec_t last_time;
UINT32 adv_bytes;
int success;
pa_operation *o;
pulse_lock();
delay.QuadPart = -stream->mmdev_period_usec * 10;
pa_stream_get_time(stream->stream, &last_time);
pulse_unlock();
while (!stream->please_quit)
{
pa_usec_t now, adv_usec = 0;
int err;
NtDelayExecution(FALSE, &delay);
pulse_lock();
delay.QuadPart = -stream->mmdev_period_usec * 10;
o = pa_stream_update_timing_info(stream->stream, pulse_op_cb, &success);
if (o)
{
while (pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pulse_cond_wait();
pa_operation_unref(o);
}
err = pa_stream_get_time(stream->stream, &now);
if (err == 0)
{
TRACE("got now: %s, last time: %s\n", wine_dbgstr_longlong(now), wine_dbgstr_longlong(last_time));
if (stream->started && (stream->dataflow == eCapture || stream->held_bytes))
{
if(stream->just_underran)
{
last_time = now;
stream->just_started = TRUE;
}
if (stream->just_started)
{
/* let it play out a period to absorb some latency and get accurate timing */
pa_usec_t diff = now - last_time;
if (diff > stream->mmdev_period_usec)
{
stream->just_started = FALSE;
last_time = now;
}
}
else
{
INT32 adjust = last_time + stream->mmdev_period_usec - now;
adv_usec = now - last_time;
if(adjust > ((INT32)(stream->mmdev_period_usec / 2)))
adjust = stream->mmdev_period_usec / 2;
else if(adjust < -((INT32)(stream->mmdev_period_usec / 2)))
adjust = -1 * stream->mmdev_period_usec / 2;
delay.QuadPart = -(stream->mmdev_period_usec + adjust) * 10;
last_time += stream->mmdev_period_usec;
}
if (stream->dataflow == eRender)
{
pulse_write(stream);
/* regardless of what PA does, advance one period */
adv_bytes = min(stream->period_bytes, stream->held_bytes);
stream->lcl_offs_bytes += adv_bytes;
stream->lcl_offs_bytes %= stream->real_bufsize_bytes;
stream->held_bytes -= adv_bytes;
}
else if(stream->dataflow == eCapture)
{
pulse_read(stream);
}
}
else
{
last_time = now;
delay.QuadPart = -stream->mmdev_period_usec * 10;
}
}
if (stream->event)
NtSetEvent(stream->event, NULL);
TRACE("%p after update, adv usec: %d, held: %u, delay usec: %u\n",
stream, (int)adv_usec,
(int)(stream->held_bytes/ pa_frame_size(&stream->ss)),
(unsigned int)(-delay.QuadPart / 10));
pulse_unlock();
}
return STATUS_SUCCESS;
}
static NTSTATUS pulse_start(void *args)
{
struct start_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
int success;
pa_operation *o;
params->result = S_OK;
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
if ((stream->flags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) && !stream->event)
{
pulse_unlock();
params->result = AUDCLNT_E_EVENTHANDLE_NOT_SET;
return STATUS_SUCCESS;
}
if (stream->started)
{
pulse_unlock();
params->result = AUDCLNT_E_NOT_STOPPED;
return STATUS_SUCCESS;
}
pulse_write(stream);
if (pa_stream_is_corked(stream->stream))
{
o = pa_stream_cork(stream->stream, 0, pulse_op_cb, &success);
if (o)
{
while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pulse_cond_wait();
pa_operation_unref(o);
}
else
success = 0;
if (!success)
params->result = E_FAIL;
}
if (SUCCEEDED(params->result))
{
stream->started = TRUE;
stream->just_started = TRUE;
}
pulse_unlock();
return STATUS_SUCCESS;
}
static NTSTATUS pulse_stop(void *args)
{
struct stop_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pa_operation *o;
int success;
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
if (!stream->started)
{
pulse_unlock();
params->result = S_FALSE;
return STATUS_SUCCESS;
}
params->result = S_OK;
if (stream->dataflow == eRender)
{
o = pa_stream_cork(stream->stream, 1, pulse_op_cb, &success);
if (o)
{
while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pulse_cond_wait();
pa_operation_unref(o);
}
else
success = 0;
if (!success)
params->result = E_FAIL;
}
if (SUCCEEDED(params->result))
stream->started = FALSE;
pulse_unlock();
return STATUS_SUCCESS;
}
static NTSTATUS pulse_reset(void *args)
{
struct reset_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
if (stream->started)
{
pulse_unlock();
params->result = AUDCLNT_E_NOT_STOPPED;
return STATUS_SUCCESS;
}
if (stream->locked)
{
pulse_unlock();
params->result = AUDCLNT_E_BUFFER_OPERATION_PENDING;
return STATUS_SUCCESS;
}
if (stream->dataflow == eRender)
{
/* If there is still data in the render buffer it needs to be removed from the server */
int success = 0;
if (stream->held_bytes)
{
pa_operation *o = pa_stream_flush(stream->stream, pulse_op_cb, &success);
if (o)
{
while (pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pulse_cond_wait();
pa_operation_unref(o);
}
}
if (success || !stream->held_bytes)
{
stream->clock_lastpos = stream->clock_written = 0;
stream->pa_offs_bytes = stream->lcl_offs_bytes = 0;
stream->held_bytes = stream->pa_held_bytes = 0;
}
}
else
{
ACPacket *p;
stream->clock_written += stream->held_bytes;
stream->held_bytes = 0;
if ((p = stream->locked_ptr))
{
stream->locked_ptr = NULL;
list_add_tail(&stream->packet_free_head, &p->entry);
}
list_move_tail(&stream->packet_free_head, &stream->packet_filled_head);
}
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
static BOOL alloc_tmp_buffer(struct pulse_stream *stream, SIZE_T bytes)
{
SIZE_T size;
if (stream->tmp_buffer_bytes >= bytes)
return TRUE;
if (stream->tmp_buffer)
{
size = 0;
NtFreeVirtualMemory(GetCurrentProcess(), (void **)&stream->tmp_buffer,
&size, MEM_RELEASE);
stream->tmp_buffer = NULL;
stream->tmp_buffer_bytes = 0;
}
if (NtAllocateVirtualMemory(GetCurrentProcess(), (void **)&stream->tmp_buffer,
zero_bits, &bytes, MEM_COMMIT, PAGE_READWRITE))
return FALSE;
stream->tmp_buffer_bytes = bytes;
return TRUE;
}
static UINT32 pulse_render_padding(struct pulse_stream *stream)
{
return stream->held_bytes / pa_frame_size(&stream->ss);
}
static UINT32 pulse_capture_padding(struct pulse_stream *stream)
{
ACPacket *packet = stream->locked_ptr;
if (!packet && !list_empty(&stream->packet_filled_head))
{
packet = (ACPacket*)list_head(&stream->packet_filled_head);
stream->locked_ptr = packet;
list_remove(&packet->entry);
}
return stream->held_bytes / pa_frame_size(&stream->ss);
}
static NTSTATUS pulse_get_render_buffer(void *args)
{
struct get_render_buffer_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
size_t bytes;
UINT32 wri_offs_bytes;
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
if (stream->locked)
{
pulse_unlock();
params->result = AUDCLNT_E_OUT_OF_ORDER;
return STATUS_SUCCESS;
}
if (!params->frames)
{
pulse_unlock();
*params->data = NULL;
params->result = S_OK;
return STATUS_SUCCESS;
}
if (stream->held_bytes / pa_frame_size(&stream->ss) + params->frames > stream->bufsize_frames)
{
pulse_unlock();
params->result = AUDCLNT_E_BUFFER_TOO_LARGE;
return STATUS_SUCCESS;
}
bytes = params->frames * pa_frame_size(&stream->ss);
wri_offs_bytes = (stream->lcl_offs_bytes + stream->held_bytes) % stream->real_bufsize_bytes;
if (wri_offs_bytes + bytes > stream->real_bufsize_bytes)
{
if (!alloc_tmp_buffer(stream, bytes))
{
pulse_unlock();
params->result = E_OUTOFMEMORY;
return STATUS_SUCCESS;
}
*params->data = stream->tmp_buffer;
stream->locked = -bytes;
}
else
{
*params->data = stream->local_buffer + wri_offs_bytes;
stream->locked = bytes;
}
silence_buffer(stream->ss.format, *params->data, bytes);
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
static void pulse_wrap_buffer(struct pulse_stream *stream, BYTE *buffer, UINT32 written_bytes)
{
UINT32 wri_offs_bytes = (stream->lcl_offs_bytes + stream->held_bytes) % stream->real_bufsize_bytes;
UINT32 chunk_bytes = stream->real_bufsize_bytes - wri_offs_bytes;
if (written_bytes <= chunk_bytes)
{
memcpy(stream->local_buffer + wri_offs_bytes, buffer, written_bytes);
}
else
{
memcpy(stream->local_buffer + wri_offs_bytes, buffer, chunk_bytes);
memcpy(stream->local_buffer, buffer + chunk_bytes, written_bytes - chunk_bytes);
}
}
static NTSTATUS pulse_release_render_buffer(void *args)
{
struct release_render_buffer_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
UINT32 written_bytes;
BYTE *buffer;
pulse_lock();
if (!stream->locked || !params->written_frames)
{
stream->locked = 0;
pulse_unlock();
params->result = params->written_frames ? AUDCLNT_E_OUT_OF_ORDER : S_OK;
return STATUS_SUCCESS;
}
if (params->written_frames * pa_frame_size(&stream->ss) >
(stream->locked >= 0 ? stream->locked : -stream->locked))
{
pulse_unlock();
params->result = AUDCLNT_E_INVALID_SIZE;
return STATUS_SUCCESS;
}
if (stream->locked >= 0)
buffer = stream->local_buffer + (stream->lcl_offs_bytes + stream->held_bytes) % stream->real_bufsize_bytes;
else
buffer = stream->tmp_buffer;
written_bytes = params->written_frames * pa_frame_size(&stream->ss);
if (params->flags & AUDCLNT_BUFFERFLAGS_SILENT)
silence_buffer(stream->ss.format, buffer, written_bytes);
if (stream->locked < 0)
pulse_wrap_buffer(stream, buffer, written_bytes);
stream->held_bytes += written_bytes;
stream->pa_held_bytes += written_bytes;
if (stream->pa_held_bytes > stream->real_bufsize_bytes)
{
stream->pa_offs_bytes += stream->pa_held_bytes - stream->real_bufsize_bytes;
stream->pa_offs_bytes %= stream->real_bufsize_bytes;
stream->pa_held_bytes = stream->real_bufsize_bytes;
}
stream->clock_written += written_bytes;
stream->locked = 0;
/* push as much data as we can to pulseaudio too */
pulse_write(stream);
TRACE("Released %u, held %lu\n", params->written_frames, stream->held_bytes / pa_frame_size(&stream->ss));
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_capture_buffer(void *args)
{
struct get_capture_buffer_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
ACPacket *packet;
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
if (stream->locked)
{
pulse_unlock();
params->result = AUDCLNT_E_OUT_OF_ORDER;
return STATUS_SUCCESS;
}
pulse_capture_padding(stream);
if ((packet = stream->locked_ptr))
{
*params->frames = stream->period_bytes / pa_frame_size(&stream->ss);
*params->flags = 0;
if (packet->discont)
*params->flags |= AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY;
if (params->devpos)
{
if (packet->discont)
*params->devpos = (stream->clock_written + stream->period_bytes) / pa_frame_size(&stream->ss);
else
*params->devpos = stream->clock_written / pa_frame_size(&stream->ss);
}
if (params->qpcpos)
*params->qpcpos = packet->qpcpos;
*params->data = packet->data;
}
else
*params->frames = 0;
stream->locked = *params->frames;
pulse_unlock();
params->result = *params->frames ? S_OK : AUDCLNT_S_BUFFER_EMPTY;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_release_capture_buffer(void *args)
{
struct release_capture_buffer_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
if (!stream->locked && params->done)
{
pulse_unlock();
params->result = AUDCLNT_E_OUT_OF_ORDER;
return STATUS_SUCCESS;
}
if (params->done && stream->locked != params->done)
{
pulse_unlock();
params->result = AUDCLNT_E_INVALID_SIZE;
return STATUS_SUCCESS;
}
if (params->done)
{
ACPacket *packet = stream->locked_ptr;
stream->locked_ptr = NULL;
stream->held_bytes -= stream->period_bytes;
if (packet->discont)
stream->clock_written += 2 * stream->period_bytes;
else
stream->clock_written += stream->period_bytes;
list_add_tail(&stream->packet_free_head, &packet->entry);
}
stream->locked = 0;
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_is_format_supported(void *args)
{
struct is_format_supported_params *params = args;
WAVEFORMATEXTENSIBLE in;
WAVEFORMATEXTENSIBLE *out;
const WAVEFORMATEX *fmt = &in.Format;
const BOOLEAN exclusive = params->share == AUDCLNT_SHAREMODE_EXCLUSIVE;
params->result = S_OK;
if (!params->fmt_in || (params->share == AUDCLNT_SHAREMODE_SHARED && !params->fmt_out))
params->result = E_POINTER;
else if (params->share != AUDCLNT_SHAREMODE_SHARED && params->share != AUDCLNT_SHAREMODE_EXCLUSIVE)
params->result = E_INVALIDARG;
else {
memcpy(&in, params->fmt_in, params->fmt_in->wFormatTag == WAVE_FORMAT_EXTENSIBLE ?
sizeof(in) : sizeof(in.Format));
if (fmt->wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
if (fmt->cbSize < sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX))
params->result = E_INVALIDARG;
else if (fmt->nAvgBytesPerSec == 0 || fmt->nBlockAlign == 0 ||
(in.Samples.wValidBitsPerSample > fmt->wBitsPerSample))
params->result = E_INVALIDARG;
else if (fmt->nChannels == 0)
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
}
}
if (FAILED(params->result))
return STATUS_SUCCESS;
if (exclusive)
out = &in;
else {
out = params->fmt_out;
memcpy(out, fmt, fmt->wFormatTag == WAVE_FORMAT_EXTENSIBLE ?
sizeof(*out) : sizeof((*out).Format));
}
switch (fmt->wFormatTag) {
case WAVE_FORMAT_EXTENSIBLE: {
if ((fmt->cbSize != sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX) &&
fmt->cbSize != sizeof(WAVEFORMATEXTENSIBLE)) ||
fmt->nBlockAlign != fmt->wBitsPerSample / 8 * fmt->nChannels ||
in.Samples.wValidBitsPerSample > fmt->wBitsPerSample ||
fmt->nAvgBytesPerSec != fmt->nBlockAlign * fmt->nSamplesPerSec) {
params->result = E_INVALIDARG;
break;
}
if (exclusive) {
UINT32 mask = 0, i, channels = 0;
if (!(in.dwChannelMask & (SPEAKER_ALL | SPEAKER_RESERVED))) {
for (i = 1; !(i & SPEAKER_RESERVED); i <<= 1) {
if (i & in.dwChannelMask) {
mask |= i;
++channels;
}
}
if (channels != fmt->nChannels || (in.dwChannelMask & ~mask)) {
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
} else {
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
}
if (IsEqualGUID(&in.SubFormat, &KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) {
if (fmt->wBitsPerSample != 32) {
params->result = E_INVALIDARG;
break;
}
if (in.Samples.wValidBitsPerSample != fmt->wBitsPerSample) {
params->result = S_FALSE;
out->Samples.wValidBitsPerSample = fmt->wBitsPerSample;
}
} else if (IsEqualGUID(&in.SubFormat, &KSDATAFORMAT_SUBTYPE_PCM)) {
if (!fmt->wBitsPerSample || fmt->wBitsPerSample > 32 || fmt->wBitsPerSample % 8) {
params->result = E_INVALIDARG;
break;
}
if (in.Samples.wValidBitsPerSample != fmt->wBitsPerSample &&
!(fmt->wBitsPerSample == 32 &&
in.Samples.wValidBitsPerSample == 24)) {
params->result = S_FALSE;
out->Samples.wValidBitsPerSample = fmt->wBitsPerSample;
break;
}
} else {
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
break;
}
case WAVE_FORMAT_ALAW:
case WAVE_FORMAT_MULAW:
if (fmt->wBitsPerSample != 8) {
params->result = E_INVALIDARG;
break;
}
/* Fall-through */
case WAVE_FORMAT_IEEE_FLOAT:
if (fmt->wFormatTag == WAVE_FORMAT_IEEE_FLOAT && fmt->wBitsPerSample != 32) {
params->result = E_INVALIDARG;
break;
}
/* Fall-through */
case WAVE_FORMAT_PCM: {
if (fmt->wFormatTag == WAVE_FORMAT_PCM &&
(!fmt->wBitsPerSample || fmt->wBitsPerSample > 32 || fmt->wBitsPerSample % 8)) {
params->result = E_INVALIDARG;
break;
}
if (fmt->nChannels > 2) {
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
/* fmt->cbSize, fmt->nBlockAlign and fmt->nAvgBytesPerSec seem to be
* ignored, invalid values are happily accepted. */
break;
}
default:
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
if (exclusive) { /* This driver does not support exclusive mode. */
if (params->result == S_OK)
params->result = params->flow == eCapture ?
AUDCLNT_E_UNSUPPORTED_FORMAT :
AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED;
else if (params->result == S_FALSE)
params->result = AUDCLNT_E_UNSUPPORTED_FORMAT;
}
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_mix_format(void *args)
{
struct get_mix_format_params *params = args;
struct list *list = (params->flow == eRender) ? &g_phys_speakers : &g_phys_sources;
PhysDevice *dev;
LIST_FOR_EACH_ENTRY(dev, list, PhysDevice, entry) {
if (strcmp(params->device, dev->pulse_name))
continue;
*params->fmt = dev->fmt;
params->result = S_OK;
return STATUS_SUCCESS;
}
params->result = E_FAIL;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_device_period(void *args)
{
struct get_device_period_params *params = args;
params->result = get_device_period_helper(params->flow, params->device, params->def_period, params->min_period);
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_buffer_size(void *args)
{
struct get_buffer_size_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
params->result = S_OK;
pulse_lock();
if (!pulse_stream_valid(stream))
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
else
*params->frames = stream->bufsize_frames;
pulse_unlock();
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_latency(void *args)
{
struct get_latency_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
const pa_buffer_attr *attr;
REFERENCE_TIME lat;
pulse_lock();
if (!pulse_stream_valid(stream)) {
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
attr = pa_stream_get_buffer_attr(stream->stream);
if (stream->dataflow == eRender)
lat = attr->minreq / pa_frame_size(&stream->ss);
else
lat = attr->fragsize / pa_frame_size(&stream->ss);
*params->latency = (lat * 10000000) / stream->ss.rate + stream->def_period;
pulse_unlock();
TRACE("Latency: %u ms\n", (unsigned)(*params->latency / 10000));
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_current_padding(void *args)
{
struct get_current_padding_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
if (stream->dataflow == eRender)
*params->padding = pulse_render_padding(stream);
else
*params->padding = pulse_capture_padding(stream);
pulse_unlock();
TRACE("%p Pad: %u ms (%u)\n", stream, muldiv(*params->padding, 1000, stream->ss.rate),
*params->padding);
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_next_packet_size(void *args)
{
struct get_next_packet_size_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
pulse_capture_padding(stream);
if (stream->locked_ptr)
*params->frames = stream->period_bytes / pa_frame_size(&stream->ss);
else
*params->frames = 0;
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_frequency(void *args)
{
struct get_frequency_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
*params->freq = stream->ss.rate;
if (stream->share == AUDCLNT_SHAREMODE_SHARED)
*params->freq *= pa_frame_size(&stream->ss);
pulse_unlock();
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_get_position(void *args)
{
struct get_position_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
if (!pulse_stream_valid(stream))
{
pulse_unlock();
params->result = AUDCLNT_E_DEVICE_INVALIDATED;
return STATUS_SUCCESS;
}
*params->pos = stream->clock_written - stream->held_bytes;
if (stream->share == AUDCLNT_SHAREMODE_EXCLUSIVE || params->device)
*params->pos /= pa_frame_size(&stream->ss);
/* Make time never go backwards */
if (*params->pos < stream->clock_lastpos)
*params->pos = stream->clock_lastpos;
else
stream->clock_lastpos = *params->pos;
pulse_unlock();
TRACE("%p Position: %u\n", stream, (unsigned)*params->pos);
if (params->qpctime)
{
LARGE_INTEGER stamp, freq;
NtQueryPerformanceCounter(&stamp, &freq);
*params->qpctime = (stamp.QuadPart * (INT64)10000000) / freq.QuadPart;
}
params->result = S_OK;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_set_volumes(void *args)
{
struct set_volumes_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
unsigned int i;
for (i = 0; i < stream->ss.channels; i++)
stream->vol[i] = params->volumes[i] * params->master_volume * params->session_volumes[i];
return STATUS_SUCCESS;
}
static NTSTATUS pulse_set_event_handle(void *args)
{
struct set_event_handle_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
HRESULT hr = S_OK;
pulse_lock();
if (!pulse_stream_valid(stream))
hr = AUDCLNT_E_DEVICE_INVALIDATED;
else if (!(stream->flags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK))
hr = AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED;
else if (stream->event)
hr = HRESULT_FROM_WIN32(ERROR_INVALID_NAME);
else
stream->event = params->event;
pulse_unlock();
params->result = hr;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_is_started(void *args)
{
struct is_started_params *params = args;
struct pulse_stream *stream = handle_get_stream(params->stream);
pulse_lock();
params->result = pulse_stream_valid(stream) && stream->started ? S_OK : S_FALSE;
pulse_unlock();
return STATUS_SUCCESS;
}
static BOOL get_device_path(PhysDevice *dev, struct get_prop_value_params *params)
{
const GUID *guid = params->guid;
PROPVARIANT *out = params->value;
UINT serial_number;
char path[128];
int len;
/* As hardly any audio devices have serial numbers, Windows instead
appears to use a persistent random number. We emulate this here
by instead using the last 8 hex digits of the GUID. */
serial_number = (guid->Data4[4] << 24) | (guid->Data4[5] << 16) | (guid->Data4[6] << 8) | guid->Data4[7];
switch (dev->bus_type) {
case phys_device_bus_pci:
len = sprintf(path, "{1}.HDAUDIO\\FUNC_01&VEN_%04X&DEV_%04X\\%u&%08X", dev->vendor_id, dev->product_id, dev->index, serial_number);
break;
case phys_device_bus_usb:
len = sprintf(path, "{1}.USB\\VID_%04X&PID_%04X\\%u&%08X", dev->vendor_id, dev->product_id, dev->index, serial_number);
break;
default:
len = sprintf(path, "{1}.ROOT\\MEDIA\\%04u", dev->index);
break;
}
if (*params->buffer_size < ++len * sizeof(WCHAR)) {
params->result = E_NOT_SUFFICIENT_BUFFER;
*params->buffer_size = len * sizeof(WCHAR);
return FALSE;
}
out->vt = VT_LPWSTR;
out->pwszVal = params->buffer;
ntdll_umbstowcs(path, len, out->pwszVal, len);
params->result = S_OK;
return TRUE;
}
static NTSTATUS pulse_get_prop_value(void *args)
{
static const GUID PKEY_AudioEndpoint_GUID = {
0x1da5d803, 0xd492, 0x4edd, {0x8c, 0x23, 0xe0, 0xc0, 0xff, 0xee, 0x7f, 0x0e}
};
static const PROPERTYKEY devicepath_key = { /* undocumented? - {b3f8fa53-0004-438e-9003-51a46e139bfc},2 */
{0xb3f8fa53, 0x0004, 0x438e, {0x90, 0x03, 0x51, 0xa4, 0x6e, 0x13, 0x9b, 0xfc}}, 2
};
struct get_prop_value_params *params = args;
struct list *list = (params->flow == eRender) ? &g_phys_speakers : &g_phys_sources;
PhysDevice *dev;
LIST_FOR_EACH_ENTRY(dev, list, PhysDevice, entry) {
if (strcmp(params->device, dev->pulse_name))
continue;
if (IsEqualPropertyKey(*params->prop, devicepath_key)) {
get_device_path(dev, params);
return STATUS_SUCCESS;
} else if (IsEqualGUID(&params->prop->fmtid, &PKEY_AudioEndpoint_GUID)) {
switch (params->prop->pid) {
case 0: /* FormFactor */
params->value->vt = VT_UI4;
params->value->ulVal = dev->form;
params->result = S_OK;
return STATUS_SUCCESS;
case 3: /* PhysicalSpeakers */
if (!dev->channel_mask)
goto fail;
params->value->vt = VT_UI4;
params->value->ulVal = dev->channel_mask;
params->result = S_OK;
return STATUS_SUCCESS;
}
}
params->result = E_NOTIMPL;
return STATUS_SUCCESS;
}
fail:
params->result = E_FAIL;
return STATUS_SUCCESS;
}
const unixlib_entry_t __wine_unix_call_funcs[] =
{
pulse_process_attach,
pulse_process_detach,
pulse_main_loop,
pulse_get_endpoint_ids,
pulse_create_stream,
pulse_release_stream,
pulse_start,
pulse_stop,
pulse_reset,
pulse_timer_loop,
pulse_get_render_buffer,
pulse_release_render_buffer,
pulse_get_capture_buffer,
pulse_release_capture_buffer,
pulse_is_format_supported,
pulse_get_mix_format,
pulse_get_device_period,
pulse_get_buffer_size,
pulse_get_latency,
pulse_get_current_padding,
pulse_get_next_packet_size,
pulse_get_frequency,
pulse_get_position,
pulse_set_volumes,
pulse_set_event_handle,
pulse_test_connect,
pulse_is_started,
pulse_get_prop_value,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
};
#ifdef _WIN64
typedef UINT PTR32;
static NTSTATUS pulse_wow64_main_loop(void *args)
{
struct
{
PTR32 event;
} *params32 = args;
struct main_loop_params params =
{
.event = ULongToHandle(params32->event)
};
return pulse_main_loop(&params);
}
static NTSTATUS pulse_wow64_get_endpoint_ids(void *args)
{
struct
{
EDataFlow flow;
PTR32 endpoints;
unsigned int size;
HRESULT result;
unsigned int num;
unsigned int default_idx;
} *params32 = args;
struct get_endpoint_ids_params params =
{
.flow = params32->flow,
.endpoints = ULongToPtr(params32->endpoints),
.size = params32->size
};
pulse_get_endpoint_ids(&params);
params32->size = params.size;
params32->result = params.result;
params32->num = params.num;
params32->default_idx = params.default_idx;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_create_stream(void *args)
{
struct
{
PTR32 name;
PTR32 device;
EDataFlow flow;
AUDCLNT_SHAREMODE share;
DWORD flags;
REFERENCE_TIME duration;
REFERENCE_TIME period;
PTR32 fmt;
HRESULT result;
PTR32 channel_count;
PTR32 stream;
} *params32 = args;
struct create_stream_params params =
{
.name = ULongToPtr(params32->name),
.device = ULongToPtr(params32->device),
.flow = params32->flow,
.share = params32->share,
.flags = params32->flags,
.duration = params32->duration,
.period = params32->period,
.fmt = ULongToPtr(params32->fmt),
.channel_count = ULongToPtr(params32->channel_count),
.stream = ULongToPtr(params32->stream)
};
pulse_create_stream(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_release_stream(void *args)
{
struct
{
stream_handle stream;
PTR32 timer_thread;
HRESULT result;
} *params32 = args;
struct release_stream_params params =
{
.stream = params32->stream,
.timer_thread = ULongToHandle(params32->timer_thread)
};
pulse_release_stream(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_render_buffer(void *args)
{
struct
{
stream_handle stream;
UINT32 frames;
HRESULT result;
PTR32 data;
} *params32 = args;
BYTE *data = NULL;
struct get_render_buffer_params params =
{
.stream = params32->stream,
.frames = params32->frames,
.data = &data
};
pulse_get_render_buffer(&params);
params32->result = params.result;
*(unsigned int *)ULongToPtr(params32->data) = PtrToUlong(data);
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_capture_buffer(void *args)
{
struct
{
stream_handle stream;
HRESULT result;
PTR32 data;
PTR32 frames;
PTR32 flags;
PTR32 devpos;
PTR32 qpcpos;
} *params32 = args;
BYTE *data = NULL;
struct get_capture_buffer_params params =
{
.stream = params32->stream,
.data = &data,
.frames = ULongToPtr(params32->frames),
.flags = ULongToPtr(params32->flags),
.devpos = ULongToPtr(params32->devpos),
.qpcpos = ULongToPtr(params32->qpcpos)
};
pulse_get_capture_buffer(&params);
params32->result = params.result;
*(unsigned int *)ULongToPtr(params32->data) = PtrToUlong(data);
return STATUS_SUCCESS;
};
static NTSTATUS pulse_wow64_is_format_supported(void *args)
{
struct
{
PTR32 device;
EDataFlow flow;
AUDCLNT_SHAREMODE share;
PTR32 fmt_in;
PTR32 fmt_out;
HRESULT result;
} *params32 = args;
struct is_format_supported_params params =
{
.device = ULongToPtr(params32->device),
.flow = params32->flow,
.share = params32->share,
.fmt_in = ULongToPtr(params32->fmt_in),
.fmt_out = ULongToPtr(params32->fmt_out)
};
pulse_is_format_supported(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_mix_format(void *args)
{
struct
{
PTR32 device;
EDataFlow flow;
PTR32 fmt;
HRESULT result;
} *params32 = args;
struct get_mix_format_params params =
{
.device = ULongToPtr(params32->device),
.flow = params32->flow,
.fmt = ULongToPtr(params32->fmt),
};
pulse_get_mix_format(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_device_period(void *args)
{
struct
{
PTR32 device;
EDataFlow flow;
HRESULT result;
PTR32 def_period;
PTR32 min_period;
} *params32 = args;
struct get_device_period_params params =
{
.device = ULongToPtr(params32->device),
.flow = params32->flow,
.def_period = ULongToPtr(params32->def_period),
.min_period = ULongToPtr(params32->min_period),
};
pulse_get_device_period(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_buffer_size(void *args)
{
struct
{
stream_handle stream;
HRESULT result;
PTR32 frames;
} *params32 = args;
struct get_buffer_size_params params =
{
.stream = params32->stream,
.frames = ULongToPtr(params32->frames)
};
pulse_get_buffer_size(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_latency(void *args)
{
struct
{
stream_handle stream;
HRESULT result;
PTR32 latency;
} *params32 = args;
struct get_latency_params params =
{
.stream = params32->stream,
.latency = ULongToPtr(params32->latency)
};
pulse_get_latency(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_current_padding(void *args)
{
struct
{
stream_handle stream;
HRESULT result;
PTR32 padding;
} *params32 = args;
struct get_current_padding_params params =
{
.stream = params32->stream,
.padding = ULongToPtr(params32->padding)
};
pulse_get_current_padding(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_next_packet_size(void *args)
{
struct
{
stream_handle stream;
HRESULT result;
PTR32 frames;
} *params32 = args;
struct get_next_packet_size_params params =
{
.stream = params32->stream,
.frames = ULongToPtr(params32->frames)
};
pulse_get_next_packet_size(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_frequency(void *args)
{
struct
{
stream_handle stream;
HRESULT result;
PTR32 freq;
} *params32 = args;
struct get_frequency_params params =
{
.stream = params32->stream,
.freq = ULongToPtr(params32->freq)
};
pulse_get_frequency(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_position(void *args)
{
struct
{
stream_handle stream;
BOOL device;
HRESULT result;
PTR32 pos;
PTR32 qpctime;
} *params32 = args;
struct get_position_params params =
{
.stream = params32->stream,
.device = params32->device,
.pos = ULongToPtr(params32->pos),
.qpctime = ULongToPtr(params32->qpctime)
};
pulse_get_position(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_set_volumes(void *args)
{
struct
{
stream_handle stream;
float master_volume;
PTR32 volumes;
PTR32 session_volumes;
} *params32 = args;
struct set_volumes_params params =
{
.stream = params32->stream,
.master_volume = params32->master_volume,
.volumes = ULongToPtr(params32->volumes),
.session_volumes = ULongToPtr(params32->session_volumes),
};
return pulse_set_volumes(&params);
}
static NTSTATUS pulse_wow64_set_event_handle(void *args)
{
struct
{
stream_handle stream;
PTR32 event;
HRESULT result;
} *params32 = args;
struct set_event_handle_params params =
{
.stream = params32->stream,
.event = ULongToHandle(params32->event)
};
pulse_set_event_handle(&params);
params32->result = params.result;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_test_connect(void *args)
{
struct
{
PTR32 name;
enum driver_priority priority;
} *params32 = args;
struct test_connect_params params =
{
.name = ULongToPtr(params32->name),
};
pulse_test_connect(&params);
params32->priority = params.priority;
return STATUS_SUCCESS;
}
static NTSTATUS pulse_wow64_get_prop_value(void *args)
{
struct propvariant32
{
WORD vt;
WORD pad1, pad2, pad3;
union
{
ULONG ulVal;
PTR32 ptr;
ULARGE_INTEGER uhVal;
};
} *value32;
struct
{
PTR32 device;
EDataFlow flow;
PTR32 guid;
PTR32 prop;
HRESULT result;
PTR32 value;
PTR32 buffer; /* caller allocated buffer to hold value's strings */
PTR32 buffer_size;
} *params32 = args;
PROPVARIANT value;
struct get_prop_value_params params =
{
.device = ULongToPtr(params32->device),
.flow = params32->flow,
.guid = ULongToPtr(params32->guid),
.prop = ULongToPtr(params32->prop),
.value = &value,
.buffer = ULongToPtr(params32->buffer),
.buffer_size = ULongToPtr(params32->buffer_size)
};
pulse_get_prop_value(&params);
params32->result = params.result;
if (SUCCEEDED(params.result))
{
value32 = UlongToPtr(params32->value);
value32->vt = value.vt;
switch (value.vt)
{
case VT_UI4:
value32->ulVal = value.ulVal;
break;
case VT_LPWSTR:
value32->ptr = params32->buffer;
break;
default:
FIXME("Unhandled vt %04x\n", value.vt);
}
}
return STATUS_SUCCESS;
}
const unixlib_entry_t __wine_unix_call_wow64_funcs[] =
{
pulse_process_attach,
pulse_process_detach,
pulse_wow64_main_loop,
pulse_wow64_get_endpoint_ids,
pulse_wow64_create_stream,
pulse_wow64_release_stream,
pulse_start,
pulse_stop,
pulse_reset,
pulse_timer_loop,
pulse_wow64_get_render_buffer,
pulse_release_render_buffer,
pulse_wow64_get_capture_buffer,
pulse_release_capture_buffer,
pulse_wow64_is_format_supported,
pulse_wow64_get_mix_format,
pulse_wow64_get_device_period,
pulse_wow64_get_buffer_size,
pulse_wow64_get_latency,
pulse_wow64_get_current_padding,
pulse_wow64_get_next_packet_size,
pulse_wow64_get_frequency,
pulse_wow64_get_position,
pulse_wow64_set_volumes,
pulse_wow64_set_event_handle,
pulse_wow64_test_connect,
pulse_is_started,
pulse_wow64_get_prop_value,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
pulse_not_implemented,
};
#endif /* _WIN64 */