/* * Plug and Play support for hid devices found through udev * * Copyright 2016 CodeWeavers, Aric Stewart * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #if 0 #pragma makedep unix #endif #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBUDEV_H # include #endif #ifdef HAVE_LINUX_HIDRAW_H # include #endif #ifdef HAVE_SYS_INOTIFY_H # include #endif #include #ifdef HAVE_LINUX_INPUT_H # include # undef SW_MAX # if defined(EVIOCGBIT) && defined(EV_ABS) && defined(BTN_PINKIE) # define HAS_PROPER_INPUT_HEADER # endif # ifndef SYN_DROPPED # define SYN_DROPPED 3 # endif #endif #ifndef BUS_BLUETOOTH # define BUS_BLUETOOTH 5 #endif #include #include "ntstatus.h" #define WIN32_NO_STATUS #include "windef.h" #include "winbase.h" #include "winnls.h" #include "winternl.h" #include "ddk/wdm.h" #include "ddk/hidtypes.h" #include "ddk/hidsdi.h" #include "wine/debug.h" #include "wine/hid.h" #include "wine/unixlib.h" #ifdef HAS_PROPER_INPUT_HEADER # include "hidusage.h" #endif #ifdef WORDS_BIGENDIAN #define LE_DWORD(x) RtlUlongByteSwap(x) #else #define LE_DWORD(x) (x) #endif #include "unix_private.h" WINE_DEFAULT_DEBUG_CHANNEL(hid); #ifdef HAVE_UDEV static pthread_mutex_t udev_cs = PTHREAD_MUTEX_INITIALIZER; static struct udev *udev_context = NULL; static struct udev_monitor *udev_monitor; static int deviceloop_control[2]; static struct list event_queue = LIST_INIT(event_queue); static struct list device_list = LIST_INIT(device_list); static struct udev_bus_options options; struct base_device { struct unix_device unix_device; void (*read_report)(struct unix_device *iface); struct udev_device *udev_device; char devnode[MAX_PATH]; int device_fd; }; static inline struct base_device *impl_from_unix_device(struct unix_device *iface) { return CONTAINING_RECORD(iface, struct base_device, unix_device); } #define QUIRK_DS4_BT 0x1 #define QUIRK_DUALSENSE_BT 0x2 struct hidraw_device { struct base_device base; DWORD quirks; }; static inline struct hidraw_device *hidraw_impl_from_unix_device(struct unix_device *iface) { return CONTAINING_RECORD(impl_from_unix_device(iface), struct hidraw_device, base); } #ifdef HAS_PROPER_INPUT_HEADER static const USAGE_AND_PAGE absolute_usages[] = { {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_X}, /* ABS_X */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_Y}, /* ABS_Y */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_Z}, /* ABS_Z */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_RX}, /* ABS_RX */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_RY}, /* ABS_RY */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_RZ}, /* ABS_RZ */ {.UsagePage = HID_USAGE_PAGE_SIMULATION, .Usage = HID_USAGE_SIMULATION_THROTTLE}, /* ABS_THROTTLE */ {.UsagePage = HID_USAGE_PAGE_SIMULATION, .Usage = HID_USAGE_SIMULATION_RUDDER}, /* ABS_RUDDER */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_WHEEL}, /* ABS_WHEEL */ {.UsagePage = HID_USAGE_PAGE_SIMULATION, .Usage = HID_USAGE_SIMULATION_ACCELERATOR}, /* ABS_GAS */ {.UsagePage = HID_USAGE_PAGE_SIMULATION, .Usage = HID_USAGE_SIMULATION_BRAKE}, /* ABS_BRAKE */ {0}, {0}, {0}, {0}, {0}, {0}, /* ABS_HAT0X */ {0}, /* ABS_HAT0Y */ {0}, /* ABS_HAT1X */ {0}, /* ABS_HAT1Y */ {0}, /* ABS_HAT2X */ {0}, /* ABS_HAT2Y */ {0}, /* ABS_HAT3X */ {0}, /* ABS_HAT3Y */ {.UsagePage = HID_USAGE_PAGE_DIGITIZER, .Usage = HID_USAGE_DIGITIZER_TIP_PRESSURE}, /* ABS_PRESSURE */ {0}, /* ABS_DISTANCE */ {.UsagePage = HID_USAGE_PAGE_DIGITIZER, .Usage = HID_USAGE_DIGITIZER_X_TILT}, /* ABS_TILT_X */ {.UsagePage = HID_USAGE_PAGE_DIGITIZER, .Usage = HID_USAGE_DIGITIZER_Y_TILT}, /* ABS_TILT_Y */ {0}, /* ABS_TOOL_WIDTH */ {0}, {0}, {0}, {.UsagePage = HID_USAGE_PAGE_CONSUMER, .Usage = HID_USAGE_CONSUMER_VOLUME}, /* ABS_VOLUME */ }; static const USAGE_AND_PAGE relative_usages[] = { {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_X}, /* REL_X */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_Y}, /* REL_Y */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_Z}, /* REL_Z */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_RX}, /* REL_RX */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_RY}, /* REL_RY */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_RZ}, /* REL_RZ */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_SLIDER},/* REL_HWHEEL */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_DIAL}, /* REL_DIAL */ {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_WHEEL}, /* REL_WHEEL */ {0}, /* REL_MISC */ }; struct lnxev_device { struct base_device base; BYTE abs_map[ARRAY_SIZE(absolute_usages)]; BYTE rel_map[ARRAY_SIZE(relative_usages)]; BYTE hat_map[8]; BYTE button_map[KEY_MAX]; int haptic_effect_id; int effect_ids[256]; LONG effect_flags; }; static inline struct lnxev_device *lnxev_impl_from_unix_device(struct unix_device *iface) { return CONTAINING_RECORD(impl_from_unix_device(iface), struct lnxev_device, base); } #endif /* HAS_PROPER_INPUT_HEADER */ #define MAX_DEVICES 128 static int close_fds[MAX_DEVICES]; static struct pollfd poll_fds[MAX_DEVICES]; static struct base_device *poll_devs[MAX_DEVICES]; static int close_count, poll_count; static void stop_polling_device(struct unix_device *iface) { struct base_device *impl = impl_from_unix_device(iface); int i; if (impl->device_fd == -1) return; /* already removed */ for (i = 2; i < poll_count; ++i) if (poll_fds[i].fd == impl->device_fd) break; if (i == poll_count) ERR("could not find poll entry matching device %p fd\n", iface); else { poll_count--; poll_fds[i] = poll_fds[poll_count]; poll_devs[i] = poll_devs[poll_count]; close_fds[close_count++] = impl->device_fd; impl->device_fd = -1; } } static void start_polling_device(struct unix_device *iface) { struct base_device *impl = impl_from_unix_device(iface); if (poll_count >= ARRAY_SIZE(poll_fds)) ERR("could not start polling device %p, too many fds\n", iface); else { poll_devs[poll_count] = impl; poll_fds[poll_count].fd = impl->device_fd; poll_fds[poll_count].events = POLLIN; poll_fds[poll_count].revents = 0; poll_count++; write(deviceloop_control[1], "u", 1); } } static struct base_device *find_device_from_fd(int fd) { int i; for (i = 2; i < poll_count; ++i) if (poll_fds[i].fd == fd) break; if (i < poll_count) return poll_devs[i]; return NULL; } static void hidraw_device_destroy(struct unix_device *iface) { struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); udev_device_unref(impl->base.udev_device); } static NTSTATUS hidraw_device_start(struct unix_device *iface) { pthread_mutex_lock(&udev_cs); start_polling_device(iface); pthread_mutex_unlock(&udev_cs); return STATUS_SUCCESS; } static void hidraw_device_stop(struct unix_device *iface) { struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); pthread_mutex_lock(&udev_cs); stop_polling_device(iface); list_remove(&impl->base.unix_device.entry); pthread_mutex_unlock(&udev_cs); } static NTSTATUS hidraw_device_get_report_descriptor(struct unix_device *iface, BYTE *buffer, UINT length, UINT *out_length) { #ifdef HAVE_LINUX_HIDRAW_H struct hidraw_report_descriptor descriptor; struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); if (ioctl(impl->base.device_fd, HIDIOCGRDESCSIZE, &descriptor.size) == -1) { WARN("ioctl(HIDIOCGRDESCSIZE) failed: %d %s\n", errno, strerror(errno)); return STATUS_UNSUCCESSFUL; } *out_length = descriptor.size; if (length < descriptor.size) return STATUS_BUFFER_TOO_SMALL; if (!descriptor.size) return STATUS_SUCCESS; if (ioctl(impl->base.device_fd, HIDIOCGRDESC, &descriptor) == -1) { WARN("ioctl(HIDIOCGRDESC) failed: %d %s\n", errno, strerror(errno)); return STATUS_UNSUCCESSFUL; } memcpy(buffer, descriptor.value, descriptor.size); return STATUS_SUCCESS; #else return STATUS_NOT_IMPLEMENTED; #endif } static void hidraw_device_read_report(struct unix_device *iface) { struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); BYTE report_buffer[1024], *buff = report_buffer; int size = read(impl->base.device_fd, report_buffer, sizeof(report_buffer)); if (size == -1) TRACE("Read failed. Likely an unplugged device %d %s\n", errno, strerror(errno)); else if (size == 0) TRACE("Failed to read report\n"); else { /* As described in the Linux kernel driver, when connected over bluetooth, DS4 controllers * start sending input through report #17 as soon as they receive a feature report #2, which * the kernel sends anyway for calibration. * * Input report #17 is the same as the default input report #1, with additional gyro data and * two additional bytes in front, but is only described as vendor specific in the report descriptor, * and applications aren't expecting it. * * We have to translate it to input report #1, like native driver does. */ if ((impl->quirks & QUIRK_DS4_BT) && report_buffer[0] == 0x11 && size >= 12) { size = 10; buff += 2; buff[0] = 1; } /* The behavior of DualSense is very similar to DS4 described above with a few exceptions. * * The report number #41 is used for the extended bluetooth input report. The report comes * with only one extra byte in front and the format is not exactly the same as the one used * for the report #1 so we need to shuffle a few bytes around. * * Basic #1 report: * X Y Z RZ Buttons[3] TriggerLeft TriggerRight * * Extended #41 report: * Prefix X Y Z Rz TriggerLeft TriggerRight Counter Buttons[3] ... */ if ((impl->quirks & QUIRK_DUALSENSE_BT) && report_buffer[0] == 0x31 && size >= 11) { BYTE trigger[2]; size = 10; buff += 1; buff[0] = 1; /* fake report #1 */ trigger[0] = buff[5]; /* TriggerLeft*/ trigger[1] = buff[6]; /* TriggerRight */ buff[5] = buff[8]; /* Buttons[0] */ buff[6] = buff[9]; /* Buttons[1] */ buff[7] = buff[10]; /* Buttons[2] */ buff[8] = trigger[0]; /* TriggerLeft */ buff[9] = trigger[1]; /* TirggerRight */ } bus_event_queue_input_report(&event_queue, iface, buff, size); } } static void hidraw_disable_sony_quirks(struct unix_device *iface) { struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); /* FIXME: we may want to validate CRC at the end of the outbound HID reports, * as controllers do not switch modes if it is incorrect. */ if ((impl->quirks & QUIRK_DS4_BT)) { TRACE("Disabling report quirk for Bluetooth DualShock4 controller iface %p\n", iface); impl->quirks &= ~QUIRK_DS4_BT; } if ((impl->quirks & QUIRK_DUALSENSE_BT)) { TRACE("Disabling report quirk for Bluetooth DualSense controller iface %p\n", iface); impl->quirks &= ~QUIRK_DUALSENSE_BT; } } static void hidraw_device_set_output_report(struct unix_device *iface, HID_XFER_PACKET *packet, IO_STATUS_BLOCK *io) { struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); unsigned int length = packet->reportBufferLen; BYTE buffer[8192]; int count = 0; if ((buffer[0] = packet->reportId)) count = write(impl->base.device_fd, packet->reportBuffer, length); else if (length > sizeof(buffer) - 1) ERR("id %d length %u >= 8192, cannot write\n", packet->reportId, length); else { memcpy(buffer + 1, packet->reportBuffer, length); count = write(impl->base.device_fd, buffer, length + 1); } if (count > 0) { hidraw_disable_sony_quirks(iface); io->Information = count; io->Status = STATUS_SUCCESS; } else { ERR("id %d write failed error: %d %s\n", packet->reportId, errno, strerror(errno)); io->Information = 0; io->Status = STATUS_UNSUCCESSFUL; } } static void hidraw_device_get_feature_report(struct unix_device *iface, HID_XFER_PACKET *packet, IO_STATUS_BLOCK *io) { #if defined(HAVE_LINUX_HIDRAW_H) && defined(HIDIOCGFEATURE) struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); unsigned int length = packet->reportBufferLen; BYTE buffer[8192]; int count = 0; if ((buffer[0] = packet->reportId) && length <= 0x1fff) count = ioctl(impl->base.device_fd, HIDIOCGFEATURE(length), packet->reportBuffer); else if (length > sizeof(buffer) - 1) ERR("id %d length %u >= 8192, cannot read\n", packet->reportId, length); else { count = ioctl(impl->base.device_fd, HIDIOCGFEATURE(length + 1), buffer); memcpy(packet->reportBuffer, buffer + 1, length); } if (count > 0) { hidraw_disable_sony_quirks(iface); io->Information = count; io->Status = STATUS_SUCCESS; } else { ERR("id %d read failed, error: %d %s\n", packet->reportId, errno, strerror(errno)); io->Information = 0; io->Status = STATUS_UNSUCCESSFUL; } #else io->Information = 0; io->Status = STATUS_NOT_IMPLEMENTED; #endif } static void hidraw_device_set_feature_report(struct unix_device *iface, HID_XFER_PACKET *packet, IO_STATUS_BLOCK *io) { #if defined(HAVE_LINUX_HIDRAW_H) && defined(HIDIOCSFEATURE) struct hidraw_device *impl = hidraw_impl_from_unix_device(iface); unsigned int length = packet->reportBufferLen; BYTE buffer[8192]; int count = 0; if ((buffer[0] = packet->reportId) && length <= 0x1fff) count = ioctl(impl->base.device_fd, HIDIOCSFEATURE(length), packet->reportBuffer); else if (length > sizeof(buffer) - 1) ERR("id %d length %u >= 8192, cannot write\n", packet->reportId, length); else { memcpy(buffer + 1, packet->reportBuffer, length); count = ioctl(impl->base.device_fd, HIDIOCSFEATURE(length + 1), buffer); } if (count > 0) { hidraw_disable_sony_quirks(iface); io->Information = count; io->Status = STATUS_SUCCESS; } else { ERR("id %d write failed, error: %d %s\n", packet->reportId, errno, strerror(errno)); io->Information = 0; io->Status = STATUS_UNSUCCESSFUL; } #else io->Information = 0; io->Status = STATUS_NOT_IMPLEMENTED; #endif } static const struct raw_device_vtbl hidraw_device_vtbl = { hidraw_device_destroy, hidraw_device_start, hidraw_device_stop, hidraw_device_get_report_descriptor, hidraw_device_set_output_report, hidraw_device_get_feature_report, hidraw_device_set_feature_report, }; #ifdef HAS_PROPER_INPUT_HEADER static const char *get_device_syspath(struct udev_device *dev) { struct udev_device *parent; if ((parent = udev_device_get_parent_with_subsystem_devtype(dev, "hid", NULL))) return udev_device_get_syspath(parent); if ((parent = udev_device_get_parent_with_subsystem_devtype(dev, "usb", "usb_device"))) return udev_device_get_syspath(parent); return ""; } static struct base_device *find_device_from_syspath(const char *path) { struct base_device *impl; LIST_FOR_EACH_ENTRY(impl, &device_list, struct base_device, unix_device.entry) if (!strcmp(get_device_syspath(impl->udev_device), path)) return impl; return NULL; } #define test_bit(arr,bit) (((BYTE*)(arr))[(bit)>>3]&(1<<((bit)&7))) static const USAGE_AND_PAGE *what_am_I(struct udev_device *dev, int fd) { static const USAGE_AND_PAGE Unknown = {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = 0}; static const USAGE_AND_PAGE Mouse = {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_MOUSE}; static const USAGE_AND_PAGE Keyboard = {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_KEYBOARD}; static const USAGE_AND_PAGE Gamepad = {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_GAMEPAD}; static const USAGE_AND_PAGE Keypad = {.UsagePage = HID_USAGE_PAGE_GENERIC, .Usage = HID_USAGE_GENERIC_KEYPAD}; static const USAGE_AND_PAGE Tablet = {.UsagePage = HID_USAGE_PAGE_DIGITIZER, .Usage = HID_USAGE_DIGITIZER_PEN}; static const USAGE_AND_PAGE Touchscreen = {.UsagePage = HID_USAGE_PAGE_DIGITIZER, .Usage = HID_USAGE_DIGITIZER_TOUCH_SCREEN}; static const USAGE_AND_PAGE Touchpad = {.UsagePage = HID_USAGE_PAGE_DIGITIZER, .Usage = HID_USAGE_DIGITIZER_TOUCH_PAD}; struct udev_device *parent = dev; /* Look to the parents until we get a clue */ while (parent) { if (udev_device_get_property_value(parent, "ID_INPUT_MOUSE")) return &Mouse; else if (udev_device_get_property_value(parent, "ID_INPUT_KEYBOARD")) return &Keyboard; else if (udev_device_get_property_value(parent, "ID_INPUT_JOYSTICK")) return &Gamepad; else if (udev_device_get_property_value(parent, "ID_INPUT_KEY")) return &Keypad; else if (udev_device_get_property_value(parent, "ID_INPUT_TOUCHPAD")) return &Touchpad; else if (udev_device_get_property_value(parent, "ID_INPUT_TOUCHSCREEN")) return &Touchscreen; else if (udev_device_get_property_value(parent, "ID_INPUT_TABLET")) return &Tablet; parent = udev_device_get_parent_with_subsystem_devtype(parent, "input", NULL); } return &Unknown; } static INT count_buttons(int device_fd, BYTE *map) { int i; int button_count = 0; BYTE keybits[(KEY_MAX+7)/8]; if (ioctl(device_fd, EVIOCGBIT(EV_KEY, sizeof(keybits)), keybits) == -1) { WARN("ioctl(EVIOCGBIT, EV_KEY) failed: %d %s\n", errno, strerror(errno)); return FALSE; } for (i = BTN_MISC; i < KEY_MAX; i++) { if (test_bit(keybits, i)) { if (map) map[i] = button_count; button_count++; } } return button_count; } static INT count_abs_axis(int device_fd) { BYTE absbits[(ABS_MAX+7)/8]; int abs_count = 0; int i; if (ioctl(device_fd, EVIOCGBIT(EV_ABS, sizeof(absbits)), absbits) == -1) { WARN("ioctl(EVIOCGBIT, EV_ABS) failed: %d %s\n", errno, strerror(errno)); return 0; } for (i = 0; i < ARRAY_SIZE(absolute_usages); i++) if (test_bit(absbits, i)) abs_count++; return abs_count; } static NTSTATUS build_report_descriptor(struct unix_device *iface, struct udev_device *dev) { struct input_absinfo abs_info[ARRAY_SIZE(absolute_usages)]; BYTE absbits[(ABS_MAX+7)/8]; BYTE relbits[(REL_MAX+7)/8]; BYTE ffbits[(FF_MAX+7)/8]; struct ff_effect effect; USAGE_AND_PAGE usage; USHORT count = 0; USAGE usages[16]; INT i, button_count, abs_count, rel_count, hat_count; struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); const USAGE_AND_PAGE device_usage = *what_am_I(dev, impl->base.device_fd); if (ioctl(impl->base.device_fd, EVIOCGBIT(EV_REL, sizeof(relbits)), relbits) == -1) { WARN("ioctl(EVIOCGBIT, EV_REL) failed: %d %s\n", errno, strerror(errno)); memset(relbits, 0, sizeof(relbits)); } if (ioctl(impl->base.device_fd, EVIOCGBIT(EV_ABS, sizeof(absbits)), absbits) == -1) { WARN("ioctl(EVIOCGBIT, EV_ABS) failed: %d %s\n", errno, strerror(errno)); memset(absbits, 0, sizeof(absbits)); } if (ioctl(impl->base.device_fd, EVIOCGBIT(EV_FF, sizeof(ffbits)), ffbits) == -1) { WARN("ioctl(EVIOCGBIT, EV_FF) failed: %d %s\n", errno, strerror(errno)); memset(ffbits, 0, sizeof(ffbits)); } if (!hid_device_begin_report_descriptor(iface, &device_usage)) return STATUS_NO_MEMORY; if (!hid_device_begin_input_report(iface, &device_usage)) return STATUS_NO_MEMORY; abs_count = 0; for (i = 0; i < ARRAY_SIZE(absolute_usages); i++) { usage = absolute_usages[i]; if (!test_bit(absbits, i)) continue; ioctl(impl->base.device_fd, EVIOCGABS(i), abs_info + i); if (!usage.UsagePage || !usage.Usage) continue; if (!hid_device_add_axes(iface, 1, usage.UsagePage, &usage.Usage, FALSE, LE_DWORD(abs_info[i].minimum), LE_DWORD(abs_info[i].maximum))) return STATUS_NO_MEMORY; impl->abs_map[i] = abs_count++; } rel_count = 0; for (i = 0; i < ARRAY_SIZE(relative_usages); i++) { usage = relative_usages[i]; if (!test_bit(relbits, i)) continue; if (!usage.UsagePage || !usage.Usage) continue; if (!hid_device_add_axes(iface, 1, usage.UsagePage, &usage.Usage, TRUE, INT32_MIN, INT32_MAX)) return STATUS_NO_MEMORY; impl->rel_map[i] = rel_count++; } hat_count = 0; for (i = ABS_HAT0X; i <= ABS_HAT3X; i += 2) { if (!test_bit(absbits, i)) continue; impl->hat_map[i - ABS_HAT0X] = hat_count; impl->hat_map[i - ABS_HAT0X + 1] = hat_count++; } if (hat_count && !hid_device_add_hatswitch(iface, hat_count)) return STATUS_NO_MEMORY; /* For now lump all buttons just into incremental usages, Ignore Keys */ button_count = count_buttons(impl->base.device_fd, impl->button_map); if (button_count && !hid_device_add_buttons(iface, HID_USAGE_PAGE_BUTTON, 1, button_count)) return STATUS_NO_MEMORY; if (!hid_device_end_input_report(iface)) return STATUS_NO_MEMORY; impl->haptic_effect_id = -1; for (i = 0; i < ARRAY_SIZE(impl->effect_ids); ++i) impl->effect_ids[i] = -1; if (test_bit(ffbits, FF_RUMBLE)) { effect.id = -1; effect.type = FF_RUMBLE; effect.replay.length = 0; effect.u.rumble.strong_magnitude = 0; effect.u.rumble.weak_magnitude = 0; if (ioctl(impl->base.device_fd, EVIOCSFF, &effect) == -1) WARN("couldn't allocate rumble effect for haptics: %d %s\n", errno, strerror(errno)); else if (!hid_device_add_haptics(iface)) return FALSE; else impl->haptic_effect_id = effect.id; } for (i = 0; i < FF_MAX; ++i) if (test_bit(ffbits, i)) break; if (i != FF_MAX) { if (test_bit(ffbits, FF_SINE)) usages[count++] = PID_USAGE_ET_SINE; if (test_bit(ffbits, FF_SQUARE)) usages[count++] = PID_USAGE_ET_SQUARE; if (test_bit(ffbits, FF_TRIANGLE)) usages[count++] = PID_USAGE_ET_TRIANGLE; if (test_bit(ffbits, FF_SAW_UP)) usages[count++] = PID_USAGE_ET_SAWTOOTH_UP; if (test_bit(ffbits, FF_SAW_DOWN)) usages[count++] = PID_USAGE_ET_SAWTOOTH_DOWN; if (test_bit(ffbits, FF_SPRING)) usages[count++] = PID_USAGE_ET_SPRING; if (test_bit(ffbits, FF_DAMPER)) usages[count++] = PID_USAGE_ET_DAMPER; if (test_bit(ffbits, FF_INERTIA)) usages[count++] = PID_USAGE_ET_INERTIA; if (test_bit(ffbits, FF_FRICTION)) usages[count++] = PID_USAGE_ET_FRICTION; if (test_bit(ffbits, FF_CONSTANT)) usages[count++] = PID_USAGE_ET_CONSTANT_FORCE; if (test_bit(ffbits, FF_RAMP)) usages[count++] = PID_USAGE_ET_RAMP; if (!hid_device_add_physical(iface, usages, count)) return STATUS_NO_MEMORY; } if (!hid_device_end_report_descriptor(iface)) return STATUS_NO_MEMORY; /* Initialize axis in the report */ for (i = 0; i < ARRAY_SIZE(absolute_usages); i++) { if (!test_bit(absbits, i)) continue; if (i < ABS_HAT0X || i > ABS_HAT3Y) hid_device_set_abs_axis(iface, impl->abs_map[i], abs_info[i].value); else if ((i - ABS_HAT0X) % 2) hid_device_set_hatswitch_y(iface, impl->hat_map[i - ABS_HAT0X], abs_info[i].value); else hid_device_set_hatswitch_x(iface, impl->hat_map[i - ABS_HAT0X], abs_info[i].value); } return STATUS_SUCCESS; } static BOOL set_report_from_event(struct unix_device *iface, struct input_event *ie) { struct hid_effect_state *effect_state = &iface->hid_physical.effect_state; struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); ULONG effect_flags = InterlockedOr(&impl->effect_flags, 0); unsigned int i; switch (ie->type) { #ifdef EV_SYN case EV_SYN: switch (ie->code) { case SYN_REPORT: return hid_device_sync_report(iface); case SYN_DROPPED: hid_device_drop_report(iface); break; } return FALSE; #endif #ifdef EV_MSC case EV_MSC: return FALSE; #endif case EV_KEY: hid_device_set_button(iface, impl->button_map[ie->code], ie->value); return FALSE; case EV_ABS: if (ie->code < ABS_HAT0X || ie->code > ABS_HAT3Y) hid_device_set_abs_axis(iface, impl->abs_map[ie->code], ie->value); else if ((ie->code - ABS_HAT0X) % 2) hid_device_set_hatswitch_y(iface, impl->hat_map[ie->code - ABS_HAT0X], ie->value); else hid_device_set_hatswitch_x(iface, impl->hat_map[ie->code - ABS_HAT0X], ie->value); return FALSE; case EV_REL: hid_device_set_rel_axis(iface, impl->rel_map[ie->code], ie->value); return FALSE; case EV_FF_STATUS: for (i = 0; i < ARRAY_SIZE(impl->effect_ids); ++i) if (impl->effect_ids[i] == ie->code) break; if (i == ARRAY_SIZE(impl->effect_ids)) return FALSE; if (ie->value == FF_STATUS_PLAYING) effect_flags |= EFFECT_STATE_EFFECT_PLAYING; hid_device_set_effect_state(iface, i, effect_flags); bus_event_queue_input_report(&event_queue, iface, effect_state->report_buf, effect_state->report_len); return FALSE; default: ERR("TODO: Process Report (%i, %i)\n",ie->type, ie->code); return FALSE; } } static void lnxev_device_destroy(struct unix_device *iface) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); udev_device_unref(impl->base.udev_device); } static NTSTATUS lnxev_device_start(struct unix_device *iface) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); NTSTATUS status; if ((status = build_report_descriptor(iface, impl->base.udev_device))) return status; pthread_mutex_lock(&udev_cs); start_polling_device(iface); pthread_mutex_unlock(&udev_cs); return STATUS_SUCCESS; } static void lnxev_device_stop(struct unix_device *iface) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); pthread_mutex_lock(&udev_cs); stop_polling_device(iface); list_remove(&impl->base.unix_device.entry); pthread_mutex_unlock(&udev_cs); } static void lnxev_device_read_report(struct unix_device *iface) { struct hid_device_state *state = &iface->hid_device_state; struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); struct input_event ie; int size; size = read(impl->base.device_fd, &ie, sizeof(ie)); if (size == -1) TRACE("Read failed. Likely an unplugged device\n"); else if (size == 0) TRACE("Failed to read report\n"); else if (set_report_from_event(iface, &ie)) bus_event_queue_input_report(&event_queue, iface, state->report_buf, state->report_len); } static NTSTATUS lnxev_device_haptics_start(struct unix_device *iface, UINT duration_ms, USHORT rumble_intensity, USHORT buzz_intensity, USHORT left_intensity, USHORT right_intensity) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); struct ff_effect effect = { .id = impl->haptic_effect_id, .type = FF_RUMBLE, }; struct input_event event; TRACE("iface %p, duration_ms %u, rumble_intensity %u, buzz_intensity %u, left_intensity %u, right_intensity %u.\n", iface, duration_ms, rumble_intensity, buzz_intensity, left_intensity, right_intensity); effect.replay.length = duration_ms; effect.u.rumble.strong_magnitude = rumble_intensity; effect.u.rumble.weak_magnitude = buzz_intensity; if (ioctl(impl->base.device_fd, EVIOCSFF, &effect) == -1) { effect.id = -1; if (ioctl(impl->base.device_fd, EVIOCSFF, &effect) == 1) { WARN("couldn't re-allocate rumble effect for haptics: %d %s\n", errno, strerror(errno)); return STATUS_UNSUCCESSFUL; } impl->haptic_effect_id = effect.id; } event.type = EV_FF; event.code = effect.id; event.value = 1; if (write(impl->base.device_fd, &event, sizeof(event)) == -1) { WARN("couldn't start haptics rumble effect: %d %s\n", errno, strerror(errno)); return STATUS_UNSUCCESSFUL; } return STATUS_SUCCESS; } static NTSTATUS lnxev_device_haptics_stop(struct unix_device *iface) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); struct ff_effect effect = { .id = impl->haptic_effect_id, .type = FF_RUMBLE, }; struct input_event event; TRACE("iface %p.\n", iface); if (effect.id == -1) return STATUS_SUCCESS; event.type = EV_FF; event.code = effect.id; event.value = 0; if (write(impl->base.device_fd, &event, sizeof(event)) == -1) WARN("couldn't stop haptics rumble effect: %d %s\n", errno, strerror(errno)); return STATUS_SUCCESS; } static NTSTATUS lnxev_device_physical_effect_run(struct lnxev_device *impl, BYTE index, int iterations) { struct input_event ie = { .type = EV_FF, .value = iterations, }; if (impl->effect_ids[index] < 0) return STATUS_UNSUCCESSFUL; ie.code = impl->effect_ids[index]; if (write(impl->base.device_fd, &ie, sizeof(ie)) == -1) { WARN("couldn't stop effect, write failed %d %s\n", errno, strerror(errno)); return STATUS_UNSUCCESSFUL; } return STATUS_SUCCESS; } static NTSTATUS lnxev_device_physical_device_control(struct unix_device *iface, USAGE control) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); unsigned int i; TRACE("iface %p, control %#04x.\n", iface, control); switch (control) { case PID_USAGE_DC_ENABLE_ACTUATORS: { struct input_event ie = { .type = EV_FF, .code = FF_GAIN, .value = 0xffff, }; if (write(impl->base.device_fd, &ie, sizeof(ie)) == -1) WARN("write failed %d %s\n", errno, strerror(errno)); else InterlockedOr(&impl->effect_flags, EFFECT_STATE_ACTUATORS_ENABLED); return STATUS_SUCCESS; } case PID_USAGE_DC_DISABLE_ACTUATORS: { struct input_event ie = { .type = EV_FF, .code = FF_GAIN, .value = 0, }; if (write(impl->base.device_fd, &ie, sizeof(ie)) == -1) WARN("write failed %d %s\n", errno, strerror(errno)); else InterlockedAnd(&impl->effect_flags, ~EFFECT_STATE_ACTUATORS_ENABLED); return STATUS_SUCCESS; } case PID_USAGE_DC_STOP_ALL_EFFECTS: for (i = 0; i < ARRAY_SIZE(impl->effect_ids); ++i) { if (impl->effect_ids[i] < 0) continue; lnxev_device_physical_effect_run(impl, i, 0); } return STATUS_SUCCESS; case PID_USAGE_DC_DEVICE_RESET: for (i = 0; i < ARRAY_SIZE(impl->effect_ids); ++i) { if (impl->effect_ids[i] < 0) continue; if (ioctl(impl->base.device_fd, EVIOCRMFF, impl->effect_ids[i]) == -1) WARN("couldn't free effect, EVIOCRMFF ioctl failed: %d %s\n", errno, strerror(errno)); impl->effect_ids[i] = -1; } return STATUS_SUCCESS; case PID_USAGE_DC_DEVICE_PAUSE: WARN("device pause not supported\n"); InterlockedOr(&impl->effect_flags, EFFECT_STATE_DEVICE_PAUSED); return STATUS_NOT_SUPPORTED; case PID_USAGE_DC_DEVICE_CONTINUE: WARN("device continue not supported\n"); InterlockedAnd(&impl->effect_flags, ~EFFECT_STATE_DEVICE_PAUSED); return STATUS_NOT_SUPPORTED; } return STATUS_NOT_SUPPORTED; } static NTSTATUS lnxev_device_physical_device_set_gain(struct unix_device *iface, BYTE percent) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); struct input_event ie = { .type = EV_FF, .code = FF_GAIN, .value = 0xffff * percent / 100, }; TRACE("iface %p, percent %#x.\n", iface, percent); if (write(impl->base.device_fd, &ie, sizeof(ie)) == -1) WARN("write failed %d %s\n", errno, strerror(errno)); return STATUS_SUCCESS; } static NTSTATUS lnxev_device_physical_effect_control(struct unix_device *iface, BYTE index, USAGE control, BYTE iterations) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); NTSTATUS status; TRACE("iface %p, index %u, control %04x, iterations %u.\n", iface, index, control, iterations); switch (control) { case PID_USAGE_OP_EFFECT_START_SOLO: if ((status = lnxev_device_physical_device_control(iface, PID_USAGE_DC_STOP_ALL_EFFECTS))) return status; /* fallthrough */ case PID_USAGE_OP_EFFECT_START: return lnxev_device_physical_effect_run(impl, index, iterations); case PID_USAGE_OP_EFFECT_STOP: return lnxev_device_physical_effect_run(impl, index, 0); } return STATUS_SUCCESS; } static NTSTATUS set_effect_type_from_usage(struct ff_effect *effect, USAGE type) { switch (type) { case PID_USAGE_ET_SINE: effect->type = FF_PERIODIC; effect->u.periodic.waveform = FF_SINE; return STATUS_SUCCESS; case PID_USAGE_ET_SQUARE: effect->type = FF_PERIODIC; effect->u.periodic.waveform = FF_SQUARE; return STATUS_SUCCESS; case PID_USAGE_ET_TRIANGLE: effect->type = FF_PERIODIC; effect->u.periodic.waveform = FF_TRIANGLE; return STATUS_SUCCESS; case PID_USAGE_ET_SAWTOOTH_UP: effect->type = FF_PERIODIC; effect->u.periodic.waveform = FF_SAW_UP; return STATUS_SUCCESS; case PID_USAGE_ET_SAWTOOTH_DOWN: effect->type = FF_PERIODIC; effect->u.periodic.waveform = FF_SAW_DOWN; return STATUS_SUCCESS; case PID_USAGE_ET_SPRING: effect->type = FF_SPRING; return STATUS_SUCCESS; case PID_USAGE_ET_DAMPER: effect->type = FF_DAMPER; return STATUS_SUCCESS; case PID_USAGE_ET_INERTIA: effect->type = FF_INERTIA; return STATUS_SUCCESS; case PID_USAGE_ET_FRICTION: effect->type = FF_FRICTION; return STATUS_SUCCESS; case PID_USAGE_ET_CONSTANT_FORCE: effect->type = FF_CONSTANT; return STATUS_SUCCESS; case PID_USAGE_ET_RAMP: effect->type = FF_RAMP; return STATUS_SUCCESS; case PID_USAGE_ET_CUSTOM_FORCE_DATA: effect->type = FF_CUSTOM; return STATUS_SUCCESS; default: return STATUS_NOT_SUPPORTED; } } static NTSTATUS lnxev_device_physical_effect_update(struct unix_device *iface, BYTE index, struct effect_params *params) { struct lnxev_device *impl = lnxev_impl_from_unix_device(iface); struct ff_effect effect = {.id = impl->effect_ids[index]}; NTSTATUS status; TRACE("iface %p, index %u, params %p.\n", iface, index, params); if (params->effect_type == PID_USAGE_UNDEFINED) return STATUS_SUCCESS; if ((status = set_effect_type_from_usage(&effect, params->effect_type))) return status; effect.replay.length = (params->duration == 0xffff ? 0 : params->duration); effect.replay.delay = params->start_delay; effect.trigger.button = params->trigger_button; effect.trigger.interval = params->trigger_repeat_interval; /* Linux FF only supports polar direction, and the first direction we get from PID * is in polar coordinate space already. */ effect.direction = params->direction[0] * 0x800 / 1125; switch (params->effect_type) { case PID_USAGE_ET_SINE: case PID_USAGE_ET_SQUARE: case PID_USAGE_ET_TRIANGLE: case PID_USAGE_ET_SAWTOOTH_UP: case PID_USAGE_ET_SAWTOOTH_DOWN: effect.u.periodic.period = params->periodic.period; effect.u.periodic.magnitude = (params->periodic.magnitude * params->gain_percent) / 100; effect.u.periodic.offset = params->periodic.offset; effect.u.periodic.phase = params->periodic.phase * 0x800 / 1125; effect.u.periodic.envelope.attack_length = params->envelope.attack_time; effect.u.periodic.envelope.attack_level = params->envelope.attack_level; effect.u.periodic.envelope.fade_length = params->envelope.fade_time; effect.u.periodic.envelope.fade_level = params->envelope.fade_level; break; case PID_USAGE_ET_SPRING: case PID_USAGE_ET_DAMPER: case PID_USAGE_ET_INERTIA: case PID_USAGE_ET_FRICTION: if (params->condition_count >= 1) { effect.u.condition[0].right_saturation = params->condition[0].positive_saturation; effect.u.condition[0].left_saturation = params->condition[0].negative_saturation; effect.u.condition[0].right_coeff = params->condition[0].positive_coefficient; effect.u.condition[0].left_coeff = params->condition[0].negative_coefficient; effect.u.condition[0].deadband = params->condition[0].dead_band; effect.u.condition[0].center = params->condition[0].center_point_offset; } if (params->condition_count >= 2) { effect.u.condition[1].right_saturation = params->condition[1].positive_saturation; effect.u.condition[1].left_saturation = params->condition[1].negative_saturation; effect.u.condition[1].right_coeff = params->condition[1].positive_coefficient; effect.u.condition[1].left_coeff = params->condition[1].negative_coefficient; effect.u.condition[1].deadband = params->condition[1].dead_band; effect.u.condition[1].center = params->condition[1].center_point_offset; } break; case PID_USAGE_ET_CONSTANT_FORCE: effect.u.constant.level = (params->constant_force.magnitude * params->gain_percent) / 100; effect.u.constant.envelope.attack_length = params->envelope.attack_time; effect.u.constant.envelope.attack_level = params->envelope.attack_level; effect.u.constant.envelope.fade_length = params->envelope.fade_time; effect.u.constant.envelope.fade_level = params->envelope.fade_level; break; case PID_USAGE_ET_RAMP: effect.u.ramp.start_level = (params->ramp_force.ramp_start * params->gain_percent) / 100; effect.u.ramp.end_level = (params->ramp_force.ramp_end * params->gain_percent) / 100; effect.u.ramp.envelope.attack_length = params->envelope.attack_time; effect.u.ramp.envelope.attack_level = params->envelope.attack_level; effect.u.ramp.envelope.fade_length = params->envelope.fade_time; effect.u.ramp.envelope.fade_level = params->envelope.fade_level; break; case PID_USAGE_ET_CUSTOM_FORCE_DATA: FIXME("not implemented!\n"); break; } if (ioctl(impl->base.device_fd, EVIOCSFF, &effect) != -1) impl->effect_ids[index] = effect.id; else { WARN("couldn't create effect, EVIOCSFF ioctl failed: %d %s\n", errno, strerror(errno)); return STATUS_UNSUCCESSFUL; } return STATUS_SUCCESS; } static const struct hid_device_vtbl lnxev_device_vtbl = { lnxev_device_destroy, lnxev_device_start, lnxev_device_stop, lnxev_device_haptics_start, lnxev_device_haptics_stop, lnxev_device_physical_device_control, lnxev_device_physical_device_set_gain, lnxev_device_physical_effect_control, lnxev_device_physical_effect_update, }; #endif /* HAS_PROPER_INPUT_HEADER */ static void get_device_subsystem_info(struct udev_device *dev, char const *subsystem, struct device_desc *desc, int *bus) { struct udev_device *parent = NULL; const char *ptr, *next, *tmp; char buffer[MAX_PATH]; if (!(parent = udev_device_get_parent_with_subsystem_devtype(dev, subsystem, NULL))) return; if ((next = udev_device_get_sysattr_value(parent, "uevent"))) { while ((ptr = next) && *ptr) { if ((next = strchr(next, '\n'))) next += 1; else next = ptr + strlen(ptr); TRACE("%s uevent %s\n", subsystem, debugstr_an(ptr, next - ptr - 1)); if (!strncmp(ptr, "HID_UNIQ=", 9)) { if (desc->serialnumber[0]) continue; if (sscanf(ptr, "HID_UNIQ=%256[^\n]", buffer) == 1) ntdll_umbstowcs(buffer, strlen(buffer) + 1, desc->serialnumber, ARRAY_SIZE(desc->serialnumber)); } if (!strncmp(ptr, "HID_NAME=", 9)) { if (desc->product[0]) continue; if (sscanf(ptr, "HID_NAME=%256[^\n]", buffer) == 1) ntdll_umbstowcs(buffer, strlen(buffer) + 1, desc->product, ARRAY_SIZE(desc->product)); } if (!strncmp(ptr, "HID_PHYS=", 9) || !strncmp(ptr, "PHYS=\"", 6)) { if (!(tmp = strstr(ptr, "/input")) || tmp >= next) continue; if (desc->input == -1) sscanf(tmp, "/input%d\n", &desc->input); } if (!strncmp(ptr, "HID_ID=", 7)) { if (*bus || desc->vid || desc->pid) continue; sscanf(ptr, "HID_ID=%x:%x:%x\n", bus, &desc->vid, &desc->pid); } if (!strncmp(ptr, "PRODUCT=", 8) && *bus != BUS_BLUETOOTH) { if (desc->version) continue; if (!strcmp(subsystem, "usb")) sscanf(ptr, "PRODUCT=%x/%x/%x\n", &desc->vid, &desc->pid, &desc->version); else sscanf(ptr, "PRODUCT=%x/%x/%x/%x\n", bus, &desc->vid, &desc->pid, &desc->version); } } } if (!desc->manufacturer[0] && (tmp = udev_device_get_sysattr_value(dev, "manufacturer"))) ntdll_umbstowcs(tmp, strlen(tmp) + 1, desc->manufacturer, ARRAY_SIZE(desc->manufacturer)); if (!desc->product[0] && (tmp = udev_device_get_sysattr_value(dev, "product"))) ntdll_umbstowcs(tmp, strlen(tmp) + 1, desc->product, ARRAY_SIZE(desc->product)); if (!desc->serialnumber[0] && (tmp = udev_device_get_sysattr_value(dev, "serial"))) ntdll_umbstowcs(tmp, strlen(tmp) + 1, desc->serialnumber, ARRAY_SIZE(desc->serialnumber)); } static void hidraw_set_quirks(struct hidraw_device *impl, DWORD bus_type, WORD vid, WORD pid) { if (bus_type == BUS_BLUETOOTH && is_dualshock4_gamepad(vid, pid)) impl->quirks |= QUIRK_DS4_BT; if (bus_type == BUS_BLUETOOTH && is_dualsense_gamepad(vid, pid)) impl->quirks |= QUIRK_DUALSENSE_BT; } static void udev_add_device(struct udev_device *dev, int fd) { struct device_desc desc = { .input = -1, }; struct base_device *impl; const char *subsystem; const char *devnode; int bus = 0; if (!(devnode = udev_device_get_devnode(dev))) { if (fd >= 0) close(fd); return; } if (fd < 0 && (fd = open(devnode, O_RDWR)) == -1) { WARN("Unable to open udev device %s: %s\n", debugstr_a(devnode), strerror(errno)); return; } TRACE("udev %s syspath %s\n", debugstr_a(devnode), udev_device_get_syspath(dev)); #ifdef HAS_PROPER_INPUT_HEADER if ((impl = find_device_from_syspath(get_device_syspath(dev)))) { TRACE("duplicate device found, not adding the new one\n"); close(fd); return; } #endif get_device_subsystem_info(dev, "hid", &desc, &bus); get_device_subsystem_info(dev, "input", &desc, &bus); get_device_subsystem_info(dev, "usb", &desc, &bus); subsystem = udev_device_get_subsystem(dev); if (!strcmp(subsystem, "hidraw")) { static const WCHAR hidraw[] = {'h','i','d','r','a','w',0}; char product[MAX_PATH]; if (!desc.manufacturer[0]) memcpy(desc.manufacturer, hidraw, sizeof(hidraw)); #ifdef HAVE_LINUX_HIDRAW_H if (!desc.product[0] && ioctl(fd, HIDIOCGRAWNAME(sizeof(product) - 1), product) >= 0) ntdll_umbstowcs(product, strlen(product) + 1, desc.product, ARRAY_SIZE(desc.product)); #endif } #ifdef HAS_PROPER_INPUT_HEADER else if (!strcmp(subsystem, "input")) { static const WCHAR evdev[] = {'e','v','d','e','v',0}; struct input_id device_id = {0}; char buffer[MAX_PATH]; if (ioctl(fd, EVIOCGID, &device_id) < 0) WARN("ioctl(EVIOCGID) failed: %d %s\n", errno, strerror(errno)); else { desc.vid = device_id.vendor; desc.pid = device_id.product; desc.version = device_id.version; } if (!desc.manufacturer[0]) memcpy(desc.manufacturer, evdev, sizeof(evdev)); if (!desc.product[0] && ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), buffer) > 0) ntdll_umbstowcs(buffer, strlen(buffer) + 1, desc.product, ARRAY_SIZE(desc.product)); if (!desc.serialnumber[0] && ioctl(fd, EVIOCGUNIQ(sizeof(buffer)), buffer) >= 0) ntdll_umbstowcs(buffer, strlen(buffer) + 1, desc.serialnumber, ARRAY_SIZE(desc.serialnumber)); } #endif if (!desc.serialnumber[0]) { static const WCHAR zeros[] = {'0','0','0','0',0}; memcpy(desc.serialnumber, zeros, sizeof(zeros)); } if (is_xbox_gamepad(desc.vid, desc.pid)) desc.is_gamepad = TRUE; #ifdef HAS_PROPER_INPUT_HEADER else { int axes=0, buttons=0; axes = count_abs_axis(fd); buttons = count_buttons(fd, NULL); desc.is_gamepad = (axes == 6 && buttons >= 14); } #endif TRACE("dev %p, node %s, desc %s.\n", dev, debugstr_a(devnode), debugstr_device_desc(&desc)); if (strcmp(subsystem, "hidraw") == 0) { if (!(impl = raw_device_create(&hidraw_device_vtbl, sizeof(struct hidraw_device)))) return; list_add_tail(&device_list, &impl->unix_device.entry); impl->read_report = hidraw_device_read_report; impl->udev_device = udev_device_ref(dev); strcpy(impl->devnode, devnode); impl->device_fd = fd; hidraw_set_quirks((struct hidraw_device *)impl, bus, desc.vid, desc.pid); bus_event_queue_device_created(&event_queue, &impl->unix_device, &desc); } #ifdef HAS_PROPER_INPUT_HEADER else if (strcmp(subsystem, "input") == 0) { if (!(impl = hid_device_create(&lnxev_device_vtbl, sizeof(struct lnxev_device)))) return; list_add_tail(&device_list, &impl->unix_device.entry); impl->read_report = lnxev_device_read_report; impl->udev_device = udev_device_ref(dev); strcpy(impl->devnode, devnode); impl->device_fd = fd; bus_event_queue_device_created(&event_queue, &impl->unix_device, &desc); } #endif } #ifdef HAVE_SYS_INOTIFY_H static int dev_watch = -1; #ifdef HAS_PROPER_INPUT_HEADER static int devinput_watch = -1; #endif static void maybe_add_devnode(const char *base, const char *dir, const char *subsystem) { char *syspath = NULL, devnode[MAX_PATH], syslink[MAX_PATH]; struct udev_device *dev = NULL; const char *udev_devnode; int fd = -1; TRACE("Considering %s/%s...\n", dir, base); snprintf(devnode, sizeof(devnode), "%s/%s", dir, base); if ((fd = open(devnode, O_RDWR)) < 0) { /* When using inotify monitoring, quietly ignore device nodes that we cannot read, * without emitting a warning. * * We can expect that a significant number of device nodes will be permanently * unreadable, such as the device nodes for keyboards and mice. We can also expect * that joysticks and game controllers will be temporarily unreadable until udevd * chmods them; we'll get another chance to open them when their attributes change. */ TRACE("Unable to open %s, ignoring: %s\n", debugstr_a(devnode), strerror(errno)); return; } snprintf(syslink, sizeof(syslink), "/sys/class/%s/%s", subsystem, base); TRACE("Resolving real path to %s\n", debugstr_a(syslink)); if (!(syspath = realpath(syslink, NULL))) { WARN("Unable to resolve path \"%s\" for \"%s/%s\": %s\n", debugstr_a(syslink), dir, base, strerror(errno)); goto error; } TRACE("Creating udev_device for %s\n", syspath); if (!(dev = udev_device_new_from_syspath(udev_context, syspath))) { WARN("failed to create udev device from syspath %s\n", syspath); goto error; } if (!(udev_devnode = udev_device_get_devnode(dev)) || strcmp(devnode, udev_devnode) != 0) { WARN("Tried to get udev device for \"%s\" but device node of \"%s\" -> \"%s\" is \"%s\"\n", debugstr_a(devnode), debugstr_a(syslink), debugstr_a(syspath), debugstr_a(udev_devnode)); goto error; } TRACE("Adding device for %s\n", syspath); udev_add_device(dev, fd); udev_device_unref(dev); return; error: if (dev) udev_device_unref(dev); free(syspath); close(fd); } static void build_initial_deviceset_direct(void) { struct dirent *dent; int n, len; DIR *dir; if (!options.disable_hidraw) { TRACE("Initial enumeration of /dev/hidraw*\n"); if (!(dir = opendir("/dev"))) WARN("Unable to open /dev: %s\n", strerror(errno)); else { for (dent = readdir(dir); dent; dent = readdir(dir)) { if (sscanf(dent->d_name, "hidraw%u%n", &n, &len) != 1 || len != strlen(dent->d_name)) WARN("ignoring %s, name doesn't match hidraw%%u\n", debugstr_a(dent->d_name)); else maybe_add_devnode(dent->d_name, "/dev", "hidraw"); } closedir(dir); } } #ifdef HAS_PROPER_INPUT_HEADER if (!options.disable_input) { TRACE("Initial enumeration of /dev/input/event*\n"); if (!(dir = opendir("/dev/input"))) WARN("Unable to open /dev/input: %s\n", strerror(errno)); else { for (dent = readdir(dir); dent; dent = readdir(dir)) { if (sscanf(dent->d_name, "event%u%n", &n, &len) != 1 || len != strlen(dent->d_name)) WARN("ignoring %s, name doesn't match event%%u\n", debugstr_a(dent->d_name)); else maybe_add_devnode(dent->d_name, "/dev/input", "input"); } closedir(dir); } } #endif } static int create_inotify(void) { int systems = 0, fd, flags = IN_CREATE | IN_DELETE | IN_MOVE | IN_ATTRIB; if ((fd = inotify_init1(IN_NONBLOCK | IN_CLOEXEC)) < 0) { WARN("Unable to get inotify fd\n"); return fd; } if (!options.disable_hidraw) { /* We need to watch for attribute changes in addition to * creation, because when a device is first created, it has * permissions that we can't read. When udev chmods it to * something that we maybe *can* read, we'll get an * IN_ATTRIB event to tell us. */ dev_watch = inotify_add_watch(fd, "/dev", flags); if (dev_watch < 0) WARN("Unable to initialize inotify for /dev: %s\n", strerror(errno)); else systems++; } #ifdef HAS_PROPER_INPUT_HEADER if (!options.disable_input) { devinput_watch = inotify_add_watch(fd, "/dev/input", flags); if (devinput_watch < 0) WARN("Unable to initialize inotify for /dev/input: %s\n", strerror(errno)); else systems++; } #endif if (systems == 0) { WARN("No subsystems added to monitor\n"); close(fd); return -1; } return fd; } static struct base_device *find_device_from_devnode(const char *path) { struct base_device *impl; LIST_FOR_EACH_ENTRY(impl, &device_list, struct base_device, unix_device.entry) if (!strcmp(impl->devnode, path)) return impl; return NULL; } static void maybe_remove_devnode(const char *base, const char *dir) { struct base_device *impl; char devnode[MAX_PATH]; snprintf(devnode, sizeof(devnode), "%s/%s", dir, base); impl = find_device_from_devnode(devnode); if (impl) bus_event_queue_device_removed(&event_queue, &impl->unix_device); else WARN("failed to find device for path %s\n", devnode); } static void process_inotify_event(int fd) { union { struct inotify_event event; char storage[4096]; char enough_for_inotify[sizeof(struct inotify_event) + NAME_MAX + 1]; } buf; ssize_t bytes; int n, len; if ((bytes = read(fd, &buf, sizeof(buf))) < 0) WARN("read failed: %u %s\n", errno, strerror(errno)); else while (bytes > 0) { if (buf.event.len > 0) { if (buf.event.wd == dev_watch) { if (sscanf(buf.event.name, "hidraw%u%n", &n, &len) != 1 || len != strlen(buf.event.name)) WARN("ignoring %s, name doesn't match hidraw%%u\n", debugstr_a(buf.event.name)); else if (buf.event.mask & (IN_DELETE | IN_MOVED_FROM)) maybe_remove_devnode(buf.event.name, "/dev"); else if (buf.event.mask & (IN_CREATE | IN_MOVED_TO)) maybe_add_devnode(buf.event.name, "/dev", "hidraw"); else if (buf.event.mask & IN_ATTRIB) { maybe_remove_devnode(buf.event.name, "/dev"); maybe_add_devnode(buf.event.name, "/dev", "hidraw"); } } #ifdef HAS_PROPER_INPUT_HEADER else if (buf.event.wd == devinput_watch) { if (sscanf(buf.event.name, "event%u%n", &n, &len) != 1 || len != strlen(buf.event.name)) WARN("ignoring %s, name doesn't match event%%u\n", debugstr_a(buf.event.name)); else if (buf.event.mask & (IN_DELETE | IN_MOVED_FROM)) maybe_remove_devnode(buf.event.name, "/dev/input"); else if (buf.event.mask & (IN_CREATE | IN_MOVED_TO)) maybe_add_devnode(buf.event.name, "/dev/input", "input"); else if (buf.event.mask & IN_ATTRIB) { maybe_remove_devnode(buf.event.name, "/dev/input"); maybe_add_devnode(buf.event.name, "/dev/input", "input"); } } #endif } len = sizeof(struct inotify_event) + buf.event.len; bytes -= len; if (bytes > 0) memmove(&buf.storage[0], &buf.storage[len], bytes); } } #endif /* HAVE_SYS_INOTIFY_H */ static void build_initial_deviceset_udevd(void) { struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; enumerate = udev_enumerate_new(udev_context); if (!enumerate) { WARN("Unable to create udev enumeration object\n"); return; } if (!options.disable_hidraw) if (udev_enumerate_add_match_subsystem(enumerate, "hidraw") < 0) WARN("Failed to add subsystem 'hidraw' to enumeration\n"); #ifdef HAS_PROPER_INPUT_HEADER if (!options.disable_input) { if (udev_enumerate_add_match_subsystem(enumerate, "input") < 0) WARN("Failed to add subsystem 'input' to enumeration\n"); } #endif if (udev_enumerate_scan_devices(enumerate) < 0) WARN("Enumeration scan failed\n"); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { struct udev_device *dev; const char *path; path = udev_list_entry_get_name(dev_list_entry); if ((dev = udev_device_new_from_syspath(udev_context, path))) { udev_add_device(dev, -1); udev_device_unref(dev); } } udev_enumerate_unref(enumerate); } static struct udev_monitor *create_monitor(int *fd) { struct udev_monitor *monitor; int systems = 0; monitor = udev_monitor_new_from_netlink(udev_context, "udev"); if (!monitor) { WARN("Unable to get udev monitor object\n"); return NULL; } if (!options.disable_hidraw) { if (udev_monitor_filter_add_match_subsystem_devtype(monitor, "hidraw", NULL) < 0) WARN("Failed to add 'hidraw' subsystem to monitor\n"); else systems++; } #ifdef HAS_PROPER_INPUT_HEADER if (!options.disable_input) { if (udev_monitor_filter_add_match_subsystem_devtype(monitor, "input", NULL) < 0) WARN("Failed to add 'input' subsystem to monitor\n"); else systems++; } #endif if (systems == 0) { WARN("No subsystems added to monitor\n"); goto error; } if (udev_monitor_enable_receiving(monitor) < 0) goto error; if ((*fd = udev_monitor_get_fd(monitor)) >= 0) return monitor; error: WARN("Failed to start monitoring\n"); udev_monitor_unref(monitor); return NULL; } static void process_monitor_event(struct udev_monitor *monitor) { struct base_device *impl; struct udev_device *dev; const char *action; dev = udev_monitor_receive_device(monitor); if (!dev) { FIXME("Failed to get device that has changed\n"); return; } action = udev_device_get_action(dev); TRACE("Received action %s for udev device %s\n", debugstr_a(action), debugstr_a(udev_device_get_devnode(dev))); if (!action) WARN("No action received\n"); else if (strcmp(action, "remove")) udev_add_device(dev, -1); else { impl = find_device_from_devnode(udev_device_get_devnode(dev)); if (impl) bus_event_queue_device_removed(&event_queue, &impl->unix_device); else WARN("failed to find device for udev device %p\n", dev); } udev_device_unref(dev); } NTSTATUS udev_bus_init(void *args) { int monitor_fd = -1; TRACE("args %p\n", args); options = *(struct udev_bus_options *)args; if (pipe(deviceloop_control) != 0) { ERR("UDEV control pipe creation failed\n"); return STATUS_UNSUCCESSFUL; } if (!(udev_context = udev_new())) { ERR("UDEV object creation failed\n"); goto error; } #ifdef HAVE_SYS_INOTIFY_H if (options.disable_udevd) monitor_fd = create_inotify(); if (monitor_fd < 0) options.disable_udevd = FALSE; #else if (options.disable_udevd) ERR("inotify support not compiled in!\n"); options.disable_udevd = FALSE; #endif if (monitor_fd < 0 && !(udev_monitor = create_monitor(&monitor_fd))) { ERR("UDEV monitor creation failed\n"); goto error; } if (monitor_fd < 0) goto error; poll_fds[0].fd = monitor_fd; poll_fds[0].events = POLLIN; poll_fds[0].revents = 0; poll_fds[1].fd = deviceloop_control[0]; poll_fds[1].events = POLLIN; poll_fds[1].revents = 0; poll_count = 2; if (!options.disable_udevd) build_initial_deviceset_udevd(); #ifdef HAVE_SYS_INOTIFY_H else build_initial_deviceset_direct(); #endif return STATUS_SUCCESS; error: if (udev_monitor) udev_monitor_unref(udev_monitor); if (udev_context) udev_unref(udev_context); udev_context = NULL; close(deviceloop_control[0]); close(deviceloop_control[1]); return STATUS_UNSUCCESSFUL; } NTSTATUS udev_bus_wait(void *args) { struct bus_event *result = args; struct pollfd pfd[MAX_DEVICES]; struct base_device *impl; char ctrl = 0; int i, count; /* cleanup previously returned event */ bus_event_cleanup(result); while (ctrl != 'q') { if (bus_event_queue_pop(&event_queue, result)) return STATUS_PENDING; pthread_mutex_lock(&udev_cs); while (close_count--) close(close_fds[close_count]); memcpy(pfd, poll_fds, poll_count * sizeof(*pfd)); count = poll_count; close_count = 0; pthread_mutex_unlock(&udev_cs); while (poll(pfd, count, -1) <= 0) {} pthread_mutex_lock(&udev_cs); if (pfd[0].revents) { if (udev_monitor) process_monitor_event(udev_monitor); #ifdef HAVE_SYS_INOTIFY_H else process_inotify_event(pfd[0].fd); #endif } if (pfd[1].revents) read(deviceloop_control[0], &ctrl, 1); for (i = 2; i < count; ++i) { if (!pfd[i].revents) continue; impl = find_device_from_fd(pfd[i].fd); if (impl) impl->read_report(&impl->unix_device); } pthread_mutex_unlock(&udev_cs); } TRACE("UDEV main loop exiting\n"); bus_event_queue_destroy(&event_queue); if (udev_monitor) udev_monitor_unref(udev_monitor); udev_unref(udev_context); udev_context = NULL; close(deviceloop_control[0]); close(deviceloop_control[1]); return STATUS_SUCCESS; } NTSTATUS udev_bus_stop(void *args) { if (!udev_context) return STATUS_SUCCESS; write(deviceloop_control[1], "q", 1); return STATUS_SUCCESS; } #else NTSTATUS udev_bus_init(void *args) { WARN("UDEV support not compiled in!\n"); return STATUS_NOT_IMPLEMENTED; } NTSTATUS udev_bus_wait(void *args) { WARN("UDEV support not compiled in!\n"); return STATUS_NOT_IMPLEMENTED; } NTSTATUS udev_bus_stop(void *args) { WARN("UDEV support not compiled in!\n"); return STATUS_NOT_IMPLEMENTED; } #endif /* HAVE_UDEV */