/* * File dwarf.c - read dwarf2 information from the ELF modules * * Copyright (C) 2005, Raphael Junqueira * Copyright (C) 2006-2011, Eric Pouech * Copyright (C) 2010, Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #define NONAMELESSUNION #include #include #include #include #include #include #include #include "windef.h" #include "winternl.h" #include "winbase.h" #include "winuser.h" #include "ole2.h" #include "oleauto.h" #include "dbghelp_private.h" #include "image_private.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp_dwarf); /* FIXME: * - Functions: * o unspecified parameters * o inlined functions * o Debug{Start|End}Point * o CFA * - Udt * o proper types loading (nesting) */ #if 0 static void dump(const void* ptr, unsigned len) { int i, j; BYTE msg[128]; static const char hexof[] = "0123456789abcdef"; const BYTE* x = ptr; for (i = 0; i < len; i += 16) { sprintf(msg, "%08x: ", i); memset(msg + 10, ' ', 3 * 16 + 1 + 16); for (j = 0; j < min(16, len - i); j++) { msg[10 + 3 * j + 0] = hexof[x[i + j] >> 4]; msg[10 + 3 * j + 1] = hexof[x[i + j] & 15]; msg[10 + 3 * j + 2] = ' '; msg[10 + 3 * 16 + 1 + j] = (x[i + j] >= 0x20 && x[i + j] < 0x7f) ? x[i + j] : '.'; } msg[10 + 3 * 16] = ' '; msg[10 + 3 * 16 + 1 + 16] = '\0'; TRACE("%s\n", msg); } } #endif /** * * Main Specs: * http://www.eagercon.com/dwarf/dwarf3std.htm * http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf * * dwarf2.h: http://www.hakpetzna.com/b/binutils/dwarf2_8h-source.html * * example of projects who do dwarf2 parsing: * http://www.x86-64.org/cgi-bin/cvsweb.cgi/binutils.dead/binutils/readelf.c?rev=1.1.1.2 * http://elis.ugent.be/diota/log/ltrace_elf.c */ #include "dwarf.h" /** * Parsers */ typedef struct dwarf2_abbrev_entry_attr_s { ULONG_PTR attribute; ULONG_PTR form; struct dwarf2_abbrev_entry_attr_s* next; } dwarf2_abbrev_entry_attr_t; typedef struct dwarf2_abbrev_entry_s { ULONG_PTR entry_code; ULONG_PTR tag; unsigned char have_child; unsigned num_attr; dwarf2_abbrev_entry_attr_t* attrs; } dwarf2_abbrev_entry_t; struct dwarf2_block { unsigned size; const unsigned char* ptr; }; struct attribute { ULONG_PTR form; enum {attr_direct, attr_abstract_origin, attr_specification} gotten_from; union { ULONG_PTR uvalue; ULONGLONG lluvalue; LONG_PTR svalue; const char* string; struct dwarf2_block block; } u; const struct dwarf2_debug_info_s* debug_info; }; typedef struct dwarf2_debug_info_s { const dwarf2_abbrev_entry_t*abbrev; struct symt* symt; const unsigned char** data; struct vector children; struct dwarf2_debug_info_s* parent; struct dwarf2_parse_context_s* unit_ctx; } dwarf2_debug_info_t; typedef struct dwarf2_section_s { BOOL compressed; const unsigned char* address; unsigned size; DWORD_PTR rva; } dwarf2_section_t; enum dwarf2_sections {section_debug, section_string, section_abbrev, section_line, section_ranges, section_max}; typedef struct dwarf2_traverse_context_s { const unsigned char* data; const unsigned char* end_data; } dwarf2_traverse_context_t; typedef struct dwarf2_cuhead_s { unsigned char word_size; /* size of a word on target machine */ unsigned char version; unsigned char offset_size; /* size of offset inside DWARF */ } dwarf2_cuhead_t; typedef struct dwarf2_parse_module_context_s { ULONG_PTR load_offset; const dwarf2_section_t* sections; struct module* module; const struct elf_thunk_area*thunks; struct vector unit_contexts; struct dwarf2_dwz_alternate_s* dwz; DWORD cu_versions; } dwarf2_parse_module_context_t; typedef struct dwarf2_dwz_alternate_s { struct image_file_map* fmap; dwarf2_section_t sections[section_max]; struct image_section_map sectmap[section_max]; dwarf2_parse_module_context_t module_ctx; } dwarf2_dwz_alternate_t; enum unit_status { UNIT_ERROR, UNIT_NOTLOADED, UNIT_LOADED, UNIT_LOADED_FAIL, UNIT_BEINGLOADED, }; /* this is the context used for parsing a compilation unit * inside an ELF/PE section (likely .debug_info) */ typedef struct dwarf2_parse_context_s { dwarf2_parse_module_context_t* module_ctx; unsigned section; struct pool pool; struct symt_compiland* compiland; struct sparse_array abbrev_table; struct sparse_array debug_info_table; ULONG_PTR ref_offset; char* cpp_name; dwarf2_cuhead_t head; enum unit_status status; dwarf2_traverse_context_t traverse_DIE; unsigned language; } dwarf2_parse_context_t; /* stored in the dbghelp's module internal structure for later reuse */ struct dwarf2_module_info_s { dwarf2_cuhead_t** cuheads; unsigned num_cuheads; dwarf2_section_t debug_loc; dwarf2_section_t debug_frame; dwarf2_section_t eh_frame; unsigned char word_size; }; #define loc_dwarf2_location_list (loc_user + 0) #define loc_dwarf2_block (loc_user + 1) #define loc_dwarf2_frame_cfa (loc_user + 2) /* forward declarations */ static struct symt* dwarf2_parse_enumeration_type(dwarf2_debug_info_t* entry); static BOOL dwarf2_parse_compilation_unit(dwarf2_parse_context_t* ctx); static dwarf2_parse_context_t* dwarf2_locate_cu(dwarf2_parse_module_context_t* module_ctx, ULONG_PTR ref); static unsigned char dwarf2_get_byte(const unsigned char* ptr) { return *ptr; } static unsigned char dwarf2_parse_byte(dwarf2_traverse_context_t* ctx) { unsigned char uvalue = dwarf2_get_byte(ctx->data); ctx->data += 1; return uvalue; } static unsigned short dwarf2_get_u2(const unsigned char* ptr) { return *(const UINT16*)ptr; } static unsigned short dwarf2_parse_u2(dwarf2_traverse_context_t* ctx) { unsigned short uvalue = dwarf2_get_u2(ctx->data); ctx->data += 2; return uvalue; } static ULONG_PTR dwarf2_get_u4(const unsigned char* ptr) { return *(const UINT32*)ptr; } static ULONG_PTR dwarf2_parse_u4(dwarf2_traverse_context_t* ctx) { ULONG_PTR uvalue = dwarf2_get_u4(ctx->data); ctx->data += 4; return uvalue; } static DWORD64 dwarf2_get_u8(const unsigned char* ptr) { return *(const UINT64*)ptr; } static DWORD64 dwarf2_parse_u8(dwarf2_traverse_context_t* ctx) { DWORD64 uvalue = dwarf2_get_u8(ctx->data); ctx->data += 8; return uvalue; } static ULONG_PTR dwarf2_get_leb128_as_unsigned(const unsigned char* ptr, const unsigned char** end) { ULONG_PTR ret = 0; unsigned char byte; unsigned shift = 0; do { byte = dwarf2_get_byte(ptr++); ret |= (byte & 0x7f) << shift; shift += 7; } while (byte & 0x80); if (end) *end = ptr; return ret; } static ULONG_PTR dwarf2_leb128_as_unsigned(dwarf2_traverse_context_t* ctx) { ULONG_PTR ret; assert(ctx); ret = dwarf2_get_leb128_as_unsigned(ctx->data, &ctx->data); return ret; } static LONG_PTR dwarf2_get_leb128_as_signed(const unsigned char* ptr, const unsigned char** end) { LONG_PTR ret = 0; unsigned char byte; unsigned shift = 0; const unsigned size = sizeof(int) * 8; do { byte = dwarf2_get_byte(ptr++); ret |= (byte & 0x7f) << shift; shift += 7; } while (byte & 0x80); if (end) *end = ptr; /* as spec: sign bit of byte is 2nd high order bit (80x40) * -> 0x80 is used as flag. */ if ((shift < size) && (byte & 0x40)) { ret |= - (1 << shift); } return ret; } static LONG_PTR dwarf2_leb128_as_signed(dwarf2_traverse_context_t* ctx) { LONG_PTR ret = 0; assert(ctx); ret = dwarf2_get_leb128_as_signed(ctx->data, &ctx->data); return ret; } static unsigned dwarf2_leb128_length(const dwarf2_traverse_context_t* ctx) { unsigned ret; for (ret = 0; ctx->data[ret] & 0x80; ret++); return ret + 1; } /****************************************************************** * dwarf2_get_addr * * Returns an address. * We assume that in all cases word size from Dwarf matches the size of * addresses in platform where the exec is compiled. */ static ULONG_PTR dwarf2_get_addr(const unsigned char* ptr, unsigned word_size) { ULONG_PTR ret; switch (word_size) { case 4: ret = dwarf2_get_u4(ptr); break; case 8: ret = dwarf2_get_u8(ptr); break; default: FIXME("Unsupported Word Size %u\n", word_size); ret = 0; } return ret; } static inline ULONG_PTR dwarf2_parse_addr(dwarf2_traverse_context_t* ctx, unsigned word_size) { ULONG_PTR ret = dwarf2_get_addr(ctx->data, word_size); ctx->data += word_size; return ret; } static inline ULONG_PTR dwarf2_parse_addr_head(dwarf2_traverse_context_t* ctx, const dwarf2_cuhead_t* head) { return dwarf2_parse_addr(ctx, head->word_size); } static ULONG_PTR dwarf2_parse_offset(dwarf2_traverse_context_t* ctx, unsigned char offset_size) { ULONG_PTR ret = dwarf2_get_addr(ctx->data, offset_size); ctx->data += offset_size; return ret; } static ULONG_PTR dwarf2_parse_3264(dwarf2_traverse_context_t* ctx, unsigned char* ofsz) { ULONG_PTR ret = dwarf2_parse_u4(ctx); if (ret == 0xffffffff) { ret = dwarf2_parse_u8(ctx); *ofsz = 8; } else *ofsz = 4; return ret; } static const char* dwarf2_debug_traverse_ctx(const dwarf2_traverse_context_t* ctx) { return wine_dbg_sprintf("ctx(%p)", ctx->data); } static const char* dwarf2_debug_unit_ctx(const dwarf2_parse_context_t* ctx) { return wine_dbg_sprintf("ctx(%p,%s)", ctx, debugstr_w(ctx->module_ctx->module->modulename)); } static const char* dwarf2_debug_di(const dwarf2_debug_info_t* di) { return wine_dbg_sprintf("debug_info(abbrev:%p,symt:%p) in %s", di->abbrev, di->symt, dwarf2_debug_unit_ctx(di->unit_ctx)); } static dwarf2_abbrev_entry_t* dwarf2_abbrev_table_find_entry(const struct sparse_array* abbrev_table, ULONG_PTR entry_code) { assert( NULL != abbrev_table ); return sparse_array_find(abbrev_table, entry_code); } static void dwarf2_parse_abbrev_set(dwarf2_traverse_context_t* abbrev_ctx, struct sparse_array* abbrev_table, struct pool* pool) { ULONG_PTR entry_code; dwarf2_abbrev_entry_t* abbrev_entry; dwarf2_abbrev_entry_attr_t* new = NULL; dwarf2_abbrev_entry_attr_t* last = NULL; ULONG_PTR attribute; ULONG_PTR form; assert( NULL != abbrev_ctx ); TRACE("%s, end at %p\n", dwarf2_debug_traverse_ctx(abbrev_ctx), abbrev_ctx->end_data); sparse_array_init(abbrev_table, sizeof(dwarf2_abbrev_entry_t), 32); while (abbrev_ctx->data < abbrev_ctx->end_data) { TRACE("now at %s\n", dwarf2_debug_traverse_ctx(abbrev_ctx)); entry_code = dwarf2_leb128_as_unsigned(abbrev_ctx); TRACE("found entry_code %Iu\n", entry_code); if (!entry_code) { TRACE("NULL entry code at %s\n", dwarf2_debug_traverse_ctx(abbrev_ctx)); break; } abbrev_entry = sparse_array_add(abbrev_table, entry_code, pool); assert( NULL != abbrev_entry ); abbrev_entry->entry_code = entry_code; abbrev_entry->tag = dwarf2_leb128_as_unsigned(abbrev_ctx); abbrev_entry->have_child = dwarf2_parse_byte(abbrev_ctx); abbrev_entry->attrs = NULL; abbrev_entry->num_attr = 0; TRACE("table:(%p,#%u) entry_code(%Iu) tag(0x%Ix) have_child(%u) -> %p\n", abbrev_table, sparse_array_length(abbrev_table), entry_code, abbrev_entry->tag, abbrev_entry->have_child, abbrev_entry); last = NULL; while (1) { attribute = dwarf2_leb128_as_unsigned(abbrev_ctx); form = dwarf2_leb128_as_unsigned(abbrev_ctx); if (!attribute) break; new = pool_alloc(pool, sizeof(dwarf2_abbrev_entry_attr_t)); assert(new); new->attribute = attribute; new->form = form; new->next = NULL; if (abbrev_entry->attrs) last->next = new; else abbrev_entry->attrs = new; last = new; abbrev_entry->num_attr++; } } TRACE("found %u entries\n", sparse_array_length(abbrev_table)); } static void dwarf2_swallow_attribute(dwarf2_traverse_context_t* ctx, const dwarf2_cuhead_t* head, const dwarf2_abbrev_entry_attr_t* abbrev_attr) { unsigned step; TRACE("(attr:0x%Ix,form:0x%Ix)\n", abbrev_attr->attribute, abbrev_attr->form); switch (abbrev_attr->form) { case DW_FORM_flag_present: step = 0; break; case DW_FORM_ref_addr: step = (head->version >= 3) ? head->offset_size : head->word_size; break; case DW_FORM_addr: step = head->word_size; break; case DW_FORM_flag: case DW_FORM_data1: case DW_FORM_ref1: step = 1; break; case DW_FORM_data2: case DW_FORM_ref2: step = 2; break; case DW_FORM_data4: case DW_FORM_ref4: step = 4; break; case DW_FORM_data8: case DW_FORM_ref8: step = 8; break; case DW_FORM_sdata: case DW_FORM_ref_udata: case DW_FORM_udata: step = dwarf2_leb128_length(ctx); break; case DW_FORM_string: step = strlen((const char*)ctx->data) + 1; break; case DW_FORM_exprloc: case DW_FORM_block: step = dwarf2_leb128_as_unsigned(ctx); break; case DW_FORM_block1: step = dwarf2_parse_byte(ctx); break; case DW_FORM_block2: step = dwarf2_parse_u2(ctx); break; case DW_FORM_block4: step = dwarf2_parse_u4(ctx); break; case DW_FORM_sec_offset: case DW_FORM_GNU_ref_alt: case DW_FORM_GNU_strp_alt: case DW_FORM_strp: step = head->offset_size; break; default: FIXME("Unhandled attribute form %Ix\n", abbrev_attr->form); return; } ctx->data += step; } static BOOL dwarf2_fill_attr(const dwarf2_parse_context_t* ctx, const dwarf2_abbrev_entry_attr_t* abbrev_attr, const unsigned char* data, struct attribute* attr) { attr->form = abbrev_attr->form; switch (attr->form) { case DW_FORM_ref_addr: if (ctx->head.version >= 3) attr->u.uvalue = dwarf2_get_addr(data, ctx->head.offset_size); else attr->u.uvalue = dwarf2_get_addr(data, ctx->head.word_size); TRACE("addr<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_addr: attr->u.uvalue = dwarf2_get_addr(data, ctx->head.word_size); TRACE("addr<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_flag: attr->u.uvalue = dwarf2_get_byte(data); TRACE("flag<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_flag_present: attr->u.uvalue = 1; TRACE("flag_present\n"); break; case DW_FORM_data1: attr->u.uvalue = dwarf2_get_byte(data); TRACE("data1<%Iu>\n", attr->u.uvalue); break; case DW_FORM_data2: attr->u.uvalue = dwarf2_get_u2(data); TRACE("data2<%Iu>\n", attr->u.uvalue); break; case DW_FORM_data4: attr->u.uvalue = dwarf2_get_u4(data); TRACE("data4<%Iu>\n", attr->u.uvalue); break; case DW_FORM_data8: attr->u.lluvalue = dwarf2_get_u8(data); TRACE("data8<%Ix>\n", attr->u.uvalue); break; case DW_FORM_ref1: attr->u.uvalue = ctx->ref_offset + dwarf2_get_byte(data); TRACE("ref1<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_ref2: attr->u.uvalue = ctx->ref_offset + dwarf2_get_u2(data); TRACE("ref2<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_ref4: attr->u.uvalue = ctx->ref_offset + dwarf2_get_u4(data); TRACE("ref4<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_ref8: FIXME("Unhandled 64-bit support\n"); break; case DW_FORM_sdata: attr->u.svalue = dwarf2_get_leb128_as_signed(data, NULL); break; case DW_FORM_ref_udata: attr->u.uvalue = ctx->ref_offset + dwarf2_get_leb128_as_unsigned(data, NULL); TRACE("ref_udata<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_udata: attr->u.uvalue = dwarf2_get_leb128_as_unsigned(data, NULL); TRACE("udata<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_string: attr->u.string = (const char *)data; TRACE("string<%s>\n", debugstr_a(attr->u.string)); break; case DW_FORM_strp: { ULONG_PTR ofs = dwarf2_get_addr(data, ctx->head.offset_size); if (ofs >= ctx->module_ctx->sections[section_string].size) { ERR("Out of bounds string offset (%08Ix)\n", ofs); attr->u.string = "<>"; } else { attr->u.string = (const char*)ctx->module_ctx->sections[section_string].address + ofs; TRACE("strp<%s>\n", debugstr_a(attr->u.string)); } } break; case DW_FORM_block: case DW_FORM_exprloc: attr->u.block.size = dwarf2_get_leb128_as_unsigned(data, &attr->u.block.ptr); TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size); break; case DW_FORM_block1: attr->u.block.size = dwarf2_get_byte(data); attr->u.block.ptr = data + 1; TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size); break; case DW_FORM_block2: attr->u.block.size = dwarf2_get_u2(data); attr->u.block.ptr = data + 2; TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size); break; case DW_FORM_block4: attr->u.block.size = dwarf2_get_u4(data); attr->u.block.ptr = data + 4; TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size); break; case DW_FORM_sec_offset: attr->u.lluvalue = dwarf2_get_addr(data, ctx->head.offset_size); TRACE("sec_offset<%I64x>\n", attr->u.lluvalue); break; case DW_FORM_GNU_ref_alt: if (!ctx->module_ctx->dwz) { ERR("No DWZ file present for GNU_ref_alt in %s\n", debugstr_w(ctx->module_ctx->module->modulename)); attr->u.uvalue = 0; return FALSE; } attr->u.uvalue = dwarf2_get_addr(data, ctx->head.offset_size); TRACE("ref_alt<0x%Ix>\n", attr->u.uvalue); break; case DW_FORM_GNU_strp_alt: if (ctx->module_ctx->dwz) { ULONG_PTR ofs = dwarf2_get_addr(data, ctx->head.offset_size); if (ofs < ctx->module_ctx->dwz->sections[section_string].size) { attr->u.string = (const char*)ctx->module_ctx->dwz->sections[section_string].address + ofs; TRACE("strp_alt<%s>\n", debugstr_a(attr->u.string)); } else { ERR("out of bounds strp_alt: 0x%Ix 0x%x (%u)\n", ofs, ctx->module_ctx->dwz->sections[section_string].size, ctx->head.offset_size); attr->u.string = "<>"; } } else { ERR("No DWZ file present for GNU_strp_alt in %s\n", debugstr_w(ctx->module_ctx->module->modulename)); attr->u.string = "<>"; } break; default: FIXME("Unhandled attribute form %Ix\n", abbrev_attr->form); break; } return TRUE; } static dwarf2_debug_info_t* dwarf2_jump_to_debug_info(struct attribute* attr); static BOOL dwarf2_find_attribute(const dwarf2_debug_info_t* di, unsigned at, struct attribute* attr) { unsigned i, refidx = 0; dwarf2_abbrev_entry_attr_t* abbrev_attr; dwarf2_abbrev_entry_attr_t* ref_abbrev_attr = NULL; attr->gotten_from = attr_direct; while (di) { ref_abbrev_attr = NULL; attr->debug_info = di; for (i = 0, abbrev_attr = di->abbrev->attrs; abbrev_attr; i++, abbrev_attr = abbrev_attr->next) { if (abbrev_attr->attribute == at) { return dwarf2_fill_attr(di->unit_ctx, abbrev_attr, di->data[i], attr); } if ((abbrev_attr->attribute == DW_AT_abstract_origin || abbrev_attr->attribute == DW_AT_specification) && at != DW_AT_sibling) { if (ref_abbrev_attr) FIXME("two references %Ix and %Ix\n", ref_abbrev_attr->attribute, abbrev_attr->attribute); ref_abbrev_attr = abbrev_attr; refidx = i; attr->gotten_from = (abbrev_attr->attribute == DW_AT_abstract_origin) ? attr_abstract_origin : attr_specification; } } /* do we have either an abstract origin or a specification debug entry to look into ? */ if (!ref_abbrev_attr || !dwarf2_fill_attr(di->unit_ctx, ref_abbrev_attr, di->data[refidx], attr)) break; if (!(di = dwarf2_jump_to_debug_info(attr))) { FIXME("Should have found the debug info entry\n"); break; } } return FALSE; } static dwarf2_debug_info_t* dwarf2_jump_to_debug_info(struct attribute* attr) { dwarf2_parse_context_t* ref_ctx = NULL; BOOL with_other = TRUE; dwarf2_debug_info_t* ret; switch (attr->form) { case DW_FORM_ref_addr: ref_ctx = dwarf2_locate_cu(attr->debug_info->unit_ctx->module_ctx, attr->u.uvalue); break; case DW_FORM_GNU_ref_alt: if (attr->debug_info->unit_ctx->module_ctx->dwz) ref_ctx = dwarf2_locate_cu(&attr->debug_info->unit_ctx->module_ctx->dwz->module_ctx, attr->u.uvalue); break; default: with_other = FALSE; ref_ctx = attr->debug_info->unit_ctx; break; } if (!ref_ctx) return FALSE; /* There are cases where we end up with a circular reference between two (or more) * compilation units. Before this happens, try to see if we can refer to an already * loaded debug_info in the target compilation unit (even if all the debug_info * haven't been loaded yet). */ if (ref_ctx->status == UNIT_BEINGLOADED && (ret = sparse_array_find(&ref_ctx->debug_info_table, attr->u.uvalue))) return ret; if (with_other) { /* ensure CU is fully loaded */ if (ref_ctx != attr->debug_info->unit_ctx && !dwarf2_parse_compilation_unit(ref_ctx)) return NULL; } return sparse_array_find(&ref_ctx->debug_info_table, attr->u.uvalue); } static void dwarf2_load_one_entry(dwarf2_debug_info_t*); #define Wine_DW_no_register 0x7FFFFFFF static unsigned dwarf2_map_register(int regno, const struct module* module) { if (regno == Wine_DW_no_register) { FIXME("What the heck map reg 0x%x\n",regno); return 0; } return module->cpu->map_dwarf_register(regno, module, FALSE); } static enum location_error compute_location(const struct module *module, const dwarf2_cuhead_t* head, dwarf2_traverse_context_t* ctx, struct location* loc, HANDLE hproc, const struct location* frame) { DWORD_PTR tmp, stack[64]; unsigned stk; unsigned char op; BOOL piece_found = FALSE; stack[stk = 0] = 0; loc->kind = loc_absolute; loc->reg = Wine_DW_no_register; while (ctx->data < ctx->end_data) { op = dwarf2_parse_byte(ctx); if (op >= DW_OP_lit0 && op <= DW_OP_lit31) stack[++stk] = op - DW_OP_lit0; else if (op >= DW_OP_reg0 && op <= DW_OP_reg31) { /* dbghelp APIs don't know how to cope with this anyway * (for example 'long long' stored in two registers) * FIXME: We should tell winedbg how to deal with it (sigh) */ if (!piece_found) { DWORD cvreg = dwarf2_map_register(op - DW_OP_reg0, module); if (loc->reg != Wine_DW_no_register) FIXME("Only supporting one reg (%s/%d -> %s/%ld)\n", module->cpu->fetch_regname(loc->reg), loc->reg, module->cpu->fetch_regname(cvreg), cvreg); loc->reg = cvreg; } loc->kind = loc_register; } else if (op >= DW_OP_breg0 && op <= DW_OP_breg31) { /* dbghelp APIs don't know how to cope with this anyway * (for example 'long long' stored in two registers) * FIXME: We should tell winedbg how to deal with it (sigh) */ if (!piece_found) { DWORD cvreg = dwarf2_map_register(op - DW_OP_breg0, module); if (loc->reg != Wine_DW_no_register) FIXME("Only supporting one breg (%s/%d -> %s/%ld)\n", module->cpu->fetch_regname(loc->reg), loc->reg, module->cpu->fetch_regname(cvreg), cvreg); loc->reg = cvreg; } stack[++stk] = dwarf2_leb128_as_signed(ctx); loc->kind = loc_regrel; } else switch (op) { case DW_OP_nop: break; case DW_OP_addr: stack[++stk] = dwarf2_parse_addr_head(ctx, head); break; case DW_OP_const1u: stack[++stk] = dwarf2_parse_byte(ctx); break; case DW_OP_const1s: stack[++stk] = dwarf2_parse_byte(ctx); break; case DW_OP_const2u: stack[++stk] = dwarf2_parse_u2(ctx); break; case DW_OP_const2s: stack[++stk] = dwarf2_parse_u2(ctx); break; case DW_OP_const4u: stack[++stk] = dwarf2_parse_u4(ctx); break; case DW_OP_const4s: stack[++stk] = dwarf2_parse_u4(ctx); break; case DW_OP_const8u: stack[++stk] = dwarf2_parse_u8(ctx); break; case DW_OP_const8s: stack[++stk] = dwarf2_parse_u8(ctx); break; case DW_OP_constu: stack[++stk] = dwarf2_leb128_as_unsigned(ctx); break; case DW_OP_consts: stack[++stk] = dwarf2_leb128_as_signed(ctx); break; case DW_OP_dup: stack[stk + 1] = stack[stk]; stk++; break; case DW_OP_drop: stk--; break; case DW_OP_over: stack[stk + 1] = stack[stk - 1]; stk++; break; case DW_OP_pick: stack[stk + 1] = stack[stk - dwarf2_parse_byte(ctx)]; stk++; break; case DW_OP_swap: tmp = stack[stk]; stack[stk] = stack[stk-1]; stack[stk-1] = tmp; break; case DW_OP_rot: tmp = stack[stk]; stack[stk] = stack[stk-1]; stack[stk-1] = stack[stk-2]; stack[stk-2] = tmp; break; case DW_OP_abs: stack[stk] = sizeof(stack[stk]) == 8 ? llabs((INT64)stack[stk]) : abs((INT32)stack[stk]); break; case DW_OP_neg: stack[stk] = -stack[stk]; break; case DW_OP_not: stack[stk] = ~stack[stk]; break; case DW_OP_and: stack[stk-1] &= stack[stk]; stk--; break; case DW_OP_or: stack[stk-1] |= stack[stk]; stk--; break; case DW_OP_minus: stack[stk-1] -= stack[stk]; stk--; break; case DW_OP_mul: stack[stk-1] *= stack[stk]; stk--; break; case DW_OP_plus: stack[stk-1] += stack[stk]; stk--; break; case DW_OP_xor: stack[stk-1] ^= stack[stk]; stk--; break; case DW_OP_shl: stack[stk-1] <<= stack[stk]; stk--; break; case DW_OP_shr: stack[stk-1] >>= stack[stk]; stk--; break; case DW_OP_plus_uconst: stack[stk] += dwarf2_leb128_as_unsigned(ctx); break; case DW_OP_shra: stack[stk-1] = stack[stk-1] / (1 << stack[stk]); stk--; break; case DW_OP_div: stack[stk-1] = stack[stk-1] / stack[stk]; stk--; break; case DW_OP_mod: stack[stk-1] = stack[stk-1] % stack[stk]; stk--; break; case DW_OP_ge: stack[stk-1] = (stack[stk-1] >= stack[stk]); stk--; break; case DW_OP_gt: stack[stk-1] = (stack[stk-1] > stack[stk]); stk--; break; case DW_OP_le: stack[stk-1] = (stack[stk-1] <= stack[stk]); stk--; break; case DW_OP_lt: stack[stk-1] = (stack[stk-1] < stack[stk]); stk--; break; case DW_OP_eq: stack[stk-1] = (stack[stk-1] == stack[stk]); stk--; break; case DW_OP_ne: stack[stk-1] = (stack[stk-1] != stack[stk]); stk--; break; case DW_OP_skip: tmp = dwarf2_parse_u2(ctx); ctx->data += tmp; break; case DW_OP_bra: tmp = dwarf2_parse_u2(ctx); if (!stack[stk--]) ctx->data += tmp; break; case DW_OP_regx: tmp = dwarf2_leb128_as_unsigned(ctx); if (!piece_found) { if (loc->reg != Wine_DW_no_register) FIXME("Only supporting one reg\n"); loc->reg = dwarf2_map_register(tmp, module); } loc->kind = loc_register; break; case DW_OP_bregx: tmp = dwarf2_leb128_as_unsigned(ctx); if (loc->reg != Wine_DW_no_register) FIXME("Only supporting one regx\n"); loc->reg = dwarf2_map_register(tmp, module); stack[++stk] = dwarf2_leb128_as_signed(ctx); loc->kind = loc_regrel; break; case DW_OP_fbreg: if (loc->reg != Wine_DW_no_register) FIXME("Only supporting one reg (%s/%d -> -2)\n", module->cpu->fetch_regname(loc->reg), loc->reg); if (frame && frame->kind == loc_register) { loc->kind = loc_regrel; loc->reg = frame->reg; stack[++stk] = dwarf2_leb128_as_signed(ctx); } else if (frame && frame->kind == loc_regrel) { loc->kind = loc_regrel; loc->reg = frame->reg; stack[++stk] = dwarf2_leb128_as_signed(ctx) + frame->offset; } else { /* FIXME: this could be later optimized by not recomputing * this very location expression */ loc->kind = loc_dwarf2_block; stack[++stk] = dwarf2_leb128_as_signed(ctx); } break; case DW_OP_piece: { unsigned sz = dwarf2_leb128_as_unsigned(ctx); WARN("Not handling OP_piece (size=%d)\n", sz); piece_found = TRUE; } break; case DW_OP_deref: if (!stk) { FIXME("Unexpected empty stack\n"); return loc_err_internal; } if (loc->reg != Wine_DW_no_register) { WARN("Too complex expression for deref\n"); return loc_err_too_complex; } if (hproc) { DWORD_PTR addr = stack[stk--]; DWORD_PTR deref = 0; if (!ReadProcessMemory(hproc, (void*)addr, &deref, head->word_size, NULL)) { WARN("Couldn't read memory at %Ix\n", addr); return loc_err_cant_read; } stack[++stk] = deref; } else { loc->kind = loc_dwarf2_block; } break; case DW_OP_deref_size: if (!stk) { FIXME("Unexpected empty stack\n"); return loc_err_internal; } if (loc->reg != Wine_DW_no_register) { WARN("Too complex expression for deref\n"); return loc_err_too_complex; } if (hproc) { DWORD_PTR addr = stack[stk--]; BYTE derefsize = dwarf2_parse_byte(ctx); DWORD64 deref; if (!ReadProcessMemory(hproc, (void*)addr, &deref, derefsize, NULL)) { WARN("Couldn't read memory at %Ix\n", addr); return loc_err_cant_read; } switch (derefsize) { case 1: stack[++stk] = *(unsigned char*)&deref; break; case 2: stack[++stk] = *(unsigned short*)&deref; break; case 4: stack[++stk] = *(DWORD*)&deref; break; case 8: if (head->word_size >= derefsize) stack[++stk] = deref; break; } } else { dwarf2_parse_byte(ctx); loc->kind = loc_dwarf2_block; } break; case DW_OP_stack_value: /* Expected behaviour is that this is the last instruction of this * expression and just the "top of stack" value should be put to loc->offset. */ break; default: if (op < DW_OP_lo_user) /* as DW_OP_hi_user is 0xFF, we don't need to test against it */ FIXME("Unhandled attr op: %x\n", op); /* FIXME else unhandled extension */ return loc_err_internal; } } loc->offset = stack[stk]; return 0; } static BOOL dwarf2_compute_location_attr(dwarf2_parse_context_t* ctx, const dwarf2_debug_info_t* di, ULONG_PTR dw, struct location* loc, const struct location* frame) { struct attribute xloc; if (!dwarf2_find_attribute(di, dw, &xloc)) return FALSE; switch (xloc.form) { case DW_FORM_data4: if (ctx->head.version < 4) { loc->kind = loc_dwarf2_location_list; loc->reg = Wine_DW_no_register; loc->offset = xloc.u.uvalue; return TRUE; } /* fall through */ case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_udata: case DW_FORM_sdata: loc->kind = loc_absolute; loc->reg = 0; loc->offset = xloc.u.uvalue; return TRUE; case DW_FORM_data8: if (ctx->head.version >= 4) { loc->kind = loc_absolute; loc->reg = 0; loc->offset = xloc.u.lluvalue; return TRUE; } /* fall through */ case DW_FORM_sec_offset: loc->kind = loc_dwarf2_location_list; loc->reg = Wine_DW_no_register; loc->offset = xloc.u.lluvalue; return TRUE; case DW_FORM_block: case DW_FORM_block1: case DW_FORM_block2: case DW_FORM_block4: case DW_FORM_exprloc: break; default: FIXME("Unsupported yet form %Ix\n", xloc.form); return FALSE; } /* assume we have a block form */ if (dw == DW_AT_frame_base && xloc.u.block.size == 1 && *xloc.u.block.ptr == DW_OP_call_frame_cfa) { loc->kind = loc_dwarf2_frame_cfa; loc->reg = Wine_DW_no_register; loc->offset = 0; } else if (xloc.u.block.size) { dwarf2_traverse_context_t lctx; enum location_error err; lctx.data = xloc.u.block.ptr; lctx.end_data = xloc.u.block.ptr + xloc.u.block.size; err = compute_location(ctx->module_ctx->module, &ctx->head, &lctx, loc, NULL, frame); if (err < 0) { loc->kind = loc_error; loc->reg = err; } else if (loc->kind == loc_dwarf2_block) { unsigned* ptr = pool_alloc(&ctx->module_ctx->module->pool, sizeof(unsigned) + xloc.u.block.size); *ptr = xloc.u.block.size; memcpy(ptr + 1, xloc.u.block.ptr, xloc.u.block.size); loc->offset = (ULONG_PTR)ptr; } } return TRUE; } static struct symt* dwarf2_lookup_type(const dwarf2_debug_info_t* di) { struct attribute attr; dwarf2_debug_info_t* type; if (!dwarf2_find_attribute(di, DW_AT_type, &attr)) /* this is only valid if current language of CU is C or C++ */ return &symt_get_basic(btVoid, 0)->symt; if (!(type = dwarf2_jump_to_debug_info(&attr))) return &symt_get_basic(btNoType, 0)->symt; if (type == di) { FIXME("Reference to itself\n"); return &symt_get_basic(btNoType, 0)->symt; } if (!type->symt) { /* load the debug info entity */ dwarf2_load_one_entry(type); if (!type->symt) { FIXME("Unable to load forward reference for tag %Ix\n", type->abbrev->tag); return &symt_get_basic(btNoType, 0)->symt; } } return type->symt; } static const char* dwarf2_get_cpp_name(dwarf2_debug_info_t* di, const char* name) { char* last; struct attribute diname; struct attribute spec; if (di->abbrev->tag == DW_TAG_compile_unit || di->abbrev->tag == DW_TAG_partial_unit) return name; /* if the di is a definition, but has also a (previous) declaration, then scope must * be gotten from declaration not definition */ if (dwarf2_find_attribute(di, DW_AT_specification, &spec) && spec.gotten_from == attr_direct) { di = dwarf2_jump_to_debug_info(&spec); if (!di) { FIXME("Should have found the debug info entry\n"); return NULL; } } if (!di->unit_ctx->cpp_name) di->unit_ctx->cpp_name = pool_alloc(&di->unit_ctx->pool, MAX_SYM_NAME); last = di->unit_ctx->cpp_name + MAX_SYM_NAME - strlen(name) - 1; strcpy(last, name); for (di = di->parent; di; di = di->parent) { switch (di->abbrev->tag) { case DW_TAG_namespace: case DW_TAG_structure_type: case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_union_type: if (dwarf2_find_attribute(di, DW_AT_name, &diname)) { size_t len = strlen(diname.u.string); last -= 2 + len; if (last < di->unit_ctx->cpp_name) return NULL; memcpy(last, diname.u.string, len); last[len] = last[len + 1] = ':'; } break; default: break; } } return last; } static unsigned dwarf2_get_num_ranges(const dwarf2_debug_info_t* di) { struct attribute range; if (dwarf2_find_attribute(di, DW_AT_ranges, &range)) { dwarf2_traverse_context_t traverse; unsigned num_ranges = 0; traverse.data = di->unit_ctx->module_ctx->sections[section_ranges].address + range.u.uvalue; traverse.end_data = di->unit_ctx->module_ctx->sections[section_ranges].address + di->unit_ctx->module_ctx->sections[section_ranges].size; for (num_ranges = 0; traverse.data + 2 * di->unit_ctx->head.word_size < traverse.end_data; num_ranges++) { ULONG_PTR low = dwarf2_parse_addr_head(&traverse, &di->unit_ctx->head); ULONG_PTR high = dwarf2_parse_addr_head(&traverse, &di->unit_ctx->head); if (low == 0 && high == 0) break; if (low == (di->unit_ctx->head.word_size == 8 ? (~(DWORD64)0u) : (DWORD64)(~0u))) FIXME("unsupported yet (base address selection)\n"); } return num_ranges; } else { struct attribute low_pc; struct attribute high_pc; return dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc) && dwarf2_find_attribute(di, DW_AT_high_pc, &high_pc) ? 1 : 0; } } /* nun_ranges must have been gotten from dwarf2_get_num_ranges() */ static BOOL dwarf2_fill_ranges(const dwarf2_debug_info_t* di, struct addr_range* ranges, unsigned num_ranges) { struct attribute range; if (dwarf2_find_attribute(di, DW_AT_ranges, &range)) { dwarf2_traverse_context_t traverse; unsigned index; traverse.data = di->unit_ctx->module_ctx->sections[section_ranges].address + range.u.uvalue; traverse.end_data = di->unit_ctx->module_ctx->sections[section_ranges].address + di->unit_ctx->module_ctx->sections[section_ranges].size; for (index = 0; traverse.data + 2 * di->unit_ctx->head.word_size < traverse.end_data; index++) { ULONG_PTR low = dwarf2_parse_addr_head(&traverse, &di->unit_ctx->head); ULONG_PTR high = dwarf2_parse_addr_head(&traverse, &di->unit_ctx->head); if (low == 0 && high == 0) break; if (low == (di->unit_ctx->head.word_size == 8 ? (~(DWORD64)0u) : (DWORD64)(~0u))) FIXME("unsupported yet (base address selection)\n"); if (index >= num_ranges) return FALSE; /* sanity check */ ranges[index].low = di->unit_ctx->compiland->address + low; ranges[index].high = di->unit_ctx->compiland->address + high; } return index == num_ranges; /* sanity check */ } else { struct attribute low_pc; struct attribute high_pc; if (num_ranges != 1 || /* sanity check */ !dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc) || !dwarf2_find_attribute(di, DW_AT_high_pc, &high_pc)) return FALSE; if (di->unit_ctx->head.version >= 4) switch (high_pc.form) { case DW_FORM_addr: break; case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_data4: case DW_FORM_data8: case DW_FORM_sdata: case DW_FORM_udata: /* From dwarf4 on, when FORM's class is constant, high_pc is an offset from low_pc */ high_pc.u.uvalue += low_pc.u.uvalue; break; default: FIXME("Unsupported class for high_pc\n"); break; } ranges[0].low = di->unit_ctx->module_ctx->load_offset + low_pc.u.uvalue; ranges[0].high = di->unit_ctx->module_ctx->load_offset + high_pc.u.uvalue; } return TRUE; } static struct addr_range* dwarf2_get_ranges(const dwarf2_debug_info_t* di, unsigned* num_ranges) { unsigned nr = dwarf2_get_num_ranges(di); struct addr_range* ranges; if (nr == 0) return NULL; ranges = malloc(nr * sizeof(ranges[0])); if (!ranges || !dwarf2_fill_ranges(di, ranges, nr)) return NULL; *num_ranges = nr; return ranges; } /****************************************************************** * dwarf2_read_one_debug_info * * Loads into memory one debug info entry, and recursively its children (if any) */ static BOOL dwarf2_read_one_debug_info(dwarf2_parse_context_t* ctx, dwarf2_traverse_context_t* traverse, dwarf2_debug_info_t* parent_di, dwarf2_debug_info_t** pdi) { const dwarf2_abbrev_entry_t*abbrev; ULONG_PTR entry_code; ULONG_PTR offset; dwarf2_debug_info_t* di; dwarf2_debug_info_t* child; dwarf2_debug_info_t** where; dwarf2_abbrev_entry_attr_t* attr; unsigned i; struct attribute sibling; offset = traverse->data - ctx->module_ctx->sections[ctx->section].address; entry_code = dwarf2_leb128_as_unsigned(traverse); TRACE("found entry_code %Iu at 0x%Ix\n", entry_code, offset); if (!entry_code) { *pdi = NULL; return TRUE; } abbrev = dwarf2_abbrev_table_find_entry(&ctx->abbrev_table, entry_code); if (!abbrev) { WARN("Cannot find abbrev entry for %Iu at 0x%Ix\n", entry_code, offset); return FALSE; } di = sparse_array_add(&ctx->debug_info_table, offset, &ctx->pool); if (!di) return FALSE; di->abbrev = abbrev; di->symt = NULL; di->parent = parent_di; di->unit_ctx = ctx; if (abbrev->num_attr) { di->data = pool_alloc(&ctx->pool, abbrev->num_attr * sizeof(const char*)); for (i = 0, attr = abbrev->attrs; attr; i++, attr = attr->next) { di->data[i] = traverse->data; dwarf2_swallow_attribute(traverse, &ctx->head, attr); } } else di->data = NULL; if (abbrev->have_child) { vector_init(&di->children, sizeof(dwarf2_debug_info_t*), 16); while (traverse->data < traverse->end_data) { if (!dwarf2_read_one_debug_info(ctx, traverse, di, &child)) return FALSE; if (!child) break; where = vector_add(&di->children, &ctx->pool); if (!where) return FALSE; *where = child; } } if (dwarf2_find_attribute(di, DW_AT_sibling, &sibling) && traverse->data != ctx->module_ctx->sections[ctx->section].address + sibling.u.uvalue) { if (sibling.u.uvalue >= ctx->module_ctx->sections[ctx->section].size) { FIXME("cursor sibling after section end %s: 0x%Ix 0x%x\n", dwarf2_debug_unit_ctx(ctx), sibling.u.uvalue, ctx->module_ctx->sections[ctx->section].size); return FALSE; } WARN("setting cursor for %s to next sibling <0x%Ix>\n", dwarf2_debug_traverse_ctx(traverse), sibling.u.uvalue); traverse->data = ctx->module_ctx->sections[ctx->section].address + sibling.u.uvalue; } *pdi = di; return TRUE; } static struct vector* dwarf2_get_di_children(dwarf2_debug_info_t* di) { struct attribute spec; while (di) { if (di->abbrev->have_child) return &di->children; if (!dwarf2_find_attribute(di, DW_AT_specification, &spec)) break; if (!(di = dwarf2_jump_to_debug_info(&spec))) FIXME("Should have found the debug info entry\n"); } return NULL; } /* reconstruct whether integer is long (contains 'long' only once) */ static BOOL is_long(const char* name) { /* we assume name is made only of basic C keywords: * int long short unsigned signed void float double char _Bool _Complex */ const char* p = strstr(name, "long"); return p && strstr(p + 4, "long") == NULL; } static BOOL is_c_language(dwarf2_parse_context_t* unit_ctx) { return unit_ctx->language == DW_LANG_C || unit_ctx->language == DW_LANG_C89 || unit_ctx->language == DW_LANG_C99; } static BOOL is_cpp_language(dwarf2_parse_context_t* unit_ctx) { return unit_ctx->language == DW_LANG_C_plus_plus; } static struct symt* dwarf2_parse_base_type(dwarf2_debug_info_t* di) { struct attribute name; struct attribute size; struct attribute encoding; enum BasicType bt; BOOL c_language, cpp_language; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); c_language = is_c_language(di->unit_ctx); cpp_language = is_cpp_language(di->unit_ctx); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL; if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = 0; if (!dwarf2_find_attribute(di, DW_AT_encoding, &encoding)) encoding.u.uvalue = DW_ATE_void; switch (encoding.u.uvalue) { case DW_ATE_void: bt = btVoid; break; case DW_ATE_address: bt = btULong; break; case DW_ATE_boolean: bt = btBool; break; case DW_ATE_complex_float: bt = btComplex; break; case DW_ATE_float: bt = btFloat; break; case DW_ATE_signed: bt = ((c_language || cpp_language) && is_long(name.u.string)) ? btLong : btInt; break; case DW_ATE_unsigned: if ((c_language || cpp_language) && is_long(name.u.string)) bt = btULong; else if (cpp_language && !strcmp(name.u.string, "wchar_t")) bt = btWChar; else if (cpp_language && !strcmp(name.u.string, "char8_t")) bt = btChar8; else if (cpp_language && !strcmp(name.u.string, "char16_t")) bt = btChar16; else if (cpp_language && !strcmp(name.u.string, "char32_t")) bt = btChar32; else bt = btUInt; break; /* on Windows, in C, char == signed char, but not in C++ */ case DW_ATE_signed_char: bt = (cpp_language && !strcmp(name.u.string, "signed char")) ? btInt : btChar; break; case DW_ATE_unsigned_char: bt = btUInt; break; case DW_ATE_UTF: bt = (size.u.uvalue == 1) ? btChar8 : (size.u.uvalue == 2 ? btChar16 : btChar32); break; default: bt = btNoType; break; } di->symt = &symt_get_basic(bt, size.u.uvalue)->symt; if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); return di->symt; } static struct symt* dwarf2_parse_typedef(dwarf2_debug_info_t* di) { struct symt* ref_type; struct attribute name; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL; ref_type = dwarf2_lookup_type(di); if (name.u.string) { /* Note: The MS C compiler has tweaks for WCHAR support. * Even if WCHAR is a typedef to wchar_t, wchar_t is emitted as btUInt/2 (it's defined as * unsigned short, so far so good), while WCHAR is emitted as btWChar/2). */ if ((is_c_language(di->unit_ctx) || is_cpp_language(di->unit_ctx)) && !strcmp(name.u.string, "WCHAR")) ref_type = &symt_get_basic(btWChar, 2)->symt; di->symt = &symt_new_typedef(di->unit_ctx->module_ctx->module, ref_type, name.u.string)->symt; } if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); return di->symt; } static struct symt* dwarf2_parse_pointer_type(dwarf2_debug_info_t* di) { struct symt* ref_type; struct attribute size; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = di->unit_ctx->module_ctx->module->cpu->word_size; ref_type = dwarf2_lookup_type(di); di->symt = &symt_new_pointer(di->unit_ctx->module_ctx->module, ref_type, size.u.uvalue)->symt; if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); return di->symt; } static struct symt* dwarf2_parse_subrange_type(dwarf2_debug_info_t* di) { struct symt* ref_type; struct attribute name; struct attribute dummy; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); if (dwarf2_find_attribute(di, DW_AT_name, &name)) FIXME("Found name for subrange %s\n", name.u.string); if (dwarf2_find_attribute(di, DW_AT_byte_size, &dummy)) FIXME("Found byte_size %Iu\n", dummy.u.uvalue); if (dwarf2_find_attribute(di, DW_AT_bit_size, &dummy)) FIXME("Found bit_size %Iu\n", dummy.u.uvalue); /* for now, we don't support the byte_size nor bit_size about the subrange, and pretend the two * types are the same (FIXME) */ ref_type = dwarf2_lookup_type(di); di->symt = ref_type; if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); return di->symt; } static struct symt* dwarf2_parse_array_type(dwarf2_debug_info_t* di) { struct symt* ref_type; struct symt* idx_type = NULL; struct symt* symt = NULL; struct attribute min, max, cnt; dwarf2_debug_info_t* child; unsigned int i, j; const struct vector* children; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); ref_type = dwarf2_lookup_type(di); if (!(children = dwarf2_get_di_children(di))) { /* fake an array with unknown size */ /* FIXME: int4 even on 64bit machines??? */ idx_type = &symt_get_basic(btInt, 4)->symt; min.u.uvalue = 0; cnt.u.uvalue = 0; } else for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); if (child->symt == &symt_get_basic(btNoType, 0)->symt) continue; switch (child->abbrev->tag) { case DW_TAG_subrange_type: idx_type = dwarf2_lookup_type(child); if (!dwarf2_find_attribute(child, DW_AT_lower_bound, &min)) min.u.uvalue = 0; if (dwarf2_find_attribute(child, DW_AT_upper_bound, &max)) cnt.u.uvalue = max.u.uvalue + 1 - min.u.uvalue; else if (!dwarf2_find_attribute(child, DW_AT_count, &cnt)) cnt.u.uvalue = 0; break; case DW_TAG_enumeration_type: symt = dwarf2_parse_enumeration_type(child); if (symt_check_tag(symt, SymTagEnum)) { struct symt_enum* enum_symt = (struct symt_enum*)symt; idx_type = enum_symt->base_type; min.u.uvalue = ~0U; max.u.uvalue = ~0U; for (j = 0; j < enum_symt->vchildren.num_elts; ++j) { struct symt** pc = vector_at(&enum_symt->vchildren, j); if (pc && symt_check_tag(*pc, SymTagData)) { struct symt_data* elt = (struct symt_data*)(*pc); if (elt->u.value.n1.n2.n3.lVal < min.u.uvalue) min.u.uvalue = elt->u.value.n1.n2.n3.lVal; if (elt->u.value.n1.n2.n3.lVal > max.u.uvalue) max.u.uvalue = elt->u.value.n1.n2.n3.lVal; } } } break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", child->abbrev->tag, dwarf2_debug_di(di)); break; } } di->symt = &symt_new_array(di->unit_ctx->module_ctx->module, min.u.uvalue, cnt.u.uvalue, ref_type, idx_type)->symt; return di->symt; } static struct symt* dwarf2_parse_const_type(dwarf2_debug_info_t* di) { struct symt* ref_type; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); ref_type = dwarf2_lookup_type(di); if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); di->symt = ref_type; return ref_type; } static struct symt* dwarf2_parse_volatile_type(dwarf2_debug_info_t* di) { struct symt* ref_type; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); ref_type = dwarf2_lookup_type(di); if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); di->symt = ref_type; return ref_type; } static struct symt* dwarf2_parse_restrict_type(dwarf2_debug_info_t* di) { struct symt* ref_type; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); ref_type = dwarf2_lookup_type(di); if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); di->symt = ref_type; return ref_type; } static struct symt* dwarf2_parse_unspecified_type(dwarf2_debug_info_t* di) { struct attribute name; struct symt* basic; TRACE("%s\n", dwarf2_debug_di(di)); if (di->symt) return di->symt; basic = &symt_get_basic(btVoid, 0)->symt; if (dwarf2_find_attribute(di, DW_AT_name, &name)) /* define the missing type as a typedef to void... */ di->symt = &symt_new_typedef(di->unit_ctx->module_ctx->module, basic, name.u.string)->symt; else /* or use void if it doesn't even have a name */ di->symt = basic; if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); return di->symt; } static struct symt* dwarf2_parse_reference_type(dwarf2_debug_info_t* di) { struct symt* ref_type = NULL; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); ref_type = dwarf2_lookup_type(di); /* FIXME: for now, we hard-wire C++ references to pointers */ di->symt = &symt_new_pointer(di->unit_ctx->module_ctx->module, ref_type, di->unit_ctx->module_ctx->module->cpu->word_size)->symt; if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); return di->symt; } static void dwarf2_parse_udt_member(dwarf2_debug_info_t* di, struct symt_udt* parent) { struct symt* elt_type; struct attribute name; struct attribute bit_size; struct attribute bit_offset; struct location loc; assert(parent); TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL; elt_type = dwarf2_lookup_type(di); if (dwarf2_compute_location_attr(di->unit_ctx, di, DW_AT_data_member_location, &loc, NULL)) { if (loc.kind != loc_absolute) { FIXME("Unexpected offset computation for member %s in %ls!%s\n", name.u.string, di->unit_ctx->module_ctx->module->modulename, parent->hash_elt.name); loc.offset = 0; } else TRACE("found member_location at %s -> %Iu\n", dwarf2_debug_di(di), loc.offset); } else loc.offset = 0; if (!dwarf2_find_attribute(di, DW_AT_bit_size, &bit_size)) bit_size.u.uvalue = 0; if (dwarf2_find_attribute(di, DW_AT_bit_offset, &bit_offset)) { /* FIXME: we should only do this when implementation is LSB (which is * the case on i386 processors) */ struct attribute nbytes; if (!dwarf2_find_attribute(di, DW_AT_byte_size, &nbytes)) { DWORD64 size; nbytes.u.uvalue = symt_get_info(di->unit_ctx->module_ctx->module, elt_type, TI_GET_LENGTH, &size) ? (ULONG_PTR)size : 0; } bit_offset.u.uvalue = nbytes.u.uvalue * 8 - bit_offset.u.uvalue - bit_size.u.uvalue; } else bit_offset.u.uvalue = 0; symt_add_udt_element(di->unit_ctx->module_ctx->module, parent, name.u.string, elt_type, loc.offset, bit_offset.u.uvalue, bit_size.u.uvalue); if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); } static struct symt* dwarf2_parse_subprogram(dwarf2_debug_info_t* di); static struct symt* dwarf2_parse_udt_type(dwarf2_debug_info_t* di, enum UdtKind udt) { struct attribute name; struct attribute size; struct vector* children; dwarf2_debug_info_t*child; unsigned int i; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); /* quirk... FIXME provide real support for anonymous UDTs */ if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = ""; if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = 0; di->symt = &symt_new_udt(di->unit_ctx->module_ctx->module, dwarf2_get_cpp_name(di, name.u.string), size.u.uvalue, udt)->symt; children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); switch (child->abbrev->tag) { case DW_TAG_array_type: dwarf2_parse_array_type(child); break; case DW_TAG_member: /* FIXME: should I follow the sibling stuff ?? */ if (symt_check_tag(di->symt, SymTagUDT)) dwarf2_parse_udt_member(child, (struct symt_udt*)di->symt); break; case DW_TAG_enumeration_type: dwarf2_parse_enumeration_type(child); break; case DW_TAG_subprogram: dwarf2_parse_subprogram(child); break; case DW_TAG_const_type: dwarf2_parse_const_type(child); break; case DW_TAG_volatile_type: dwarf2_parse_volatile_type(child); break; case DW_TAG_pointer_type: dwarf2_parse_pointer_type(child); break; case DW_TAG_subrange_type: dwarf2_parse_subrange_type(child); break; case DW_TAG_structure_type: case DW_TAG_class_type: case DW_TAG_union_type: case DW_TAG_typedef: /* FIXME: we need to handle nested udt definitions */ case DW_TAG_inheritance: case DW_TAG_interface_type: case DW_TAG_template_type_param: case DW_TAG_template_value_param: case DW_TAG_variable: case DW_TAG_imported_declaration: case DW_TAG_ptr_to_member_type: case DW_TAG_GNU_template_template_param: case DW_TAG_GNU_template_parameter_pack: case DW_TAG_GNU_formal_parameter_pack: /* FIXME: some C++ related stuff */ break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", child->abbrev->tag, dwarf2_debug_di(di)); break; } } return di->symt; } static void dwarf2_parse_enumerator(dwarf2_debug_info_t* di, struct symt_enum* parent) { struct attribute name; struct attribute value; TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) return; if (!dwarf2_find_attribute(di, DW_AT_const_value, &value)) value.u.svalue = 0; symt_add_enum_element(di->unit_ctx->module_ctx->module, parent, name.u.string, value.u.svalue); if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); } static struct symt* dwarf2_parse_enumeration_type(dwarf2_debug_info_t* di) { struct attribute name; struct attribute attrtype; dwarf2_debug_info_t*ditype; struct symt* type; struct vector* children; dwarf2_debug_info_t*child; unsigned int i; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL; if (dwarf2_find_attribute(di, DW_AT_type, &attrtype) && (ditype = dwarf2_jump_to_debug_info(&attrtype)) != NULL) type = ditype->symt; else /* no type found for this enumeration, construct it from size */ { struct attribute size; struct symt_basic* basetype; if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = 4; switch (size.u.uvalue) /* FIXME: that's wrong */ { case 1: basetype = symt_get_basic(btInt, 1); break; case 2: basetype = symt_get_basic(btInt, 2); break; default: case 4: basetype = symt_get_basic(btInt, 4); break; } type = &basetype->symt; } di->symt = &symt_new_enum(di->unit_ctx->module_ctx->module, name.u.string, type)->symt; children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); switch (child->abbrev->tag) { case DW_TAG_enumerator: if (symt_check_tag(di->symt, SymTagEnum)) dwarf2_parse_enumerator(child, (struct symt_enum*)di->symt); break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", di->abbrev->tag, dwarf2_debug_di(di)); } } return di->symt; } /* structure used to pass information around when parsing a subprogram */ typedef struct dwarf2_subprogram_s { dwarf2_parse_context_t* ctx; struct symt_function* top_func; struct symt_function* current_func; /* either symt_function* or symt_inlinesite* */ struct symt_block* current_block; BOOL non_computed_variable; struct location frame; } dwarf2_subprogram_t; /****************************************************************** * dwarf2_parse_variable * * Parses any variable (parameter, local/global variable) */ static void dwarf2_parse_variable(dwarf2_subprogram_t* subpgm, dwarf2_debug_info_t* di) { struct symt* param_type; struct attribute name, value; struct location loc; BOOL is_pmt; TRACE("%s\n", dwarf2_debug_di(di)); is_pmt = !subpgm->current_block && di->abbrev->tag == DW_TAG_formal_parameter; param_type = dwarf2_lookup_type(di); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) { /* cannot do much without the name, the functions below won't like it. */ return; } if (dwarf2_compute_location_attr(subpgm->ctx, di, DW_AT_location, &loc, &subpgm->frame)) { struct attribute ext; TRACE("found parameter %s (kind=%d, offset=%Id, reg=%d) at %s\n", debugstr_a(name.u.string), loc.kind, loc.offset, loc.reg, dwarf2_debug_unit_ctx(subpgm->ctx)); switch (loc.kind) { case loc_error: break; case loc_absolute: /* it's a global variable */ if (!dwarf2_find_attribute(di, DW_AT_external, &ext)) ext.u.uvalue = 0; loc.offset += subpgm->ctx->module_ctx->load_offset; if (subpgm->top_func) { if (ext.u.uvalue) WARN("unexpected global inside a function\n"); symt_add_func_local(subpgm->ctx->module_ctx->module, subpgm->current_func, DataIsStaticLocal, &loc, subpgm->current_block, param_type, dwarf2_get_cpp_name(di, name.u.string)); } else { symt_new_global_variable(subpgm->ctx->module_ctx->module, ext.u.uvalue ? NULL : subpgm->ctx->compiland, dwarf2_get_cpp_name(di, name.u.string), !ext.u.uvalue, loc, 0, param_type); } break; default: subpgm->non_computed_variable = TRUE; /* fall through */ case loc_register: case loc_regrel: /* either a pmt/variable relative to frame pointer or * pmt/variable in a register */ if (subpgm->current_func) symt_add_func_local(subpgm->ctx->module_ctx->module, subpgm->current_func, is_pmt ? DataIsParam : DataIsLocal, &loc, subpgm->current_block, param_type, name.u.string); break; } } else if (dwarf2_find_attribute(di, DW_AT_const_value, &value)) { VARIANT v; switch (value.form) { case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_data4: case DW_FORM_udata: case DW_FORM_addr: V_VT(&v) = VT_UI4; V_UI4(&v) = value.u.uvalue; break; case DW_FORM_data8: case DW_FORM_sec_offset: V_VT(&v) = VT_UI8; V_UI8(&v) = value.u.lluvalue; break; case DW_FORM_sdata: V_VT(&v) = VT_I4; V_I4(&v) = value.u.svalue; break; case DW_FORM_strp: case DW_FORM_string: /* FIXME: native doesn't report const strings from here !! * however, the value of the string is in the code somewhere */ V_VT(&v) = VT_BYREF; V_BYREF(&v) = pool_strdup(&subpgm->ctx->module_ctx->module->pool, value.u.string); break; case DW_FORM_block: case DW_FORM_block1: case DW_FORM_block2: case DW_FORM_block4: case DW_FORM_exprloc: V_VT(&v) = VT_I4; switch (value.u.block.size) { case 1: V_I4(&v) = *(BYTE*)value.u.block.ptr; break; case 2: V_I4(&v) = *(USHORT*)value.u.block.ptr; break; case 4: V_I4(&v) = *(DWORD*)value.u.block.ptr; break; default: V_VT(&v) = VT_BYREF; V_BYREF(&v) = pool_alloc(&subpgm->ctx->module_ctx->module->pool, value.u.block.size); memcpy(V_BYREF(&v), value.u.block.ptr, value.u.block.size); } break; default: FIXME("Unsupported form for const value %s (%Ix)\n", debugstr_a(name.u.string), value.form); V_VT(&v) = VT_EMPTY; } if (subpgm->current_func) { if (is_pmt) WARN("Constant parameter %s reported as local variable in function '%s'\n", debugstr_a(name.u.string), subpgm->current_func->hash_elt.name); di->symt = &symt_add_func_constant(subpgm->ctx->module_ctx->module, subpgm->current_func, subpgm->current_block, param_type, name.u.string, &v)->symt; } else di->symt = &symt_new_constant(subpgm->ctx->module_ctx->module, subpgm->ctx->compiland, name.u.string, param_type, &v)->symt; } else { if (subpgm->current_func) { /* local variable has been optimized away... report anyway */ loc.kind = loc_error; loc.reg = loc_err_no_location; symt_add_func_local(subpgm->ctx->module_ctx->module, subpgm->current_func, is_pmt ? DataIsParam : DataIsLocal, &loc, subpgm->current_block, param_type, name.u.string); } else { struct attribute is_decl; /* only warn when di doesn't represent a declaration */ if (!dwarf2_find_attribute(di, DW_AT_declaration, &is_decl) || !is_decl.u.uvalue || is_decl.gotten_from != attr_direct) WARN("dropping global variable %s which has been optimized away\n", debugstr_a(name.u.string)); } } if (is_pmt && subpgm->current_func && symt_check_tag(subpgm->current_func->type, SymTagFunctionType)) symt_add_function_signature_parameter(subpgm->ctx->module_ctx->module, (struct symt_function_signature*)subpgm->current_func->type, param_type); if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n"); } static void dwarf2_parse_subprogram_label(dwarf2_subprogram_t* subpgm, const dwarf2_debug_info_t* di) { struct attribute name; struct attribute low_pc; struct location loc; TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL; if (dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc)) { loc.kind = loc_absolute; loc.offset = subpgm->ctx->module_ctx->load_offset + low_pc.u.uvalue - subpgm->top_func->ranges[0].low; symt_add_function_point(subpgm->ctx->module_ctx->module, subpgm->top_func, SymTagLabel, &loc, name.u.string); } else WARN("Label %s inside function %s doesn't have an address... don't register it\n", name.u.string, subpgm->top_func->hash_elt.name); } static void dwarf2_parse_subprogram_block(dwarf2_subprogram_t* subpgm, dwarf2_debug_info_t* di); static struct symt* dwarf2_parse_subroutine_type(dwarf2_debug_info_t* di); static void dwarf2_parse_inlined_subroutine(dwarf2_subprogram_t* subpgm, dwarf2_debug_info_t* di) { struct attribute name; struct symt* ret_type; struct symt_function_signature* sig_type; struct symt_function* inlined; struct vector* children; dwarf2_debug_info_t*child; unsigned int i; unsigned num_ranges; TRACE("%s\n", dwarf2_debug_di(di)); if (!(num_ranges = dwarf2_get_num_ranges(di))) { WARN("cannot read ranges\n"); return; } if (!dwarf2_find_attribute(di, DW_AT_name, &name)) { FIXME("No name for function... dropping function\n"); return; } ret_type = dwarf2_lookup_type(di); /* FIXME: assuming C source code */ sig_type = symt_new_function_signature(subpgm->ctx->module_ctx->module, ret_type, CV_CALL_FAR_C); inlined = symt_new_inlinesite(subpgm->ctx->module_ctx->module, subpgm->top_func, subpgm->current_block ? &subpgm->current_block->symt : &subpgm->current_func->symt, dwarf2_get_cpp_name(di, name.u.string), &sig_type->symt, num_ranges); subpgm->current_func = (struct symt_function*)inlined; subpgm->current_block = NULL; if (!dwarf2_fill_ranges(di, inlined->ranges, num_ranges)) { FIXME("Unexpected situation\n"); inlined->num_ranges = 0; } children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); switch (child->abbrev->tag) { case DW_TAG_formal_parameter: case DW_TAG_variable: dwarf2_parse_variable(subpgm, child); break; case DW_TAG_lexical_block: dwarf2_parse_subprogram_block(subpgm, child); break; case DW_TAG_inlined_subroutine: dwarf2_parse_inlined_subroutine(subpgm, child); break; case DW_TAG_label: dwarf2_parse_subprogram_label(subpgm, child); break; case DW_TAG_GNU_call_site: /* this isn't properly supported by dbghelp interface. skip it for now */ break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", child->abbrev->tag, dwarf2_debug_di(di)); } } subpgm->current_block = symt_check_tag(subpgm->current_func->container, SymTagBlock) ? (struct symt_block*)subpgm->current_func->container : NULL; subpgm->current_func = (struct symt_function*)symt_get_upper_inlined(subpgm->current_func); } static void dwarf2_parse_subprogram_block(dwarf2_subprogram_t* subpgm, dwarf2_debug_info_t* di) { unsigned int num_ranges; struct vector* children; dwarf2_debug_info_t*child; unsigned int i; TRACE("%s\n", dwarf2_debug_di(di)); num_ranges = dwarf2_get_num_ranges(di); if (!num_ranges) { WARN("no ranges\n"); return; } /* Dwarf tends to keep the structure of the C/C++ program, and emits DW_TAG_lexical_block * for every block the in source program. * With inlining and other optimizations, code for a block no longer lies in a contiguous * chunk of memory. It's hence described with (potentially) multiple chunks of memory. * Then each variable of each block is attached to its block. (A) * * PDB on the other hand no longer emits block information, and merge variable information * at function level (actually function and each inline site). * For example, if several variables of same name exist in different blocks of a function, * only one entry for that name will exist. The information stored in (A) will point * to the correct instance as defined by C/C++ scoping rules. * * (A) in all cases, there is information telling for each address of the function if a * variable is accessible, and if so, how to get its value. * * DbgHelp only exposes a contiguous chunk of memory for a block. * * => Store internally all the ranges of addresses in a block, but only expose the size * of the first chunk of memory. * Otherwise, it would break the rule: blocks' chunks don't overlap. * Note: This could mislead some programs using the blocks' address and size information. * That's very unlikely to happen (most will use the APIs from DbgHelp, which will * hide this information to the caller). */ subpgm->current_block = symt_open_func_block(subpgm->ctx->module_ctx->module, subpgm->current_func, subpgm->current_block, num_ranges); if (!dwarf2_fill_ranges(di, subpgm->current_block->ranges, num_ranges)) { FIXME("Unexpected situation\n"); subpgm->current_block->num_ranges = 0; } children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); switch (child->abbrev->tag) { case DW_TAG_inlined_subroutine: dwarf2_parse_inlined_subroutine(subpgm, child); break; case DW_TAG_variable: dwarf2_parse_variable(subpgm, child); break; case DW_TAG_pointer_type: dwarf2_parse_pointer_type(child); break; case DW_TAG_subroutine_type: dwarf2_parse_subroutine_type(child); break; case DW_TAG_const_type: dwarf2_parse_const_type(child); break; case DW_TAG_lexical_block: dwarf2_parse_subprogram_block(subpgm, child); break; case DW_TAG_subprogram: /* FIXME: likely a declaration (to be checked) * skip it for now */ break; case DW_TAG_formal_parameter: /* FIXME: likely elements for exception handling (GCC flavor) * Skip it for now */ break; case DW_TAG_imported_module: /* C++ stuff to be silenced (for now) */ break; case DW_TAG_GNU_call_site: /* this isn't properly supported by dbghelp interface. skip it for now */ break; case DW_TAG_label: dwarf2_parse_subprogram_label(subpgm, child); break; case DW_TAG_class_type: case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_enumeration_type: case DW_TAG_typedef: /* the type referred to will be loaded when we need it, so skip it */ break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", child->abbrev->tag, dwarf2_debug_di(di)); } } subpgm->current_block = symt_close_func_block(subpgm->ctx->module_ctx->module, subpgm->current_func, subpgm->current_block); } static struct symt* dwarf2_parse_subprogram(dwarf2_debug_info_t* di) { struct attribute name; struct addr_range* addr_ranges; unsigned num_addr_ranges; struct attribute is_decl; struct attribute inline_flags; struct symt* ret_type; struct symt_function_signature* sig_type; dwarf2_subprogram_t subpgm; struct vector* children; dwarf2_debug_info_t* child; unsigned int i; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); if (!dwarf2_find_attribute(di, DW_AT_name, &name)) { WARN("No name for function... dropping function\n"); return NULL; } /* if it's an abstract representation of an inline function, there should be * a concrete object that we'll handle */ if (dwarf2_find_attribute(di, DW_AT_inline, &inline_flags) && inline_flags.gotten_from == attr_direct && inline_flags.u.uvalue != DW_INL_not_inlined) { TRACE("Function %s declared as inlined (%Id)... skipping\n", debugstr_a(name.u.string), inline_flags.u.uvalue); return NULL; } if (dwarf2_find_attribute(di, DW_AT_declaration, &is_decl) && is_decl.u.uvalue && is_decl.gotten_from == attr_direct) { /* it's a real declaration, skip it */ return NULL; } if ((addr_ranges = dwarf2_get_ranges(di, &num_addr_ranges)) == NULL) { WARN("cannot get range for %s\n", debugstr_a(name.u.string)); return NULL; } /* As functions (defined as inline assembly) get debug info with dwarf * (not the case for stabs), we just drop Wine's thunks here... * Actual thunks will be created in elf_module from the symbol table */ if (elf_is_in_thunk_area(di->unit_ctx->module_ctx->load_offset + addr_ranges[0].low, di->unit_ctx->module_ctx->thunks) >= 0) { free(addr_ranges); return NULL; } ret_type = dwarf2_lookup_type(di); /* FIXME: assuming C source code */ sig_type = symt_new_function_signature(di->unit_ctx->module_ctx->module, ret_type, CV_CALL_FAR_C); subpgm.top_func = symt_new_function(di->unit_ctx->module_ctx->module, di->unit_ctx->compiland, dwarf2_get_cpp_name(di, name.u.string), addr_ranges[0].low, addr_ranges[0].high - addr_ranges[0].low, &sig_type->symt); if (num_addr_ranges > 1) WARN("Function %s has multiple address ranges, only using the first one\n", name.u.string); free(addr_ranges); subpgm.current_func = subpgm.top_func; di->symt = &subpgm.top_func->symt; subpgm.ctx = di->unit_ctx; if (!dwarf2_compute_location_attr(di->unit_ctx, di, DW_AT_frame_base, &subpgm.frame, NULL)) { /* on stack !! */ subpgm.frame.kind = loc_regrel; subpgm.frame.reg = di->unit_ctx->module_ctx->module->cpu->frame_regno; subpgm.frame.offset = 0; } subpgm.non_computed_variable = FALSE; subpgm.current_block = NULL; children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); switch (child->abbrev->tag) { case DW_TAG_variable: case DW_TAG_formal_parameter: dwarf2_parse_variable(&subpgm, child); break; case DW_TAG_lexical_block: dwarf2_parse_subprogram_block(&subpgm, child); break; case DW_TAG_inlined_subroutine: dwarf2_parse_inlined_subroutine(&subpgm, child); break; case DW_TAG_pointer_type: dwarf2_parse_pointer_type(child); break; case DW_TAG_const_type: dwarf2_parse_const_type(child); break; case DW_TAG_subprogram: /* FIXME: likely a declaration (to be checked) * skip it for now */ break; case DW_TAG_label: dwarf2_parse_subprogram_label(&subpgm, child); break; case DW_TAG_class_type: case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_enumeration_type: case DW_TAG_typedef: /* the type referred to will be loaded when we need it, so skip it */ break; case DW_TAG_unspecified_parameters: case DW_TAG_template_type_param: case DW_TAG_template_value_param: case DW_TAG_GNU_call_site: case DW_TAG_GNU_template_parameter_pack: case DW_TAG_GNU_formal_parameter_pack: /* FIXME: no support in dbghelp's internals so far */ break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", child->abbrev->tag, dwarf2_debug_di(di)); } } if (subpgm.non_computed_variable || subpgm.frame.kind >= loc_user) { symt_add_function_point(di->unit_ctx->module_ctx->module, subpgm.top_func, SymTagCustom, &subpgm.frame, NULL); } return di->symt; } static struct symt* dwarf2_parse_subroutine_type(dwarf2_debug_info_t* di) { struct symt* ret_type; struct symt_function_signature* sig_type; struct vector* children; dwarf2_debug_info_t* child; unsigned int i; if (di->symt) return di->symt; TRACE("%s\n", dwarf2_debug_di(di)); ret_type = dwarf2_lookup_type(di); /* FIXME: assuming C source code */ sig_type = symt_new_function_signature(di->unit_ctx->module_ctx->module, ret_type, CV_CALL_FAR_C); children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); switch (child->abbrev->tag) { case DW_TAG_formal_parameter: symt_add_function_signature_parameter(di->unit_ctx->module_ctx->module, sig_type, dwarf2_lookup_type(child)); break; case DW_TAG_unspecified_parameters: WARN("Unsupported unspecified parameters\n"); break; } } return di->symt = &sig_type->symt; } static void dwarf2_parse_namespace(dwarf2_debug_info_t* di) { struct vector* children; dwarf2_debug_info_t* child; unsigned int i; if (di->symt) return; TRACE("%s\n", dwarf2_debug_di(di)); di->symt = &symt_get_basic(btVoid, 0)->symt; children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); dwarf2_load_one_entry(child); } } static void dwarf2_parse_imported_unit(dwarf2_debug_info_t* di) { struct attribute imp; if (di->symt) return; TRACE("%s\n", dwarf2_debug_di(di)); if (dwarf2_find_attribute(di, DW_AT_import, &imp)) { dwarf2_debug_info_t* jmp = dwarf2_jump_to_debug_info(&imp); if (jmp) di->symt = jmp->symt; else FIXME("Couldn't load imported CU\n"); } else FIXME("Couldn't find import attribute\n"); } static void dwarf2_load_one_entry(dwarf2_debug_info_t* di) { switch (di->abbrev->tag) { case DW_TAG_typedef: dwarf2_parse_typedef(di); break; case DW_TAG_base_type: dwarf2_parse_base_type(di); break; case DW_TAG_pointer_type: dwarf2_parse_pointer_type(di); break; case DW_TAG_class_type: dwarf2_parse_udt_type(di, UdtClass); break; case DW_TAG_structure_type: dwarf2_parse_udt_type(di, UdtStruct); break; case DW_TAG_union_type: dwarf2_parse_udt_type(di, UdtUnion); break; case DW_TAG_array_type: dwarf2_parse_array_type(di); break; case DW_TAG_const_type: dwarf2_parse_const_type(di); break; case DW_TAG_volatile_type: dwarf2_parse_volatile_type(di); break; case DW_TAG_restrict_type: dwarf2_parse_restrict_type(di); break; case DW_TAG_unspecified_type: dwarf2_parse_unspecified_type(di); break; case DW_TAG_reference_type: case DW_TAG_rvalue_reference_type: dwarf2_parse_reference_type(di); break; case DW_TAG_enumeration_type: dwarf2_parse_enumeration_type(di); break; case DW_TAG_subprogram: dwarf2_parse_subprogram(di); break; case DW_TAG_subroutine_type: dwarf2_parse_subroutine_type(di); break; case DW_TAG_variable: { dwarf2_subprogram_t subpgm; subpgm.ctx = di->unit_ctx; subpgm.top_func = subpgm.current_func = NULL; subpgm.current_block = NULL; subpgm.frame.kind = loc_absolute; subpgm.frame.offset = 0; subpgm.frame.reg = Wine_DW_no_register; dwarf2_parse_variable(&subpgm, di); } break; case DW_TAG_namespace: dwarf2_parse_namespace(di); break; case DW_TAG_subrange_type: dwarf2_parse_subrange_type(di); break; case DW_TAG_imported_unit: dwarf2_parse_imported_unit(di); break; /* keep it silent until we need DW_OP_call_xxx support */ case DW_TAG_dwarf_procedure: /* silence a couple of non-C language defines (mainly C++ but others too) */ case DW_TAG_imported_module: case DW_TAG_imported_declaration: case DW_TAG_interface_type: case DW_TAG_module: case DW_TAG_ptr_to_member_type: break; default: FIXME("Unhandled Tag type 0x%Ix at %s\n", di->abbrev->tag, dwarf2_debug_di(di)); } } static void dwarf2_set_line_number(struct module* module, ULONG_PTR address, const struct vector* v, unsigned file, unsigned line) { struct symt_function* func; struct symt_function* inlined; struct symt_ht* symt; unsigned* psrc; if (!file || !(psrc = vector_at(v, file - 1))) return; TRACE("%s %Ix %s %u\n", debugstr_w(module->modulename), address, debugstr_a(source_get(module, *psrc)), line); symt = symt_find_symbol_at(module, address); if (symt_check_tag(&symt->symt, SymTagFunction)) { func = (struct symt_function*)symt; for (inlined = func->next_inlinesite; inlined; inlined = inlined->next_inlinesite) { int i; for (i = 0; i < inlined->num_ranges; ++i) { if (inlined->ranges[i].low <= address && address < inlined->ranges[i].high) { symt_add_func_line(module, inlined, *psrc, line, address); return; /* only add to lowest matching inline site */ } } } symt_add_func_line(module, func, *psrc, line, address); } } static BOOL dwarf2_parse_line_numbers(dwarf2_parse_context_t* ctx, const char* compile_dir, ULONG_PTR offset) { dwarf2_traverse_context_t traverse; ULONG_PTR length; unsigned insn_size, version, default_stmt; unsigned line_range, opcode_base; int line_base; unsigned char offset_size; const unsigned char* opcode_len; struct vector dirs; struct vector files; const char** p; /* section with line numbers stripped */ if (ctx->module_ctx->sections[section_line].address == IMAGE_NO_MAP) return FALSE; if (offset + 4 > ctx->module_ctx->sections[section_line].size) { WARN("out of bounds offset\n"); return FALSE; } traverse.data = ctx->module_ctx->sections[section_line].address + offset; traverse.end_data = ctx->module_ctx->sections[section_line].address + ctx->module_ctx->sections[section_line].size; length = dwarf2_parse_3264(&traverse, &offset_size); if (offset_size != ctx->head.offset_size) { WARN("Mismatch in 32/64 bit format\n"); return FALSE; } traverse.end_data = traverse.data + length; if (traverse.end_data > ctx->module_ctx->sections[section_line].address + ctx->module_ctx->sections[section_line].size) { WARN("out of bounds header\n"); return FALSE; } version = dwarf2_parse_u2(&traverse); dwarf2_parse_offset(&traverse, offset_size); /* header_len */ insn_size = dwarf2_parse_byte(&traverse); if (version >= 4) dwarf2_parse_byte(&traverse); /* max_operations_per_instructions */ default_stmt = dwarf2_parse_byte(&traverse); line_base = (signed char)dwarf2_parse_byte(&traverse); line_range = dwarf2_parse_byte(&traverse); opcode_base = dwarf2_parse_byte(&traverse); opcode_len = traverse.data; traverse.data += opcode_base - 1; vector_init(&dirs, sizeof(const char*), 4); p = vector_add(&dirs, &ctx->pool); *p = compile_dir ? compile_dir : "."; while (traverse.data < traverse.end_data && *traverse.data) { const char* rel = (const char*)traverse.data; unsigned rellen = strlen(rel); TRACE("Got include %s\n", debugstr_a(rel)); traverse.data += rellen + 1; p = vector_add(&dirs, &ctx->pool); if (*rel == '/' || !compile_dir || !*compile_dir) *p = rel; else { /* include directory relative to compile directory */ unsigned baselen = strlen(compile_dir); char* tmp = pool_alloc(&ctx->pool, baselen + 1 + rellen + 1); strcpy(tmp, compile_dir); if (baselen && tmp[baselen - 1] != '/') tmp[baselen++] = '/'; strcpy(&tmp[baselen], rel); *p = tmp; } } traverse.data++; vector_init(&files, sizeof(unsigned), 16); while (traverse.data < traverse.end_data && *traverse.data) { unsigned int dir_index, mod_time; const char* name; const char* dir; unsigned* psrc; name = (const char*)traverse.data; traverse.data += strlen(name) + 1; dir_index = dwarf2_leb128_as_unsigned(&traverse); mod_time = dwarf2_leb128_as_unsigned(&traverse); length = dwarf2_leb128_as_unsigned(&traverse); dir = *(const char**)vector_at(&dirs, dir_index); TRACE("Got file %s/%s (%u,%Iu)\n", debugstr_a(dir), debugstr_a(name), mod_time, length); psrc = vector_add(&files, &ctx->pool); *psrc = source_new(ctx->module_ctx->module, dir, name); } traverse.data++; while (traverse.data < traverse.end_data && *traverse.data) { ULONG_PTR address = 0; unsigned file = 1; unsigned line = 1; unsigned is_stmt = default_stmt; BOOL end_sequence = FALSE; unsigned opcode, extopcode, i; while (!end_sequence) { opcode = dwarf2_parse_byte(&traverse); TRACE("Got opcode %x\n", opcode); if (opcode >= opcode_base) { unsigned delta = opcode - opcode_base; address += (delta / line_range) * insn_size; line += line_base + (delta % line_range); dwarf2_set_line_number(ctx->module_ctx->module, address, &files, file, line); } else { switch (opcode) { case DW_LNS_copy: dwarf2_set_line_number(ctx->module_ctx->module, address, &files, file, line); break; case DW_LNS_advance_pc: address += insn_size * dwarf2_leb128_as_unsigned(&traverse); break; case DW_LNS_advance_line: line += dwarf2_leb128_as_signed(&traverse); break; case DW_LNS_set_file: file = dwarf2_leb128_as_unsigned(&traverse); break; case DW_LNS_set_column: dwarf2_leb128_as_unsigned(&traverse); break; case DW_LNS_negate_stmt: is_stmt = !is_stmt; break; case DW_LNS_set_basic_block: break; case DW_LNS_const_add_pc: address += ((255 - opcode_base) / line_range) * insn_size; break; case DW_LNS_fixed_advance_pc: address += dwarf2_parse_u2(&traverse); break; case DW_LNS_extended_op: dwarf2_leb128_as_unsigned(&traverse); extopcode = dwarf2_parse_byte(&traverse); switch (extopcode) { case DW_LNE_end_sequence: dwarf2_set_line_number(ctx->module_ctx->module, address, &files, file, line); end_sequence = TRUE; break; case DW_LNE_set_address: address = ctx->module_ctx->load_offset + dwarf2_parse_addr_head(&traverse, &ctx->head); break; case DW_LNE_define_file: FIXME("not handled define file %s\n", debugstr_a((char *)traverse.data)); traverse.data += strlen((const char *)traverse.data) + 1; dwarf2_leb128_as_unsigned(&traverse); dwarf2_leb128_as_unsigned(&traverse); dwarf2_leb128_as_unsigned(&traverse); break; case DW_LNE_set_discriminator: { unsigned descr; descr = dwarf2_leb128_as_unsigned(&traverse); WARN("not handled discriminator %x\n", descr); } break; default: FIXME("Unsupported extended opcode %x\n", extopcode); break; } break; default: WARN("Unsupported opcode %x\n", opcode); for (i = 0; i < opcode_len[opcode]; i++) dwarf2_leb128_as_unsigned(&traverse); break; } } } } return TRUE; } unsigned dwarf2_cache_cuhead(struct dwarf2_module_info_s* module, struct symt_compiland* c, const dwarf2_cuhead_t* head) { dwarf2_cuhead_t* ah; unsigned i; for (i = 0; i < module->num_cuheads; ++i) { if (memcmp(module->cuheads[i], head, sizeof(*head)) == 0) { c->user = module->cuheads[i]; return TRUE; } } if (!(ah = pool_alloc(&c->container->module->pool, sizeof(*head)))) return FALSE; memcpy(ah, head, sizeof(*head)); module->cuheads = realloc(module->cuheads, ++module->num_cuheads * sizeof(head)); module->cuheads[module->num_cuheads - 1] = ah; c->user = ah; return TRUE; } static dwarf2_parse_context_t* dwarf2_locate_cu(dwarf2_parse_module_context_t* module_ctx, ULONG_PTR ref) { unsigned i; dwarf2_parse_context_t* ctx; const BYTE* where; for (i = 0; i < module_ctx->unit_contexts.num_elts; ++i) { ctx = vector_at(&module_ctx->unit_contexts, i); where = module_ctx->sections[ctx->section].address + ref; if (where >= ctx->traverse_DIE.data && where < ctx->traverse_DIE.end_data) return ctx; } FIXME("Couldn't find ref 0x%Ix inside sect\n", ref); return NULL; } static BOOL dwarf2_parse_compilation_unit_head(dwarf2_parse_context_t* ctx, dwarf2_traverse_context_t* mod_ctx) { dwarf2_traverse_context_t abbrev_ctx; const unsigned char* comp_unit_start = mod_ctx->data; ULONG_PTR cu_length; ULONG_PTR cu_abbrev_offset; /* FIXME this is a temporary configuration while adding support for dwarf3&4 bits */ static LONG max_supported_dwarf_version = 0; cu_length = dwarf2_parse_3264(mod_ctx, &ctx->head.offset_size); ctx->traverse_DIE.data = mod_ctx->data; ctx->traverse_DIE.end_data = mod_ctx->data + cu_length; mod_ctx->data += cu_length; ctx->head.version = dwarf2_parse_u2(&ctx->traverse_DIE); cu_abbrev_offset = dwarf2_parse_offset(&ctx->traverse_DIE, ctx->head.offset_size); ctx->head.word_size = dwarf2_parse_byte(&ctx->traverse_DIE); ctx->status = UNIT_ERROR; TRACE("Compilation Unit Header found at 0x%x:\n", (int)(comp_unit_start - ctx->module_ctx->sections[section_debug].address)); TRACE("- length: %Iu\n", cu_length); TRACE("- version: %u\n", ctx->head.version); TRACE("- abbrev_offset: %Iu\n", cu_abbrev_offset); TRACE("- word_size: %u\n", ctx->head.word_size); TRACE("- offset_size: %u\n", ctx->head.offset_size); if (ctx->head.version >= 2) ctx->module_ctx->cu_versions |= 1 << (ctx->head.version - 2); if (max_supported_dwarf_version == 0) { char* env = getenv("DBGHELP_DWARF_VERSION"); LONG v = env ? atol(env) : 4; max_supported_dwarf_version = (v >= 2 && v <= 4) ? v : 4; } if (ctx->head.version < 2 || ctx->head.version > max_supported_dwarf_version) { WARN("DWARF version %d isn't supported. Wine dbghelp only supports DWARF 2 up to %lu.\n", ctx->head.version, max_supported_dwarf_version); return FALSE; } pool_init(&ctx->pool, 65536); ctx->section = section_debug; ctx->ref_offset = comp_unit_start - ctx->module_ctx->sections[section_debug].address; ctx->cpp_name = NULL; ctx->status = UNIT_NOTLOADED; abbrev_ctx.data = ctx->module_ctx->sections[section_abbrev].address + cu_abbrev_offset; abbrev_ctx.end_data = ctx->module_ctx->sections[section_abbrev].address + ctx->module_ctx->sections[section_abbrev].size; dwarf2_parse_abbrev_set(&abbrev_ctx, &ctx->abbrev_table, &ctx->pool); sparse_array_init(&ctx->debug_info_table, sizeof(dwarf2_debug_info_t), 128); return TRUE; } static BOOL dwarf2_parse_compilation_unit(dwarf2_parse_context_t* ctx) { dwarf2_debug_info_t* di; dwarf2_traverse_context_t cu_ctx = ctx->traverse_DIE; BOOL ret = FALSE; switch (ctx->status) { case UNIT_ERROR: return FALSE; case UNIT_BEINGLOADED: FIXME("Circular deps on CU\n"); /* fall through */ case UNIT_LOADED: case UNIT_LOADED_FAIL: return TRUE; case UNIT_NOTLOADED: break; } ctx->status = UNIT_BEINGLOADED; if (dwarf2_read_one_debug_info(ctx, &cu_ctx, NULL, &di)) { if (di->abbrev->tag == DW_TAG_compile_unit || di->abbrev->tag == DW_TAG_partial_unit) { struct attribute name; struct vector* children; dwarf2_debug_info_t* child = NULL; unsigned int i; struct attribute stmt_list, low_pc; struct attribute comp_dir; struct attribute language; if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL; /* get working directory of current compilation unit */ if (!dwarf2_find_attribute(di, DW_AT_comp_dir, &comp_dir)) comp_dir.u.string = NULL; if (!dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc)) low_pc.u.uvalue = 0; if (!dwarf2_find_attribute(di, DW_AT_language, &language)) language.u.uvalue = DW_LANG_C; ctx->language = language.u.uvalue; ctx->compiland = symt_new_compiland(ctx->module_ctx->module, source_new(ctx->module_ctx->module, comp_dir.u.string, name.u.string)); ctx->compiland->address = ctx->module_ctx->load_offset + low_pc.u.uvalue; dwarf2_cache_cuhead(ctx->module_ctx->module->format_info[DFI_DWARF]->u.dwarf2_info, ctx->compiland, &ctx->head); di->symt = &ctx->compiland->symt; children = dwarf2_get_di_children(di); if (children) for (i = 0; i < vector_length(children); i++) { child = *(dwarf2_debug_info_t**)vector_at(children, i); dwarf2_load_one_entry(child); } if (dwarf2_find_attribute(di, DW_AT_stmt_list, &stmt_list)) { if (dwarf2_parse_line_numbers(ctx, comp_dir.u.string, stmt_list.u.uvalue)) ctx->module_ctx->module->module.LineNumbers = TRUE; } ctx->status = UNIT_LOADED; ret = TRUE; } else FIXME("Should have a compilation unit here %Iu\n", di->abbrev->tag); } if (ctx->status == UNIT_BEINGLOADED) ctx->status = UNIT_LOADED_FAIL; return ret; } static BOOL dwarf2_lookup_loclist(const struct module_format* modfmt, const dwarf2_cuhead_t* head, const BYTE* start, ULONG_PTR ip, dwarf2_traverse_context_t* lctx) { DWORD_PTR beg, end; const BYTE* ptr = start; DWORD len; while (ptr < modfmt->u.dwarf2_info->debug_loc.address + modfmt->u.dwarf2_info->debug_loc.size) { beg = dwarf2_get_addr(ptr, head->word_size); ptr += head->word_size; end = dwarf2_get_addr(ptr, head->word_size); ptr += head->word_size; if (!beg && !end) break; len = dwarf2_get_u2(ptr); ptr += 2; if (beg <= ip && ip < end) { lctx->data = ptr; lctx->end_data = ptr + len; return TRUE; } ptr += len; } WARN("Couldn't find ip in location list\n"); return FALSE; } static const dwarf2_cuhead_t* get_cuhead_from_func(const struct symt_function* func) { if (symt_check_tag(&func->symt, SymTagInlineSite)) func = symt_get_function_from_inlined((struct symt_function*)func); if (symt_check_tag(&func->symt, SymTagFunction) && symt_check_tag(func->container, SymTagCompiland)) { struct symt_compiland* c = (struct symt_compiland*)func->container; return (const dwarf2_cuhead_t*)c->user; } FIXME("Should have a compilation unit head\n"); return NULL; } static enum location_error compute_call_frame_cfa(struct module* module, ULONG_PTR ip, struct location* frame); static enum location_error loc_compute_frame(struct process* pcs, const struct module_format* modfmt, const struct symt_function* func, DWORD_PTR ip, const dwarf2_cuhead_t* head, struct location* frame) { struct symt** psym = NULL; struct location* pframe; dwarf2_traverse_context_t lctx; enum location_error err; unsigned int i; for (i=0; ivchildren); i++) { psym = vector_at(&func->vchildren, i); if (psym && symt_check_tag(*psym, SymTagCustom)) { pframe = &((struct symt_hierarchy_point*)*psym)->loc; /* First, recompute the frame information, if needed */ switch (pframe->kind) { case loc_regrel: case loc_register: *frame = *pframe; break; case loc_dwarf2_location_list: WARN("Searching loclist for %s\n", debugstr_a(func->hash_elt.name)); if (!dwarf2_lookup_loclist(modfmt, head, modfmt->u.dwarf2_info->debug_loc.address + pframe->offset, ip, &lctx)) return loc_err_out_of_scope; if ((err = compute_location(modfmt->module, head, &lctx, frame, pcs->handle, NULL)) < 0) return err; if (frame->kind >= loc_user) { WARN("Couldn't compute runtime frame location\n"); return loc_err_too_complex; } break; case loc_dwarf2_frame_cfa: err = compute_call_frame_cfa(modfmt->module, ip + ((struct symt_compiland*)func->container)->address, frame); if (err < 0) return err; break; default: WARN("Unsupported frame kind %d\n", pframe->kind); return loc_err_internal; } return 0; } } WARN("Couldn't find Custom function point, whilst location list offset is searched\n"); return loc_err_internal; } enum reg_rule { RULE_UNSET, /* not set at all */ RULE_UNDEFINED, /* undefined value */ RULE_SAME, /* same value as previous frame */ RULE_CFA_OFFSET, /* stored at cfa offset */ RULE_OTHER_REG, /* stored in other register */ RULE_EXPRESSION, /* address specified by expression */ RULE_VAL_EXPRESSION /* value specified by expression */ }; /* make it large enough for all CPUs */ #define NB_FRAME_REGS 64 #define MAX_SAVED_STATES 16 struct frame_state { ULONG_PTR cfa_offset; unsigned char cfa_reg; enum reg_rule cfa_rule; enum reg_rule rules[NB_FRAME_REGS]; ULONG_PTR regs[NB_FRAME_REGS]; }; struct frame_info { ULONG_PTR ip; ULONG_PTR code_align; LONG_PTR data_align; unsigned char retaddr_reg; unsigned char fde_encoding; unsigned char lsda_encoding; unsigned char signal_frame; unsigned char aug_z_format; unsigned char state_sp; struct frame_state state; struct frame_state state_stack[MAX_SAVED_STATES]; }; static ULONG_PTR dwarf2_parse_augmentation_ptr(dwarf2_traverse_context_t* ctx, unsigned char encoding, unsigned char word_size) { ULONG_PTR base; if (encoding == DW_EH_PE_omit) return 0; switch (encoding & 0xf0) { case DW_EH_PE_abs: base = 0; break; case DW_EH_PE_pcrel: base = (ULONG_PTR)ctx->data; break; default: FIXME("unsupported encoding %02x\n", encoding); return 0; } switch (encoding & 0x0f) { case DW_EH_PE_native: return base + dwarf2_parse_addr(ctx, word_size); case DW_EH_PE_leb128: return base + dwarf2_leb128_as_unsigned(ctx); case DW_EH_PE_data2: return base + dwarf2_parse_u2(ctx); case DW_EH_PE_data4: return base + dwarf2_parse_u4(ctx); case DW_EH_PE_data8: return base + dwarf2_parse_u8(ctx); case DW_EH_PE_signed|DW_EH_PE_leb128: return base + dwarf2_leb128_as_signed(ctx); case DW_EH_PE_signed|DW_EH_PE_data2: return base + (signed short)dwarf2_parse_u2(ctx); case DW_EH_PE_signed|DW_EH_PE_data4: return base + (signed int)dwarf2_parse_u4(ctx); case DW_EH_PE_signed|DW_EH_PE_data8: return base + (LONG64)dwarf2_parse_u8(ctx); default: FIXME("unsupported encoding %02x\n", encoding); return 0; } } static BOOL parse_cie_details(dwarf2_traverse_context_t* ctx, struct frame_info* info, unsigned char word_size) { unsigned char version; const char* augmentation; const unsigned char* end; ULONG_PTR len; memset(info, 0, sizeof(*info)); info->lsda_encoding = DW_EH_PE_omit; info->aug_z_format = 0; /* parse the CIE first */ version = dwarf2_parse_byte(ctx); if (version != 1 && version != 3 && version != 4) { FIXME("unknown CIE version %u at %p\n", version, ctx->data - 1); return FALSE; } augmentation = (const char*)ctx->data; ctx->data += strlen(augmentation) + 1; switch (version) { case 4: /* skip 'address_size' and 'segment_size' */ ctx->data += 2; /* fallthrough */ case 1: case 3: info->code_align = dwarf2_leb128_as_unsigned(ctx); info->data_align = dwarf2_leb128_as_signed(ctx); info->retaddr_reg = version == 1 ? dwarf2_parse_byte(ctx) :dwarf2_leb128_as_unsigned(ctx); break; default: ; } info->state.cfa_rule = RULE_CFA_OFFSET; end = NULL; TRACE("\tparsing augmentation %s\n", debugstr_a(augmentation)); if (*augmentation) do { switch (*augmentation) { case 'z': len = dwarf2_leb128_as_unsigned(ctx); end = ctx->data + len; info->aug_z_format = 1; continue; case 'L': info->lsda_encoding = dwarf2_parse_byte(ctx); continue; case 'P': { unsigned char encoding = dwarf2_parse_byte(ctx); /* throw away the indirect bit, as we don't care for the result */ encoding &= ~DW_EH_PE_indirect; dwarf2_parse_augmentation_ptr(ctx, encoding, word_size); /* handler */ continue; } case 'R': info->fde_encoding = dwarf2_parse_byte(ctx); continue; case 'S': info->signal_frame = 1; continue; } FIXME("unknown augmentation '%c'\n", *augmentation); if (!end) return FALSE; break; } while (*++augmentation); if (end) ctx->data = end; return TRUE; } static BOOL dwarf2_get_cie(ULONG_PTR addr, struct module* module, DWORD_PTR delta, dwarf2_traverse_context_t* fde_ctx, dwarf2_traverse_context_t* cie_ctx, struct frame_info* info, BOOL in_eh_frame) { const unsigned char* ptr_blk; const unsigned char* cie_ptr; const unsigned char* last_cie_ptr = (const unsigned char*)~0; ULONG_PTR len, id; ULONG_PTR start, range; ULONG_PTR cie_id; const BYTE* start_data = fde_ctx->data; unsigned char word_size = module->format_info[DFI_DWARF]->u.dwarf2_info->word_size; unsigned char offset_size; /* skip 0-padding at beginning of section (alignment) */ while (fde_ctx->data + 2 * 4 < fde_ctx->end_data) { if (dwarf2_parse_u4(fde_ctx)) { fde_ctx->data -= 4; break; } } for (; fde_ctx->data + 2 * 4 < fde_ctx->end_data; fde_ctx->data = ptr_blk) { const unsigned char* st = fde_ctx->data; /* find the FDE for address addr (skip CIE) */ len = dwarf2_parse_3264(fde_ctx, &offset_size); cie_id = in_eh_frame ? 0 : (offset_size == 4 ? DW_CIE_ID : (ULONG_PTR)DW64_CIE_ID); ptr_blk = fde_ctx->data + len; id = dwarf2_parse_offset(fde_ctx, offset_size); if (id == cie_id) { last_cie_ptr = st; /* we need some bits out of the CIE in order to parse all contents */ if (!parse_cie_details(fde_ctx, info, word_size)) return FALSE; cie_ctx->data = fde_ctx->data; cie_ctx->end_data = ptr_blk; continue; } cie_ptr = (in_eh_frame) ? fde_ctx->data - id - 4 : start_data + id; if (cie_ptr != last_cie_ptr) { last_cie_ptr = cie_ptr; cie_ctx->data = cie_ptr; cie_ctx->end_data = cie_ptr + (offset_size == 4 ? 4 : 4 + 8); cie_ctx->end_data += dwarf2_parse_3264(cie_ctx, &offset_size); if (dwarf2_parse_offset(cie_ctx, in_eh_frame ? word_size : offset_size) != cie_id) { FIXME("wrong CIE pointer at %x from FDE %x\n", (unsigned)(cie_ptr - start_data), (unsigned)(fde_ctx->data - start_data)); return FALSE; } if (!parse_cie_details(cie_ctx, info, word_size)) return FALSE; } start = delta + dwarf2_parse_augmentation_ptr(fde_ctx, info->fde_encoding, word_size); range = dwarf2_parse_augmentation_ptr(fde_ctx, info->fde_encoding & 0x0F, word_size); if (addr >= start && addr < start + range) { /* reset the FDE context */ fde_ctx->end_data = ptr_blk; info->ip = start; return TRUE; } } return FALSE; } static int valid_reg(ULONG_PTR reg) { if (reg >= NB_FRAME_REGS) FIXME("unsupported reg %Ix\n", reg); return (reg < NB_FRAME_REGS); } static void execute_cfa_instructions(struct module* module, dwarf2_traverse_context_t* ctx, ULONG_PTR last_ip, struct frame_info *info) { while (ctx->data < ctx->end_data && info->ip <= last_ip + info->signal_frame) { enum dwarf_call_frame_info op = dwarf2_parse_byte(ctx); if (op & 0xc0) { switch (op & 0xc0) { case DW_CFA_advance_loc: { ULONG_PTR offset = (op & 0x3f) * info->code_align; TRACE("%Ix: DW_CFA_advance_loc %Iu\n", info->ip, offset); info->ip += offset; break; } case DW_CFA_offset: { ULONG_PTR reg = op & 0x3f; LONG_PTR offset = dwarf2_leb128_as_unsigned(ctx) * info->data_align; if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_offset %s, %Id\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)), offset); info->state.regs[reg] = offset; info->state.rules[reg] = RULE_CFA_OFFSET; break; } case DW_CFA_restore: { ULONG_PTR reg = op & 0x3f; if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_restore %s\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE))); info->state.rules[reg] = RULE_UNSET; break; } } } else switch (op) { case DW_CFA_nop: break; case DW_CFA_set_loc: { ULONG_PTR loc = dwarf2_parse_augmentation_ptr(ctx, info->fde_encoding, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size); TRACE("%Ix: DW_CFA_set_loc %Ix\n", info->ip, loc); info->ip = loc; break; } case DW_CFA_advance_loc1: { ULONG_PTR offset = dwarf2_parse_byte(ctx) * info->code_align; TRACE("%Ix: DW_CFA_advance_loc1 %Iu\n", info->ip, offset); info->ip += offset; break; } case DW_CFA_advance_loc2: { ULONG_PTR offset = dwarf2_parse_u2(ctx) * info->code_align; TRACE("%Ix: DW_CFA_advance_loc2 %Iu\n", info->ip, offset); info->ip += offset; break; } case DW_CFA_advance_loc4: { ULONG_PTR offset = dwarf2_parse_u4(ctx) * info->code_align; TRACE("%Ix: DW_CFA_advance_loc4 %Iu\n", info->ip, offset); info->ip += offset; break; } case DW_CFA_offset_extended: case DW_CFA_offset_extended_sf: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); LONG_PTR offset = (op == DW_CFA_offset_extended) ? dwarf2_leb128_as_unsigned(ctx) * info->data_align : dwarf2_leb128_as_signed(ctx) * info->data_align; if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_offset_extended %s, %Id\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)), offset); info->state.regs[reg] = offset; info->state.rules[reg] = RULE_CFA_OFFSET; break; } case DW_CFA_restore_extended: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_restore_extended %s\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE))); info->state.rules[reg] = RULE_UNSET; break; } case DW_CFA_undefined: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_undefined %s\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE))); info->state.rules[reg] = RULE_UNDEFINED; break; } case DW_CFA_same_value: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_same_value %s\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE))); info->state.regs[reg] = reg; info->state.rules[reg] = RULE_SAME; break; } case DW_CFA_register: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); ULONG_PTR reg2 = dwarf2_leb128_as_unsigned(ctx); if (!valid_reg(reg) || !valid_reg(reg2)) break; TRACE("%Ix: DW_CFA_register %s == %s\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)), module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg2, module, TRUE))); info->state.regs[reg] = reg2; info->state.rules[reg] = RULE_OTHER_REG; break; } case DW_CFA_remember_state: TRACE("%Ix: DW_CFA_remember_state\n", info->ip); if (info->state_sp >= MAX_SAVED_STATES) FIXME("%Ix: DW_CFA_remember_state too many nested saves\n", info->ip); else info->state_stack[info->state_sp++] = info->state; break; case DW_CFA_restore_state: TRACE("%Ix: DW_CFA_restore_state\n", info->ip); if (!info->state_sp) FIXME("%Ix: DW_CFA_restore_state without corresponding save\n", info->ip); else info->state = info->state_stack[--info->state_sp]; break; case DW_CFA_def_cfa: case DW_CFA_def_cfa_sf: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); ULONG_PTR offset = (op == DW_CFA_def_cfa) ? dwarf2_leb128_as_unsigned(ctx) : dwarf2_leb128_as_signed(ctx) * info->data_align; if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_def_cfa %s, %Id\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)), offset); info->state.cfa_reg = reg; info->state.cfa_offset = offset; info->state.cfa_rule = RULE_CFA_OFFSET; break; } case DW_CFA_def_cfa_register: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_def_cfa_register %s\n", info->ip, module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE))); info->state.cfa_reg = reg; info->state.cfa_rule = RULE_CFA_OFFSET; break; } case DW_CFA_def_cfa_offset: case DW_CFA_def_cfa_offset_sf: { ULONG_PTR offset = (op == DW_CFA_def_cfa_offset) ? dwarf2_leb128_as_unsigned(ctx) : dwarf2_leb128_as_signed(ctx) * info->data_align; TRACE("%Ix: DW_CFA_def_cfa_offset %Id\n", info->ip, offset); info->state.cfa_offset = offset; info->state.cfa_rule = RULE_CFA_OFFSET; break; } case DW_CFA_def_cfa_expression: { ULONG_PTR expr = (ULONG_PTR)ctx->data; ULONG_PTR len = dwarf2_leb128_as_unsigned(ctx); TRACE("%Ix: DW_CFA_def_cfa_expression %Ix-%Ix\n", info->ip, expr, expr+len); info->state.cfa_offset = expr; info->state.cfa_rule = RULE_VAL_EXPRESSION; ctx->data += len; break; } case DW_CFA_expression: case DW_CFA_val_expression: { ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx); ULONG_PTR expr = (ULONG_PTR)ctx->data; ULONG_PTR len = dwarf2_leb128_as_unsigned(ctx); if (!valid_reg(reg)) break; TRACE("%Ix: DW_CFA_%sexpression %s %Ix-%Ix\n", info->ip, (op == DW_CFA_expression) ? "" : "val_", module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)), expr, expr + len); info->state.regs[reg] = expr; info->state.rules[reg] = (op == DW_CFA_expression) ? RULE_EXPRESSION : RULE_VAL_EXPRESSION; ctx->data += len; break; } case DW_CFA_GNU_args_size: /* FIXME: should check that GCC is the compiler for this CU */ { ULONG_PTR args = dwarf2_leb128_as_unsigned(ctx); TRACE("%Ix: DW_CFA_GNU_args_size %Iu\n", info->ip, args); /* ignored */ break; } default: FIXME("%Ix: unknown CFA opcode %02x\n", info->ip, op); break; } } } /* retrieve a context register from its dwarf number */ static DWORD64 get_context_reg(const struct module* module, struct cpu_stack_walk *csw, union ctx *context, ULONG_PTR dw_reg) { unsigned regno = csw->cpu->map_dwarf_register(dw_reg, module, TRUE), sz; void* ptr = csw->cpu->fetch_context_reg(context, regno, &sz); if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n"); if (sz == 8) return *(DWORD64 *)ptr; else if (sz == 4) return *(DWORD *)ptr; FIXME("unhandled size %d\n", sz); return 0; } /* set a context register from its dwarf number */ static void set_context_reg(const struct module* module, struct cpu_stack_walk* csw, union ctx *context, ULONG_PTR dw_reg, ULONG_PTR val, BOOL isdebuggee) { unsigned regno = csw->cpu->map_dwarf_register(dw_reg, module, TRUE), sz; ULONG_PTR* ptr = csw->cpu->fetch_context_reg(context, regno, &sz); if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n"); if (isdebuggee) { char tmp[16]; if (sz > sizeof(tmp)) { FIXME("register %Iu/%u size is too wide: %u\n", dw_reg, regno, sz); return; } if (!sw_read_mem(csw, val, tmp, sz)) { WARN("Couldn't read memory at %p\n", (void*)val); return; } memcpy(ptr, tmp, sz); } else { if (sz != sizeof(ULONG_PTR)) { FIXME("assigning to register %Iu/%u of wrong size %u\n", dw_reg, regno, sz); return; } *ptr = val; } } /* copy a register from one context to another using dwarf number */ static void copy_context_reg(const struct module* module, struct cpu_stack_walk *csw, union ctx *dstcontext, ULONG_PTR dwregdst, union ctx *srccontext, ULONG_PTR dwregsrc) { unsigned regdstno = csw->cpu->map_dwarf_register(dwregdst, module, TRUE), szdst; unsigned regsrcno = csw->cpu->map_dwarf_register(dwregsrc, module, TRUE), szsrc; ULONG_PTR* ptrdst = csw->cpu->fetch_context_reg(dstcontext, regdstno, &szdst); ULONG_PTR* ptrsrc = csw->cpu->fetch_context_reg(srccontext, regsrcno, &szsrc); if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n"); if (szdst != szsrc) { FIXME("Cannot copy register %Iu/%u => %Iu/%u because of size mismatch (%u => %u)\n", dwregsrc, regsrcno, dwregdst, regdstno, szsrc, szdst); return; } memcpy(ptrdst, ptrsrc, szdst); } static ULONG_PTR eval_expression(const struct module* module, struct cpu_stack_walk* csw, const unsigned char* zp, union ctx *context) { dwarf2_traverse_context_t ctx; ULONG_PTR reg, sz, tmp; DWORD64 stack[64]; int sp = -1; ULONG_PTR len; if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n"); ctx.data = zp; ctx.end_data = zp + 4; len = dwarf2_leb128_as_unsigned(&ctx); ctx.end_data = ctx.data + len; while (ctx.data < ctx.end_data) { unsigned char opcode = dwarf2_parse_byte(&ctx); if (opcode >= DW_OP_lit0 && opcode <= DW_OP_lit31) stack[++sp] = opcode - DW_OP_lit0; else if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) stack[++sp] = get_context_reg(module, csw, context, opcode - DW_OP_reg0); else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) stack[++sp] = get_context_reg(module, csw, context, opcode - DW_OP_breg0) + dwarf2_leb128_as_signed(&ctx); else switch (opcode) { case DW_OP_nop: break; case DW_OP_addr: stack[++sp] = dwarf2_parse_addr(&ctx, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size); break; case DW_OP_const1u: stack[++sp] = dwarf2_parse_byte(&ctx); break; case DW_OP_const1s: stack[++sp] = (signed char)dwarf2_parse_byte(&ctx); break; case DW_OP_const2u: stack[++sp] = dwarf2_parse_u2(&ctx); break; case DW_OP_const2s: stack[++sp] = (short)dwarf2_parse_u2(&ctx); break; case DW_OP_const4u: stack[++sp] = dwarf2_parse_u4(&ctx); break; case DW_OP_const4s: stack[++sp] = (signed int)dwarf2_parse_u4(&ctx); break; case DW_OP_const8u: stack[++sp] = dwarf2_parse_u8(&ctx); break; case DW_OP_const8s: stack[++sp] = (LONG_PTR)dwarf2_parse_u8(&ctx); break; case DW_OP_constu: stack[++sp] = dwarf2_leb128_as_unsigned(&ctx); break; case DW_OP_consts: stack[++sp] = dwarf2_leb128_as_signed(&ctx); break; case DW_OP_deref: tmp = 0; if (!sw_read_mem(csw, stack[sp], &tmp, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size)) { ERR("Couldn't read memory at %I64x\n", stack[sp]); tmp = 0; } stack[sp] = tmp; break; case DW_OP_dup: stack[sp + 1] = stack[sp]; sp++; break; case DW_OP_drop: sp--; break; case DW_OP_over: stack[sp + 1] = stack[sp - 1]; sp++; break; case DW_OP_pick: stack[sp + 1] = stack[sp - dwarf2_parse_byte(&ctx)]; sp++; break; case DW_OP_swap: tmp = stack[sp]; stack[sp] = stack[sp-1]; stack[sp-1] = tmp; break; case DW_OP_rot: tmp = stack[sp]; stack[sp] = stack[sp-1]; stack[sp-1] = stack[sp-2]; stack[sp-2] = tmp; break; case DW_OP_abs: stack[sp] = sizeof(stack[sp]) == 8 ? llabs((INT64)stack[sp]) : abs((INT32)stack[sp]); break; case DW_OP_neg: stack[sp] = -stack[sp]; break; case DW_OP_not: stack[sp] = ~stack[sp]; break; case DW_OP_and: stack[sp-1] &= stack[sp]; sp--; break; case DW_OP_or: stack[sp-1] |= stack[sp]; sp--; break; case DW_OP_minus: stack[sp-1] -= stack[sp]; sp--; break; case DW_OP_mul: stack[sp-1] *= stack[sp]; sp--; break; case DW_OP_plus: stack[sp-1] += stack[sp]; sp--; break; case DW_OP_xor: stack[sp-1] ^= stack[sp]; sp--; break; case DW_OP_shl: stack[sp-1] <<= stack[sp]; sp--; break; case DW_OP_shr: stack[sp-1] >>= stack[sp]; sp--; break; case DW_OP_plus_uconst: stack[sp] += dwarf2_leb128_as_unsigned(&ctx); break; case DW_OP_shra: stack[sp-1] = (LONG_PTR)stack[sp-1] / (1 << stack[sp]); sp--; break; case DW_OP_div: stack[sp-1] = (LONG_PTR)stack[sp-1] / (LONG_PTR)stack[sp]; sp--; break; case DW_OP_mod: stack[sp-1] = (LONG_PTR)stack[sp-1] % (LONG_PTR)stack[sp]; sp--; break; case DW_OP_ge: stack[sp-1] = ((LONG_PTR)stack[sp-1] >= (LONG_PTR)stack[sp]); sp--; break; case DW_OP_gt: stack[sp-1] = ((LONG_PTR)stack[sp-1] > (LONG_PTR)stack[sp]); sp--; break; case DW_OP_le: stack[sp-1] = ((LONG_PTR)stack[sp-1] <= (LONG_PTR)stack[sp]); sp--; break; case DW_OP_lt: stack[sp-1] = ((LONG_PTR)stack[sp-1] < (LONG_PTR)stack[sp]); sp--; break; case DW_OP_eq: stack[sp-1] = (stack[sp-1] == stack[sp]); sp--; break; case DW_OP_ne: stack[sp-1] = (stack[sp-1] != stack[sp]); sp--; break; case DW_OP_skip: tmp = (short)dwarf2_parse_u2(&ctx); ctx.data += tmp; break; case DW_OP_bra: tmp = (short)dwarf2_parse_u2(&ctx); if (!stack[sp--]) ctx.data += tmp; break; case DW_OP_GNU_encoded_addr: tmp = dwarf2_parse_byte(&ctx); stack[++sp] = dwarf2_parse_augmentation_ptr(&ctx, tmp, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size); break; case DW_OP_regx: stack[++sp] = get_context_reg(module, csw, context, dwarf2_leb128_as_unsigned(&ctx)); break; case DW_OP_bregx: reg = dwarf2_leb128_as_unsigned(&ctx); tmp = dwarf2_leb128_as_signed(&ctx); stack[++sp] = get_context_reg(module, csw, context, reg) + tmp; break; case DW_OP_deref_size: sz = dwarf2_parse_byte(&ctx); if (!sw_read_mem(csw, stack[sp], &tmp, sz)) { ERR("Couldn't read memory at %I64x\n", stack[sp]); tmp = 0; } /* do integral promotion */ switch (sz) { case 1: stack[sp] = *(unsigned char*)&tmp; break; case 2: stack[sp] = *(unsigned short*)&tmp; break; case 4: stack[sp] = *(unsigned int*)&tmp; break; case 8: stack[sp] = tmp; break; /* FIXME: won't work on 32bit platform */ default: FIXME("Unknown size for deref 0x%Ix\n", sz); } break; default: FIXME("unhandled opcode %02x\n", opcode); } } return stack[sp]; } static void apply_frame_state(const struct module* module, struct cpu_stack_walk* csw, union ctx *context, struct frame_state *state, DWORD64 *cfa) { unsigned int i; ULONG_PTR value; union ctx new_context = *context; if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n"); switch (state->cfa_rule) { case RULE_EXPRESSION: *cfa = eval_expression(module, csw, (const unsigned char*)state->cfa_offset, context); if (!sw_read_mem(csw, *cfa, cfa, csw->cpu->word_size)) { WARN("Couldn't read memory at %I64x\n", *cfa); return; } break; case RULE_VAL_EXPRESSION: *cfa = eval_expression(module, csw, (const unsigned char*)state->cfa_offset, context); break; default: *cfa = get_context_reg(module, csw, context, state->cfa_reg) + state->cfa_offset; break; } if (!*cfa) return; for (i = 0; i < NB_FRAME_REGS; i++) { switch (state->rules[i]) { case RULE_UNSET: case RULE_UNDEFINED: case RULE_SAME: break; case RULE_CFA_OFFSET: set_context_reg(module, csw, &new_context, i, *cfa + state->regs[i], TRUE); break; case RULE_OTHER_REG: copy_context_reg(module, csw, &new_context, i, context, state->regs[i]); break; case RULE_EXPRESSION: value = eval_expression(module, csw, (const unsigned char*)state->regs[i], context); set_context_reg(module, csw, &new_context, i, value, TRUE); break; case RULE_VAL_EXPRESSION: value = eval_expression(module, csw, (const unsigned char*)state->regs[i], context); set_context_reg(module, csw, &new_context, i, value, FALSE); break; } } *context = new_context; } static BOOL dwarf2_fetch_frame_info(struct module* module, struct cpu* cpu, LONG_PTR ip, struct frame_info* info) { dwarf2_traverse_context_t cie_ctx, fde_ctx; struct module_format* modfmt; const unsigned char* end; DWORD_PTR delta; modfmt = module->format_info[DFI_DWARF]; if (!modfmt) return FALSE; memset(info, 0, sizeof(*info)); fde_ctx.data = modfmt->u.dwarf2_info->eh_frame.address; fde_ctx.end_data = fde_ctx.data + modfmt->u.dwarf2_info->eh_frame.size; /* let offsets relative to the eh_frame sections be correctly computed, as we'll map * in this process the IMAGE section at a different address as the one expected by * the image */ delta = module->module.BaseOfImage + modfmt->u.dwarf2_info->eh_frame.rva - (DWORD_PTR)modfmt->u.dwarf2_info->eh_frame.address; if (!dwarf2_get_cie(ip, module, delta, &fde_ctx, &cie_ctx, info, TRUE)) { fde_ctx.data = modfmt->u.dwarf2_info->debug_frame.address; fde_ctx.end_data = fde_ctx.data + modfmt->u.dwarf2_info->debug_frame.size; delta = module->reloc_delta; if (modfmt->u.dwarf2_info->debug_frame.address == IMAGE_NO_MAP || !dwarf2_get_cie(ip, module, delta, &fde_ctx, &cie_ctx, info, FALSE)) { TRACE("Couldn't find information for %Ix\n", ip); return FALSE; } } TRACE("function %Ix/%Ix code_align %Iu data_align %Id retaddr %s\n", ip, info->ip, info->code_align, info->data_align, cpu->fetch_regname(cpu->map_dwarf_register(info->retaddr_reg, module, TRUE))); if (ip != info->ip) { execute_cfa_instructions(module, &cie_ctx, ip, info); if (info->aug_z_format) /* get length of augmentation data */ { ULONG_PTR len = dwarf2_leb128_as_unsigned(&fde_ctx); end = fde_ctx.data + len; } else end = NULL; dwarf2_parse_augmentation_ptr(&fde_ctx, info->lsda_encoding, modfmt->u.dwarf2_info->word_size); /* handler_data */ if (end) fde_ctx.data = end; execute_cfa_instructions(module, &fde_ctx, ip, info); } return TRUE; } /*********************************************************************** * dwarf2_virtual_unwind * */ BOOL dwarf2_virtual_unwind(struct cpu_stack_walk *csw, ULONG_PTR ip, union ctx *context, DWORD64 *cfa) { struct module_pair pair; struct frame_info info; if (!module_init_pair(&pair, csw->hProcess, ip)) return FALSE; if (csw->cpu != pair.effective->cpu) FIXME("mismatch in cpu\n"); if (!dwarf2_fetch_frame_info(pair.effective, csw->cpu, ip, &info)) return FALSE; /* if at very beginning of function, return and use default unwinder */ if (ip == info.ip) return FALSE; /* if there is no information about retaddr, use default unwinder */ if (info.state.rules[info.retaddr_reg] == RULE_UNSET) return FALSE; apply_frame_state(pair.effective, csw, context, &info.state, cfa); return TRUE; } static enum location_error compute_call_frame_cfa(struct module* module, ULONG_PTR ip, struct location* frame) { struct frame_info info; if (!dwarf2_fetch_frame_info(module, module->cpu, ip, &info)) return loc_err_internal; /* beginning of function, or no available dwarf information ? */ if (ip == info.ip || info.state.rules[info.retaddr_reg] == RULE_UNSET) { /* fake the default unwinder */ frame->kind = loc_regrel; frame->reg = module->cpu->frame_regno; frame->offset = module->cpu->word_size; /* FIXME stack direction */ } else { /* we expect to translate the call_frame_cfa into a regrel location... * that should cover most of the cases */ switch (info.state.cfa_rule) { case RULE_EXPRESSION: WARN("Too complex expression for frame_CFA resolution (RULE_EXPRESSION)\n"); return loc_err_too_complex; case RULE_VAL_EXPRESSION: /* unfortunately, we've seen at least construct like: * cfa := 'breg_x + offset; deref' * which is an indirection too much for the DbgHelp API. */ WARN("Too complex expression for frame_CFA resolution (RULE_VAL_EXPRESSION)\n"); return loc_err_too_complex; default: frame->kind = loc_regrel; frame->reg = module->cpu->map_dwarf_register(info.state.cfa_reg, module, TRUE); frame->offset = info.state.cfa_offset; break; } } return 0; } static void dwarf2_location_compute(struct process* pcs, const struct module_format* modfmt, const struct symt_function* func, struct location* loc) { struct location frame; DWORD_PTR ip; int err; dwarf2_traverse_context_t lctx; const dwarf2_cuhead_t* head = get_cuhead_from_func(func); if (!head) { WARN("We'd expect function %s's container to be a valid compiland with dwarf inforamation\n", debugstr_a(func->hash_elt.name)); err = loc_err_internal; } else { /* instruction pointer relative to compiland's start */ ip = pcs->localscope_pc - ((struct symt_compiland*)func->container)->address; if ((err = loc_compute_frame(pcs, modfmt, func, ip, head, &frame)) == 0) { switch (loc->kind) { case loc_dwarf2_location_list: /* Then, if the variable has a location list, find it !! */ if (dwarf2_lookup_loclist(modfmt, head, modfmt->u.dwarf2_info->debug_loc.address + loc->offset, ip, &lctx)) goto do_compute; err = loc_err_out_of_scope; break; case loc_dwarf2_block: /* or if we have a copy of an existing block, get ready for it */ { unsigned* ptr = (unsigned*)loc->offset; lctx.data = (const BYTE*)(ptr + 1); lctx.end_data = lctx.data + *ptr; } do_compute: /* now get the variable */ err = compute_location(modfmt->module, head, &lctx, loc, pcs->handle, &frame); break; case loc_register: case loc_regrel: /* nothing to do */ break; default: WARN("Unsupported local kind %d\n", loc->kind); err = loc_err_internal; } } } if (err < 0) { loc->kind = loc_register; loc->reg = err; } } static void *zalloc(void *priv, uInt items, uInt sz) { return HeapAlloc(GetProcessHeap(), 0, items * sz); } static void zfree(void *priv, void *addr) { HeapFree(GetProcessHeap(), 0, addr); } static inline BOOL dwarf2_init_zsection(dwarf2_section_t* section, const char* zsectname, struct image_section_map* ism) { z_stream z; LARGE_INTEGER li; int res; BOOL ret = FALSE; BYTE *addr, *sect = (BYTE *)image_map_section(ism); size_t sz = image_get_map_size(ism); if (sz <= 12 || memcmp(sect, "ZLIB", 4)) { ERR("invalid compressed section %s\n", debugstr_a(zsectname)); goto out; } #ifdef WORDS_BIGENDIAN li.u.HighPart = *(DWORD*)§[4]; li.u.LowPart = *(DWORD*)§[8]; #else li.u.HighPart = RtlUlongByteSwap(*(DWORD*)§[4]); li.u.LowPart = RtlUlongByteSwap(*(DWORD*)§[8]); #endif addr = HeapAlloc(GetProcessHeap(), 0, li.QuadPart); if (!addr) goto out; z.next_in = §[12]; z.avail_in = sz - 12; z.opaque = NULL; z.zalloc = zalloc; z.zfree = zfree; res = inflateInit(&z); if (res != Z_OK) { FIXME("inflateInit failed with %i / %s\n", res, debugstr_a(z.msg)); goto out_free; } do { z.next_out = addr + z.total_out; z.avail_out = li.QuadPart - z.total_out; res = inflate(&z, Z_FINISH); } while (z.avail_in && res == Z_STREAM_END); if (res != Z_STREAM_END) { FIXME("Decompression failed with %i / %s\n", res, debugstr_a(z.msg)); goto out_end; } ret = TRUE; section->compressed = TRUE; section->address = addr; section->rva = image_get_map_rva(ism); section->size = z.total_out; out_end: inflateEnd(&z); out_free: if (!ret) HeapFree(GetProcessHeap(), 0, addr); out: image_unmap_section(ism); return ret; } static inline BOOL dwarf2_init_section(dwarf2_section_t* section, struct image_file_map* fmap, const char* sectname, const char* zsectname, struct image_section_map* ism) { struct image_section_map local_ism; if (!ism) ism = &local_ism; section->compressed = FALSE; if (image_find_section(fmap, sectname, ism)) { section->address = (const BYTE*)image_map_section(ism); section->size = image_get_map_size(ism); section->rva = image_get_map_rva(ism); return TRUE; } section->address = NULL; section->size = 0; section->rva = 0; if (zsectname && image_find_section(fmap, zsectname, ism)) { return dwarf2_init_zsection(section, zsectname, ism); } return FALSE; } static inline void dwarf2_fini_section(dwarf2_section_t* section) { if (section->compressed) HeapFree(GetProcessHeap(), 0, (void*)section->address); } static void dwarf2_module_remove(struct process* pcs, struct module_format* modfmt) { dwarf2_fini_section(&modfmt->u.dwarf2_info->debug_loc); dwarf2_fini_section(&modfmt->u.dwarf2_info->debug_frame); free(modfmt->u.dwarf2_info->cuheads); HeapFree(GetProcessHeap(), 0, modfmt); } static BOOL dwarf2_load_CU_module(dwarf2_parse_module_context_t* module_ctx, struct module* module, dwarf2_section_t* sections, ULONG_PTR load_offset, const struct elf_thunk_area* thunks, BOOL is_dwz) { dwarf2_traverse_context_t mod_ctx; unsigned i; module_ctx->sections = sections; module_ctx->module = module; module_ctx->thunks = thunks; module_ctx->load_offset = load_offset; vector_init(&module_ctx->unit_contexts, sizeof(dwarf2_parse_context_t), 16); module_ctx->cu_versions = 0; /* phase I: parse all CU heads */ mod_ctx.data = sections[section_debug].address; mod_ctx.end_data = mod_ctx.data + sections[section_debug].size; while (mod_ctx.data < mod_ctx.end_data) { dwarf2_parse_context_t* unit_ctx = vector_add(&module_ctx->unit_contexts, &module_ctx->module->pool); unit_ctx->module_ctx = module_ctx; dwarf2_parse_compilation_unit_head(unit_ctx, &mod_ctx); } /* phase2: load content of all CU * If this is a DWZ alternate module, don't load all debug_info at once * wait for main module to ask for them (it's likely it won't need them all) * Doing this can lead to a huge performance improvement. */ if (!is_dwz) for (i = 0; i < module_ctx->unit_contexts.num_elts; ++i) dwarf2_parse_compilation_unit((dwarf2_parse_context_t*)vector_at(&module_ctx->unit_contexts, i)); return TRUE; } static dwarf2_dwz_alternate_t* dwarf2_load_dwz(struct image_file_map* fmap, struct module* module) { struct image_file_map* fmap_dwz; dwarf2_dwz_alternate_t* dwz; fmap_dwz = image_load_debugaltlink(fmap, module); if (!fmap_dwz) return NULL; if (!(dwz = HeapAlloc(GetProcessHeap(), 0, sizeof(*dwz)))) { image_unmap_file(fmap_dwz); HeapFree(GetProcessHeap(), 0, fmap_dwz); return NULL; } dwz->fmap = fmap_dwz; dwarf2_init_section(&dwz->sections[section_debug], fmap_dwz, ".debug_info", ".zdebug_info", &dwz->sectmap[section_debug]); dwarf2_init_section(&dwz->sections[section_abbrev], fmap_dwz, ".debug_abbrev", ".zdebug_abbrev", &dwz->sectmap[section_abbrev]); dwarf2_init_section(&dwz->sections[section_string], fmap_dwz, ".debug_str", ".zdebug_str", &dwz->sectmap[section_string]); dwarf2_init_section(&dwz->sections[section_line], fmap_dwz, ".debug_line", ".zdebug_line", &dwz->sectmap[section_line]); dwarf2_init_section(&dwz->sections[section_ranges], fmap_dwz, ".debug_ranges", ".zdebug_ranges", &dwz->sectmap[section_ranges]); dwz->module_ctx.dwz = NULL; dwarf2_load_CU_module(&dwz->module_ctx, module, dwz->sections, 0/*FIXME*/, NULL, TRUE); return dwz; } static void dwarf2_unload_dwz(dwarf2_dwz_alternate_t* dwz) { if (!dwz) return; dwarf2_fini_section(&dwz->sections[section_debug]); dwarf2_fini_section(&dwz->sections[section_abbrev]); dwarf2_fini_section(&dwz->sections[section_string]); dwarf2_fini_section(&dwz->sections[section_line]); dwarf2_fini_section(&dwz->sections[section_ranges]); image_unmap_section(&dwz->sectmap[section_debug]); image_unmap_section(&dwz->sectmap[section_abbrev]); image_unmap_section(&dwz->sectmap[section_string]); image_unmap_section(&dwz->sectmap[section_line]); image_unmap_section(&dwz->sectmap[section_ranges]); HeapFree(GetProcessHeap(), 0, dwz); } static BOOL dwarf2_unload_CU_module(dwarf2_parse_module_context_t* module_ctx) { unsigned i; for (i = 0; i < module_ctx->unit_contexts.num_elts; ++i) { dwarf2_parse_context_t* unit = vector_at(&module_ctx->unit_contexts, i); if (unit->status != UNIT_ERROR) pool_destroy(&unit->pool); } dwarf2_unload_dwz(module_ctx->dwz); return TRUE; } BOOL dwarf2_parse(struct module* module, ULONG_PTR load_offset, const struct elf_thunk_area* thunks, struct image_file_map* fmap) { dwarf2_section_t eh_frame, section[section_max]; struct image_section_map debug_sect, debug_str_sect, debug_abbrev_sect, debug_line_sect, debug_ranges_sect, eh_frame_sect; BOOL ret = TRUE; struct module_format* dwarf2_modfmt; dwarf2_parse_module_context_t module_ctx; if (!dwarf2_init_section(&eh_frame, fmap, ".eh_frame", NULL, &eh_frame_sect)) /* lld produces .eh_fram to avoid generating a long name */ dwarf2_init_section(&eh_frame, fmap, ".eh_fram", NULL, &eh_frame_sect); dwarf2_init_section(§ion[section_debug], fmap, ".debug_info", ".zdebug_info", &debug_sect); dwarf2_init_section(§ion[section_abbrev], fmap, ".debug_abbrev", ".zdebug_abbrev", &debug_abbrev_sect); dwarf2_init_section(§ion[section_string], fmap, ".debug_str", ".zdebug_str", &debug_str_sect); dwarf2_init_section(§ion[section_line], fmap, ".debug_line", ".zdebug_line", &debug_line_sect); dwarf2_init_section(§ion[section_ranges], fmap, ".debug_ranges", ".zdebug_ranges", &debug_ranges_sect); /* to do anything useful we need either .eh_frame or .debug_info */ if ((!eh_frame.address || eh_frame.address == IMAGE_NO_MAP) && (!section[section_debug].address || section[section_debug].address == IMAGE_NO_MAP)) { ret = FALSE; goto leave; } if (fmap->modtype == DMT_ELF && debug_sect.fmap) { /* debug info might have a different base address than .so file * when elf file is prelinked after splitting off debug info * adjust symbol base addresses accordingly */ load_offset += fmap->u.elf.elf_start - debug_sect.fmap->u.elf.elf_start; } TRACE("Loading Dwarf2 information for %s\n", debugstr_w(module->modulename)); dwarf2_modfmt = HeapAlloc(GetProcessHeap(), 0, sizeof(*dwarf2_modfmt) + sizeof(*dwarf2_modfmt->u.dwarf2_info)); if (!dwarf2_modfmt) { ret = FALSE; goto leave; } dwarf2_modfmt->module = module; dwarf2_modfmt->remove = dwarf2_module_remove; dwarf2_modfmt->loc_compute = dwarf2_location_compute; dwarf2_modfmt->u.dwarf2_info = (struct dwarf2_module_info_s*)(dwarf2_modfmt + 1); dwarf2_modfmt->u.dwarf2_info->word_size = fmap->addr_size / 8; /* set the word_size for eh_frame parsing */ dwarf2_modfmt->module->format_info[DFI_DWARF] = dwarf2_modfmt; /* As we'll need later some sections' content, we won't unmap these * sections upon existing this function */ dwarf2_init_section(&dwarf2_modfmt->u.dwarf2_info->debug_loc, fmap, ".debug_loc", ".zdebug_loc", NULL); dwarf2_init_section(&dwarf2_modfmt->u.dwarf2_info->debug_frame, fmap, ".debug_frame", ".zdebug_frame", NULL); dwarf2_modfmt->u.dwarf2_info->eh_frame = eh_frame; dwarf2_modfmt->u.dwarf2_info->cuheads = NULL; dwarf2_modfmt->u.dwarf2_info->num_cuheads = 0; module_ctx.dwz = dwarf2_load_dwz(fmap, module); dwarf2_load_CU_module(&module_ctx, module, section, load_offset, thunks, FALSE); dwarf2_modfmt->module->module.SymType = SymDia; /* hide dwarf versions in CVSig * bits 24-31 will be set according to found dwarf version * different CU can have different dwarf version, so use a bit per version (version 2 => b24) */ dwarf2_modfmt->module->module.CVSig = 'D' | ('W' << 8) | ('F' << 16) | ((module_ctx.cu_versions & 0xFF) << 24); /* FIXME: we could have a finer grain here */ dwarf2_modfmt->module->module.GlobalSymbols = TRUE; dwarf2_modfmt->module->module.TypeInfo = TRUE; dwarf2_modfmt->module->module.SourceIndexed = TRUE; dwarf2_modfmt->module->module.Publics = TRUE; dwarf2_unload_CU_module(&module_ctx); leave: dwarf2_fini_section(§ion[section_debug]); dwarf2_fini_section(§ion[section_abbrev]); dwarf2_fini_section(§ion[section_string]); dwarf2_fini_section(§ion[section_line]); dwarf2_fini_section(§ion[section_ranges]); image_unmap_section(&debug_sect); image_unmap_section(&debug_abbrev_sect); image_unmap_section(&debug_str_sect); image_unmap_section(&debug_line_sect); image_unmap_section(&debug_ranges_sect); if (!ret) image_unmap_section(&eh_frame_sect); return ret; }