mirror of
git://source.winehq.org/git/wine.git
synced 2024-10-31 12:54:13 +00:00
- move macros and constants into cabinet.h where they can be shared
between cabextract.c and fdi.c - reminders to eliminate global variables (for multithread compatibility) - remove struct fdi_cab: due to the nature of the FDI API, we cannot preload all the cabinets; this appears to obviate the need for struct fdi_cab - "oppress" (that is, do not process) partial files which were continuations from another cabinet - more than one partial file can exist in a single cabinet (how!?) -- so move the partial file notification (and "oppression" that goes with it) into the loop that iterates through files
This commit is contained in:
parent
677b37cbd8
commit
0c63c39c8d
3 changed files with 1762 additions and 321 deletions
|
@ -40,6 +40,8 @@
|
|||
|
||||
WINE_DEFAULT_DEBUG_CHANNEL(cabinet);
|
||||
|
||||
THOSE_ZIP_CONSTS;
|
||||
|
||||
/* all the file IO is abstracted into these routines:
|
||||
* cabinet_(open|close|read|seek|skip|getoffset)
|
||||
* file_(open|close|write)
|
||||
|
@ -544,33 +546,6 @@ struct cabinet *load_cab_offset(LPCSTR name, cab_off_t offset)
|
|||
|
||||
/* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */
|
||||
|
||||
/* Tables for deflate from PKZIP's appnote.txt. */
|
||||
static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */
|
||||
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
||||
static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */
|
||||
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51,
|
||||
59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
||||
static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
|
||||
4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
|
||||
static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */
|
||||
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
|
||||
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};
|
||||
static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */
|
||||
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
|
||||
10, 11, 11, 12, 12, 13, 13};
|
||||
|
||||
/* And'ing with Zipmask[n] masks the lower n bits */
|
||||
static const cab_UWORD Zipmask[17] = {
|
||||
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
|
||||
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
|
||||
};
|
||||
|
||||
#define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\
|
||||
b|=((cab_ULONG)c)<<k;k+=8;}}
|
||||
#define ZIPDUMPBITS(n) {b>>=(n);k-=(n);}
|
||||
|
||||
|
||||
/********************************************************
|
||||
* Ziphuft_free (internal)
|
||||
*/
|
||||
|
@ -1148,6 +1123,7 @@ int ZIPdecompress(int inlen, int outlen, cab_decomp_state *decomp_state)
|
|||
/* This decruncher was researched and implemented by Matthew Russoto. */
|
||||
/* It has since been tidied up by Stuart Caie */
|
||||
|
||||
/* FIXME: eliminate global variables */
|
||||
static cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
|
||||
static cab_ULONG q_position_base[42];
|
||||
|
||||
|
@ -1276,91 +1252,6 @@ void QTMupdatemodel(struct QTMmodel *model, int sym) {
|
|||
}
|
||||
}
|
||||
|
||||
/* Bitstream reading macros (Quantum / normal byte order)
|
||||
*
|
||||
* Q_INIT_BITSTREAM should be used first to set up the system
|
||||
* Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
|
||||
* unlike LZX, this can loop several times to get the
|
||||
* requisite number of bits.
|
||||
* Q_FILL_BUFFER adds more data to the bit buffer, if there is room
|
||||
* for another 16 bits.
|
||||
* Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
|
||||
* buffer
|
||||
* Q_REMOVE_BITS(n) removes N bits from the bit buffer
|
||||
*
|
||||
* These bit access routines work by using the area beyond the MSB and the
|
||||
* LSB as a free source of zeroes. This avoids having to mask any bits.
|
||||
* So we have to know the bit width of the bitbuffer variable. This is
|
||||
* defined as ULONG_BITS.
|
||||
*
|
||||
* ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
|
||||
* Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
|
||||
* need an assured number. Retrieving larger bitstrings can be done with
|
||||
* multiple reads and fills of the bitbuffer. The code should work fine
|
||||
* for machines where ULONG >= 32 bits.
|
||||
*
|
||||
* Also note that Quantum reads bytes in normal order; LZX is in
|
||||
* little-endian order.
|
||||
*/
|
||||
|
||||
#define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
|
||||
|
||||
#define Q_FILL_BUFFER do { \
|
||||
if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
|
||||
bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
|
||||
bitsleft += 16; inpos += 2; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
|
||||
#define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
|
||||
|
||||
#define Q_READ_BITS(v,n) do { \
|
||||
(v) = 0; \
|
||||
for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
|
||||
Q_FILL_BUFFER; \
|
||||
bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
|
||||
(v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
|
||||
Q_REMOVE_BITS(bitrun); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define Q_MENTRIES(model) (QTM(model).entries)
|
||||
#define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
|
||||
#define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
|
||||
|
||||
/* GET_SYMBOL(model, var) fetches the next symbol from the stated model
|
||||
* and puts it in var. it may need to read the bitstream to do this.
|
||||
*/
|
||||
#define GET_SYMBOL(m, var) do { \
|
||||
range = ((H - L) & 0xFFFF) + 1; \
|
||||
symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
|
||||
\
|
||||
for (i=1; i < Q_MENTRIES(m); i++) { \
|
||||
if (Q_MSYMFREQ(m,i) <= symf) break; \
|
||||
} \
|
||||
(var) = Q_MSYM(m,i-1); \
|
||||
\
|
||||
range = (H - L) + 1; \
|
||||
H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
|
||||
L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
|
||||
while (1) { \
|
||||
if ((L & 0x8000) != (H & 0x8000)) { \
|
||||
if ((L & 0x4000) && !(H & 0x4000)) { \
|
||||
/* underflow case */ \
|
||||
C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
|
||||
} \
|
||||
else break; \
|
||||
} \
|
||||
L <<= 1; H = (H << 1) | 1; \
|
||||
Q_FILL_BUFFER; \
|
||||
C = (C << 1) | Q_PEEK_BITS(1); \
|
||||
Q_REMOVE_BITS(1); \
|
||||
} \
|
||||
\
|
||||
QTMupdatemodel(&(QTM(m)), i); \
|
||||
} while (0)
|
||||
|
||||
/*******************************************************************
|
||||
* QTMdecompress (internal)
|
||||
*/
|
||||
|
@ -1542,6 +1433,8 @@ int QTMdecompress(int inlen, int outlen, cab_decomp_state *decomp_state)
|
|||
* - lzx_position_base is an index to the position slot bases
|
||||
* - lzx_extra_bits states how many bits of offset-from-base data is needed.
|
||||
*/
|
||||
|
||||
/* FIXME: Eliminate global variables */
|
||||
static cab_ULONG lzx_position_base[51];
|
||||
static cab_UBYTE extra_bits[51];
|
||||
|
||||
|
@ -1599,93 +1492,6 @@ int LZXinit(int window, cab_decomp_state *decomp_state) {
|
|||
return DECR_OK;
|
||||
}
|
||||
|
||||
/* Bitstream reading macros (LZX / intel little-endian byte order)
|
||||
*
|
||||
* INIT_BITSTREAM should be used first to set up the system
|
||||
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
|
||||
*
|
||||
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
|
||||
* it can guarantee up to 17 bits (i.e. it can read in
|
||||
* 16 new bits when there is down to 1 bit in the buffer,
|
||||
* and it can read 32 bits when there are 0 bits in the
|
||||
* buffer).
|
||||
* PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
|
||||
* REMOVE_BITS(n) removes N bits from the bit buffer
|
||||
*
|
||||
* These bit access routines work by using the area beyond the MSB and the
|
||||
* LSB as a free source of zeroes. This avoids having to mask any bits.
|
||||
* So we have to know the bit width of the bitbuffer variable.
|
||||
*/
|
||||
|
||||
#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
|
||||
|
||||
/* Quantum reads bytes in normal order; LZX is little-endian order */
|
||||
#define ENSURE_BITS(n) \
|
||||
while (bitsleft < (n)) { \
|
||||
bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
|
||||
bitsleft += 16; inpos+=2; \
|
||||
}
|
||||
|
||||
#define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
|
||||
#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
|
||||
|
||||
#define READ_BITS(v,n) do { \
|
||||
if (n) { \
|
||||
ENSURE_BITS(n); \
|
||||
(v) = PEEK_BITS(n); \
|
||||
REMOVE_BITS(n); \
|
||||
} \
|
||||
else { \
|
||||
(v) = 0; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* Huffman macros */
|
||||
|
||||
#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
|
||||
#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
|
||||
#define SYMTABLE(tbl) (LZX(tbl##_table))
|
||||
#define LENTABLE(tbl) (LZX(tbl##_len))
|
||||
|
||||
/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
|
||||
* In reality, it just calls make_decode_table() with the appropriate
|
||||
* values - they're all fixed by some #defines anyway, so there's no point
|
||||
* writing each call out in full by hand.
|
||||
*/
|
||||
#define BUILD_TABLE(tbl) \
|
||||
if (make_decode_table( \
|
||||
MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
|
||||
)) { return DECR_ILLEGALDATA; }
|
||||
|
||||
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
|
||||
* bitstream using the stated table and puts it in var.
|
||||
*/
|
||||
#define READ_HUFFSYM(tbl,var) do { \
|
||||
ENSURE_BITS(16); \
|
||||
hufftbl = SYMTABLE(tbl); \
|
||||
if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
|
||||
j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
|
||||
do { \
|
||||
j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
|
||||
if (!j) { return DECR_ILLEGALDATA; } \
|
||||
} while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
|
||||
} \
|
||||
j = LENTABLE(tbl)[(var) = i]; \
|
||||
REMOVE_BITS(j); \
|
||||
} while (0)
|
||||
|
||||
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
|
||||
* first to last in the given table. The code lengths are stored in their
|
||||
* own special LZX way.
|
||||
*/
|
||||
#define READ_LENGTHS(tbl,first,last) do { \
|
||||
lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
|
||||
if (lzx_read_lens(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
|
||||
return DECR_ILLEGALDATA; \
|
||||
} \
|
||||
bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
|
||||
} while (0)
|
||||
|
||||
/*************************************************************************
|
||||
* make_decode_table (internal)
|
||||
*
|
||||
|
@ -1773,12 +1579,6 @@ int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_U
|
|||
return 0;
|
||||
}
|
||||
|
||||
struct lzx_bits {
|
||||
cab_ULONG bb;
|
||||
int bl;
|
||||
cab_UBYTE *ip;
|
||||
};
|
||||
|
||||
/************************************************************
|
||||
* lzx_read_lens (internal)
|
||||
*/
|
||||
|
@ -1883,12 +1683,12 @@ int LZXdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) {
|
|||
/* rest of aligned header is same as verbatim */
|
||||
|
||||
case LZX_BLOCKTYPE_VERBATIM:
|
||||
READ_LENGTHS(MAINTREE, 0, 256);
|
||||
READ_LENGTHS(MAINTREE, 256, LZX(main_elements));
|
||||
READ_LENGTHS(MAINTREE, 0, 256, lzx_read_lens);
|
||||
READ_LENGTHS(MAINTREE, 256, LZX(main_elements), lzx_read_lens);
|
||||
BUILD_TABLE(MAINTREE);
|
||||
if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1;
|
||||
|
||||
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS);
|
||||
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS, lzx_read_lens);
|
||||
BUILD_TABLE(LENGTH);
|
||||
break;
|
||||
|
||||
|
|
|
@ -41,10 +41,6 @@ typedef UINT32 cab_off_t;
|
|||
#endif
|
||||
#define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
|
||||
|
||||
/* endian-neutral reading of little-endian data */
|
||||
#define EndGetI32(a) ((((a)[3])<<24)|(((a)[2])<<16)|(((a)[1])<<8)|((a)[0]))
|
||||
#define EndGetI16(a) ((((a)[1])<<8)|((a)[0]))
|
||||
|
||||
/* structure offsets */
|
||||
#define cfhead_Signature (0x00)
|
||||
#define cfhead_CabinetSize (0x08)
|
||||
|
@ -212,18 +208,11 @@ struct LZXstate {
|
|||
LZX_DECLARE_TABLE(ALIGNED);
|
||||
};
|
||||
|
||||
/* generic stuff */
|
||||
#define CAB(x) (decomp_state->x)
|
||||
#define ZIP(x) (decomp_state->methods.zip.x)
|
||||
#define QTM(x) (decomp_state->methods.qtm.x)
|
||||
#define LZX(x) (decomp_state->methods.lzx.x)
|
||||
#define DECR_OK (0)
|
||||
#define DECR_DATAFORMAT (1)
|
||||
#define DECR_ILLEGALDATA (2)
|
||||
#define DECR_NOMEMORY (3)
|
||||
#define DECR_CHECKSUM (4)
|
||||
#define DECR_INPUT (5)
|
||||
#define DECR_OUTPUT (6)
|
||||
struct lzx_bits {
|
||||
cab_ULONG bb;
|
||||
int bl;
|
||||
cab_UBYTE *ip;
|
||||
};
|
||||
|
||||
/* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
|
||||
* blocks have zero growth. MSZIP guarantees that it won't grow above
|
||||
|
@ -331,7 +320,230 @@ typedef struct {
|
|||
(((void *) hfdi) != NULL) && \
|
||||
(PFDI_INT(hfdi)->FDI_Intmagic == FDI_INT_MAGIC) )
|
||||
|
||||
/*
|
||||
* the rest of these are somewhat kludgy macros which are shared between fdi.c
|
||||
* and cabextract.c.
|
||||
*/
|
||||
|
||||
#define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\
|
||||
b|=((cab_ULONG)c)<<k;k+=8;}}
|
||||
#define ZIPDUMPBITS(n) {b>>=(n);k-=(n);}
|
||||
|
||||
/* endian-neutral reading of little-endian data */
|
||||
#define EndGetI32(a) ((((a)[3])<<24)|(((a)[2])<<16)|(((a)[1])<<8)|((a)[0]))
|
||||
#define EndGetI16(a) ((((a)[1])<<8)|((a)[0]))
|
||||
|
||||
#define CAB(x) (decomp_state->x)
|
||||
#define ZIP(x) (decomp_state->methods.zip.x)
|
||||
#define QTM(x) (decomp_state->methods.qtm.x)
|
||||
#define LZX(x) (decomp_state->methods.lzx.x)
|
||||
#define DECR_OK (0)
|
||||
#define DECR_DATAFORMAT (1)
|
||||
#define DECR_ILLEGALDATA (2)
|
||||
#define DECR_NOMEMORY (3)
|
||||
#define DECR_CHECKSUM (4)
|
||||
#define DECR_INPUT (5)
|
||||
#define DECR_OUTPUT (6)
|
||||
|
||||
/* Bitstream reading macros (Quantum / normal byte order)
|
||||
*
|
||||
* Q_INIT_BITSTREAM should be used first to set up the system
|
||||
* Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
|
||||
* unlike LZX, this can loop several times to get the
|
||||
* requisite number of bits.
|
||||
* Q_FILL_BUFFER adds more data to the bit buffer, if there is room
|
||||
* for another 16 bits.
|
||||
* Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
|
||||
* buffer
|
||||
* Q_REMOVE_BITS(n) removes N bits from the bit buffer
|
||||
*
|
||||
* These bit access routines work by using the area beyond the MSB and the
|
||||
* LSB as a free source of zeroes. This avoids having to mask any bits.
|
||||
* So we have to know the bit width of the bitbuffer variable. This is
|
||||
* defined as ULONG_BITS.
|
||||
*
|
||||
* ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
|
||||
* Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
|
||||
* need an assured number. Retrieving larger bitstrings can be done with
|
||||
* multiple reads and fills of the bitbuffer. The code should work fine
|
||||
* for machines where ULONG >= 32 bits.
|
||||
*
|
||||
* Also note that Quantum reads bytes in normal order; LZX is in
|
||||
* little-endian order.
|
||||
*/
|
||||
|
||||
#define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
|
||||
|
||||
#define Q_FILL_BUFFER do { \
|
||||
if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
|
||||
bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
|
||||
bitsleft += 16; inpos += 2; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
|
||||
#define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
|
||||
|
||||
#define Q_READ_BITS(v,n) do { \
|
||||
(v) = 0; \
|
||||
for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
|
||||
Q_FILL_BUFFER; \
|
||||
bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
|
||||
(v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
|
||||
Q_REMOVE_BITS(bitrun); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define Q_MENTRIES(model) (QTM(model).entries)
|
||||
#define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
|
||||
#define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
|
||||
|
||||
/* GET_SYMBOL(model, var) fetches the next symbol from the stated model
|
||||
* and puts it in var. it may need to read the bitstream to do this.
|
||||
*/
|
||||
#define GET_SYMBOL(m, var) do { \
|
||||
range = ((H - L) & 0xFFFF) + 1; \
|
||||
symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
|
||||
\
|
||||
for (i=1; i < Q_MENTRIES(m); i++) { \
|
||||
if (Q_MSYMFREQ(m,i) <= symf) break; \
|
||||
} \
|
||||
(var) = Q_MSYM(m,i-1); \
|
||||
\
|
||||
range = (H - L) + 1; \
|
||||
H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
|
||||
L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
|
||||
while (1) { \
|
||||
if ((L & 0x8000) != (H & 0x8000)) { \
|
||||
if ((L & 0x4000) && !(H & 0x4000)) { \
|
||||
/* underflow case */ \
|
||||
C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
|
||||
} \
|
||||
else break; \
|
||||
} \
|
||||
L <<= 1; H = (H << 1) | 1; \
|
||||
Q_FILL_BUFFER; \
|
||||
C = (C << 1) | Q_PEEK_BITS(1); \
|
||||
Q_REMOVE_BITS(1); \
|
||||
} \
|
||||
\
|
||||
QTMupdatemodel(&(QTM(m)), i); \
|
||||
} while (0)
|
||||
|
||||
/* Bitstream reading macros (LZX / intel little-endian byte order)
|
||||
*
|
||||
* INIT_BITSTREAM should be used first to set up the system
|
||||
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
|
||||
*
|
||||
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
|
||||
* it can guarantee up to 17 bits (i.e. it can read in
|
||||
* 16 new bits when there is down to 1 bit in the buffer,
|
||||
* and it can read 32 bits when there are 0 bits in the
|
||||
* buffer).
|
||||
* PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
|
||||
* REMOVE_BITS(n) removes N bits from the bit buffer
|
||||
*
|
||||
* These bit access routines work by using the area beyond the MSB and the
|
||||
* LSB as a free source of zeroes. This avoids having to mask any bits.
|
||||
* So we have to know the bit width of the bitbuffer variable.
|
||||
*/
|
||||
|
||||
#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
|
||||
|
||||
/* Quantum reads bytes in normal order; LZX is little-endian order */
|
||||
#define ENSURE_BITS(n) \
|
||||
while (bitsleft < (n)) { \
|
||||
bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
|
||||
bitsleft += 16; inpos+=2; \
|
||||
}
|
||||
|
||||
#define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
|
||||
#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
|
||||
|
||||
#define READ_BITS(v,n) do { \
|
||||
if (n) { \
|
||||
ENSURE_BITS(n); \
|
||||
(v) = PEEK_BITS(n); \
|
||||
REMOVE_BITS(n); \
|
||||
} \
|
||||
else { \
|
||||
(v) = 0; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* Huffman macros */
|
||||
|
||||
#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
|
||||
#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
|
||||
#define SYMTABLE(tbl) (LZX(tbl##_table))
|
||||
#define LENTABLE(tbl) (LZX(tbl##_len))
|
||||
|
||||
/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
|
||||
* In reality, it just calls make_decode_table() with the appropriate
|
||||
* values - they're all fixed by some #defines anyway, so there's no point
|
||||
* writing each call out in full by hand.
|
||||
*/
|
||||
#define BUILD_TABLE(tbl) \
|
||||
if (make_decode_table( \
|
||||
MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
|
||||
)) { return DECR_ILLEGALDATA; }
|
||||
|
||||
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
|
||||
* bitstream using the stated table and puts it in var.
|
||||
*/
|
||||
#define READ_HUFFSYM(tbl,var) do { \
|
||||
ENSURE_BITS(16); \
|
||||
hufftbl = SYMTABLE(tbl); \
|
||||
if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
|
||||
j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
|
||||
do { \
|
||||
j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
|
||||
if (!j) { return DECR_ILLEGALDATA; } \
|
||||
} while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
|
||||
} \
|
||||
j = LENTABLE(tbl)[(var) = i]; \
|
||||
REMOVE_BITS(j); \
|
||||
} while (0)
|
||||
|
||||
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
|
||||
* first to last in the given table. The code lengths are stored in their
|
||||
* own special LZX way.
|
||||
*/
|
||||
#define READ_LENGTHS(tbl,first,last,fn) do { \
|
||||
lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
|
||||
if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
|
||||
return DECR_ILLEGALDATA; \
|
||||
} \
|
||||
bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
|
||||
} while (0)
|
||||
|
||||
/* Tables for deflate from PKZIP's appnote.txt. */
|
||||
|
||||
#define THOSE_ZIP_CONSTS \
|
||||
static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
|
||||
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
|
||||
static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
|
||||
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
|
||||
59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
|
||||
static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
|
||||
4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
|
||||
static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
|
||||
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
|
||||
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
|
||||
static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
|
||||
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
|
||||
10, 11, 11, 12, 12, 13, 13}; \
|
||||
/* And'ing with Zipmask[n] masks the lower n bits */ \
|
||||
static const cab_UWORD Zipmask[17] = { \
|
||||
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
|
||||
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
|
||||
}
|
||||
|
||||
/* from cabextract.c */
|
||||
BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower);
|
||||
void QTMupdatemodel(struct QTMmodel *model, int sym);
|
||||
int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table);
|
||||
cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum);
|
||||
|
||||
#endif /* __WINE_CABINET_H */
|
||||
|
|
1623
dlls/cabinet/fdi.c
1623
dlls/cabinet/fdi.c
File diff suppressed because it is too large
Load diff
Loading…
Reference in a new issue