weston/tests/color_util.c
Leandro Ribeiro 8c9dd4febb tests/color-icc-output: add ICC VCGT tests
There are some ICC profiles that contain something named VCGT tag. These
are usually power curves (y = x ^ exp) that were loaded in the video
card when the ICC profile was created. So the compositor should mimic
that in order to use the profile.

Weston already has support for that, but our ICC profile tests were
missing this case. This adds such tests.

For testing purposes, we have added tests with different exponents per
color channel.

Signed-off-by: Leandro Ribeiro <leandro.ribeiro@collabora.com>
2023-04-27 10:37:38 +00:00

559 lines
14 KiB
C

/*
* Copyright 2020 Collabora, Ltd.
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <libweston/matrix.h>
#include "color_util.h"
#include "weston-test-runner.h"
#include "shared/helpers.h"
static_assert(sizeof(struct color_float) == 4 * sizeof(float),
"unexpected padding in struct color_float");
static_assert(offsetof(struct color_float, r) == offsetof(struct color_float, rgb[COLOR_CHAN_R]),
"unexpected offset for struct color_float::r");
static_assert(offsetof(struct color_float, g) == offsetof(struct color_float, rgb[COLOR_CHAN_G]),
"unexpected offset for struct color_float::g");
static_assert(offsetof(struct color_float, b) == offsetof(struct color_float, rgb[COLOR_CHAN_B]),
"unexpected offset for struct color_float::b");
struct color_tone_curve {
enum transfer_fn fn;
enum transfer_fn inv_fn;
/* LCMS2 API */
int internal_type;
double param[5];
};
/* Mapping from enum transfer_fn to LittleCMS curve parameters. */
const struct color_tone_curve arr_curves[] = {
{
.fn = TRANSFER_FN_SRGB_EOTF,
.inv_fn = TRANSFER_FN_SRGB_EOTF_INVERSE,
.internal_type = 4,
.param = { 2.4, 1. / 1.055, 0.055 / 1.055, 1. / 12.92, 0.04045 },
},
{
.fn = TRANSFER_FN_ADOBE_RGB_EOTF,
.inv_fn = TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE,
.internal_type = 1,
.param = { 563./256., 0.0, 0.0, 0.0 , 0.0 },
},
{
.fn = TRANSFER_FN_POWER2_4_EOTF,
.inv_fn = TRANSFER_FN_POWER2_4_EOTF_INVERSE,
.internal_type = 1,
.param = { 2.4, 0.0, 0.0, 0.0 , 0.0 },
}
};
bool
find_tone_curve_type(enum transfer_fn fn, int *type, double params[5])
{
const int size_arr = ARRAY_LENGTH(arr_curves);
const struct color_tone_curve *curve;
for (curve = &arr_curves[0]; curve < &arr_curves[size_arr]; curve++ ) {
if (curve->fn == fn )
*type = curve->internal_type;
else if (curve->inv_fn == fn)
*type = -curve->internal_type;
else
continue;
memcpy(params, curve->param, sizeof(curve->param));
return true;
}
return false;
}
enum transfer_fn
transfer_fn_invert(enum transfer_fn fn)
{
switch (fn) {
case TRANSFER_FN_ADOBE_RGB_EOTF:
return TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE;
case TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE:
return TRANSFER_FN_ADOBE_RGB_EOTF;
case TRANSFER_FN_IDENTITY:
return TRANSFER_FN_IDENTITY;
case TRANSFER_FN_POWER2_4_EOTF:
return TRANSFER_FN_POWER2_4_EOTF_INVERSE;
case TRANSFER_FN_POWER2_4_EOTF_INVERSE:
return TRANSFER_FN_POWER2_4_EOTF;
case TRANSFER_FN_SRGB_EOTF:
return TRANSFER_FN_SRGB_EOTF_INVERSE;
case TRANSFER_FN_SRGB_EOTF_INVERSE:
return TRANSFER_FN_SRGB_EOTF;
}
assert(0 && "bad transfer_fn");
return 0;
}
const char *
transfer_fn_name(enum transfer_fn fn)
{
switch (fn) {
case TRANSFER_FN_ADOBE_RGB_EOTF:
return "AdobeRGB EOTF";
case TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE:
return "inverse AdobeRGB EOTF";
case TRANSFER_FN_IDENTITY:
return "identity";
case TRANSFER_FN_POWER2_4_EOTF:
return "power 2.4";
case TRANSFER_FN_POWER2_4_EOTF_INVERSE:
return "inverse power 2.4";
case TRANSFER_FN_SRGB_EOTF:
return "sRGB EOTF";
case TRANSFER_FN_SRGB_EOTF_INVERSE:
return "inverse sRGB EOTF";
}
assert(0 && "bad transfer_fn");
return 0;
}
/**
* NaN comes out as is
*This function is not intended for hiding NaN.
*/
static float
ensure_unit_range(float v)
{
const float tol = 1e-5f;
const float lim_lo = -tol;
const float lim_hi = 1.0f + tol;
assert(v >= lim_lo);
if (v < 0.0f)
return 0.0f;
assert(v <= lim_hi);
if (v > 1.0f)
return 1.0f;
return v;
}
static float
sRGB_EOTF(float e)
{
e = ensure_unit_range(e);
if (e <= 0.04045)
return e / 12.92;
else
return pow((e + 0.055) / 1.055, 2.4);
}
static float
sRGB_EOTF_inv(float o)
{
o = ensure_unit_range(o);
if (o <= 0.04045 / 12.92)
return o * 12.92;
else
return pow(o, 1.0 / 2.4) * 1.055 - 0.055;
}
static float
AdobeRGB_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 563./256.);
}
static float
AdobeRGB_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 256./563.);
}
static float
Power2_4_EOTF(float e)
{
e = ensure_unit_range(e);
return pow(e, 2.4);
}
static float
Power2_4_EOTF_inv(float o)
{
o = ensure_unit_range(o);
return pow(o, 1./2.4);
}
float
apply_tone_curve(enum transfer_fn fn, float r)
{
float ret = 0;
switch(fn) {
case TRANSFER_FN_IDENTITY:
ret = r;
break;
case TRANSFER_FN_SRGB_EOTF:
ret = sRGB_EOTF(r);
break;
case TRANSFER_FN_SRGB_EOTF_INVERSE:
ret = sRGB_EOTF_inv(r);
break;
case TRANSFER_FN_ADOBE_RGB_EOTF:
ret = AdobeRGB_EOTF(r);
break;
case TRANSFER_FN_ADOBE_RGB_EOTF_INVERSE:
ret = AdobeRGB_EOTF_inv(r);
break;
case TRANSFER_FN_POWER2_4_EOTF:
ret = Power2_4_EOTF(r);
break;
case TRANSFER_FN_POWER2_4_EOTF_INVERSE:
ret = Power2_4_EOTF_inv(r);
break;
}
return ret;
}
struct color_float
a8r8g8b8_to_float(uint32_t v)
{
struct color_float cf;
cf.a = ((v >> 24) & 0xff) / 255.f;
cf.r = ((v >> 16) & 0xff) / 255.f;
cf.g = ((v >> 8) & 0xff) / 255.f;
cf.b = ((v >> 0) & 0xff) / 255.f;
return cf;
}
struct color_float
color_float_apply_curve(enum transfer_fn fn, struct color_float c)
{
unsigned i;
for (i = 0; i < COLOR_CHAN_NUM; i++)
c.rgb[i] = apply_tone_curve(fn, c.rgb[i]);
return c;
}
void
sRGB_linearize(struct color_float *cf)
{
*cf = color_float_apply_curve(TRANSFER_FN_SRGB_EOTF, *cf);
}
void
sRGB_delinearize(struct color_float *cf)
{
*cf = color_float_apply_curve(TRANSFER_FN_SRGB_EOTF_INVERSE, *cf);
}
struct color_float
color_float_unpremult(struct color_float in)
{
static const struct color_float transparent = {
.r = 0.0f, .g = 0.0f, .b = 0.0f, .a = 0.0f,
};
struct color_float out;
int i;
if (in.a == 0.0f)
return transparent;
for (i = 0; i < COLOR_CHAN_NUM; i++)
out.rgb[i] = in.rgb[i] / in.a;
out.a = in.a;
return out;
}
/*
* Returns the result of the matrix-vector multiplication mat * c.
*/
struct color_float
color_float_apply_matrix(const struct lcmsMAT3 *mat, struct color_float c)
{
struct color_float result;
unsigned i, j;
/*
* The matrix has an array of columns, hence i indexes to rows and
* j indexes to columns.
*/
for (i = 0; i < 3; i++) {
result.rgb[i] = 0.0f;
for (j = 0; j < 3; j++)
result.rgb[i] += mat->v[j].n[i] * c.rgb[j];
}
result.a = c.a;
return result;
}
bool
should_include_vcgt(const double vcgt_exponents[COLOR_CHAN_NUM])
{
unsigned int i;
for (i = 0; i < COLOR_CHAN_NUM; i++)
if (vcgt_exponents[i] == 0.0)
return false;
return true;
}
void
process_pixel_using_pipeline(enum transfer_fn pre_curve,
const struct lcmsMAT3 *mat,
enum transfer_fn post_curve,
const double vcgt_exponents[COLOR_CHAN_NUM],
const struct color_float *in,
struct color_float *out)
{
struct color_float cf;
unsigned i;
cf = color_float_apply_curve(pre_curve, *in);
cf = color_float_apply_matrix(mat, cf);
cf = color_float_apply_curve(post_curve, cf);
if (should_include_vcgt(vcgt_exponents))
for (i = 0; i < COLOR_CHAN_NUM; i++)
cf.rgb[i] = pow(cf.rgb[i], vcgt_exponents[i]);
*out = cf;
}
static void
weston_matrix_from_lcmsMAT3(struct weston_matrix *w, const struct lcmsMAT3 *m)
{
unsigned r, c;
/* column-major */
weston_matrix_init(w);
for (c = 0; c < 3; c++) {
for (r = 0; r < 3; r++)
w->d[c * 4 + r] = m->v[c].n[r];
}
}
static void
lcmsMAT3_from_weston_matrix(struct lcmsMAT3 *m, const struct weston_matrix *w)
{
unsigned r, c;
for (c = 0; c < 3; c++) {
for (r = 0; r < 3; r++)
m->v[c].n[r] = w->d[c * 4 + r];
}
}
void
lcmsMAT3_invert(struct lcmsMAT3 *result, const struct lcmsMAT3 *mat)
{
struct weston_matrix inv;
struct weston_matrix w;
int ret;
weston_matrix_from_lcmsMAT3(&w, mat);
ret = weston_matrix_invert(&inv, &w);
assert(ret == 0);
lcmsMAT3_from_weston_matrix(result, &inv);
}
/** Update scalar statistics
*
* \param stat The statistics structure to update.
* \param val A sample of the variable whose statistics you are collecting.
* \param pos The "position" that generated the current value.
*
* Accumulates min, max, sum and count statistics with the given value.
* Stores the position related to the current max and min each.
*
* To use this, declare a variable of type struct scalar_stat and
* zero-initialize it. Repeatedly call scalar_stat_update() to accumulate
* statistics. Then either directly read out what you are interested in from
* the structure, or use the related accessor or printing functions.
*
* If you also want to collect a debug log of all calls to this function,
* initialize the .dump member to a writable file handle. This is easiest
* with fopen_dump_file(). Remember to fclose() the handle after you have
* no more samples to add.
*/
void
scalar_stat_update(struct scalar_stat *stat,
double val,
const struct color_float *pos)
{
if (stat->count == 0 || stat->min > val) {
stat->min = val;
stat->min_pos = *pos;
}
if (stat->count == 0 || stat->max < val) {
stat->max = val;
stat->max_pos = *pos;
}
stat->sum += val;
stat->count++;
if (stat->dump) {
fprintf(stat->dump, "%.8g %.5g %.5g %.5g %.5g\n",
val, pos->r, pos->g, pos->b, pos->a);
}
}
/** Return the average of the previously seen values. */
float
scalar_stat_avg(const struct scalar_stat *stat)
{
return stat->sum / stat->count;
}
/** Print scalar statistics with pos.r only */
void
scalar_stat_print_float(const struct scalar_stat *stat)
{
testlog(" min %11.5g at %.5f\n", stat->min, stat->min_pos.r);
testlog(" max %11.5g at %.5f\n", stat->max, stat->max_pos.r);
testlog(" avg %11.5g\n", scalar_stat_avg(stat));
}
static void
print_stat_at_pos(const char *lim, double val, struct color_float pos, double scale)
{
testlog(" %s %8.5f at rgb(%7.2f, %7.2f, %7.2f)\n",
lim, val * scale, pos.r * scale, pos.g * scale, pos.b * scale);
}
static void
print_rgb_at_pos(const struct scalar_stat *stat, double scale)
{
print_stat_at_pos("min", stat->min, stat->min_pos, scale);
print_stat_at_pos("max", stat->max, stat->max_pos, scale);
testlog(" avg %8.5f\n", scalar_stat_avg(stat) * scale);
}
/** Print min/max/avg for each R/G/B/two-norm statistics
*
* \param stat The statistics to print.
* \param title A custom title to include in the heading which shall be printed
* like "%s error statistics:".
* \param scaling_bits Determines a scaling factor for the printed numbers as
* 2^scaling_bits - 1.
*
* Usually RGB values are stored in unsigned integer representation. 8-bit
* integer range is [0, 255] for example. Passing scaling_bits=8 will multiply
* all values (differences, two-norm errors, and position values) by
* 2^8 - 1 = 255. This makes interpreting the recorded errors more intuitive
* through the integer encoding precision perspective.
*/
void
rgb_diff_stat_print(const struct rgb_diff_stat *stat,
const char *title, unsigned scaling_bits)
{
const char *const chan_name[COLOR_CHAN_NUM] = { "r", "g", "b" };
float scale = exp2f(scaling_bits) - 1.0f;
unsigned i;
assert(scaling_bits > 0);
testlog("%s error statistics, %u samples, value range 0.0 - %.1f:\n",
title, stat->two_norm.count, scale);
for (i = 0; i < COLOR_CHAN_NUM; i++) {
testlog(" ch %s (signed):\n", chan_name[i]);
print_rgb_at_pos(&stat->rgb[i], scale);
}
testlog(" rgb two-norm:\n");
print_rgb_at_pos(&stat->two_norm, scale);
}
/** Update RGB difference statistics
*
* \param stat The statistics structure to update.
* \param ref The reference color to compare to.
* \param val The color produced by the algorithm under test; a sample.
* \param pos The position to be recorded with extremes.
*
* Computes the RGB difference by subtracting the reference color from the
* sample. This signed difference is tracked separately for each color channel
* in a scalar_stat to find the min, max, and average signed difference. The
* two-norm (Euclidean length) of the RGB difference vector is tracked in
* another scalar_stat.
*
* The position is stored separately for each of the eight min/max
* R/G/B/two-norm values recorded. A good way to use position is to record
* the algorithm input color.
*
* To use this, declare a variable of type struct rgb_diff_stat and
* zero-initalize it. Repeatedly call rgb_diff_stat_update() to accumulate
* statistics. Then either directly read out what you are interested in from
* the structure or use rgb_diff_stat_print().
*
* If you also want to collect a debug log of all calls to this function,
* initialize the .dump member to a writable file handle. This is easiest
* with fopen_dump_file(). Remember to fclose() the handle after you have
* no more samples to add.
*/
void
rgb_diff_stat_update(struct rgb_diff_stat *stat,
const struct color_float *ref,
const struct color_float *val,
const struct color_float *pos)
{
unsigned i;
double ssd = 0.0;
double diff[COLOR_CHAN_NUM];
double two_norm;
for (i = 0; i < COLOR_CHAN_NUM; i++) {
diff[i] = val->rgb[i] - ref->rgb[i];
scalar_stat_update(&stat->rgb[i], diff[i], pos);
ssd += diff[i] * diff[i];
}
two_norm = sqrt(ssd);
scalar_stat_update(&stat->two_norm, two_norm, pos);
if (stat->dump) {
fprintf(stat->dump, "%.8g %.8g %.8g %.8g %.5g %.5g %.5g %.5g\n",
two_norm,
diff[COLOR_CHAN_R], diff[COLOR_CHAN_G], diff[COLOR_CHAN_B],
pos->r, pos->g, pos->b, pos->a);
}
}