serenity/Userland/Libraries/LibGfx/Point.h
Zaggy1024 883f44d397 LibWeb: Use CSSPixels only when calculating radial gradient sizes
In order to do this, a function `sqrt(CSSPixels)` was added, which
currently just converts to floating point to run `AK::sqrt()`.
2023-09-09 13:03:11 +02:00

323 lines
8.2 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Format.h>
#include <AK/Math.h>
#include <AK/StdLibExtras.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Orientation.h>
#include <LibIPC/Forward.h>
#include <math.h>
namespace Gfx {
template<typename T>
class Point {
public:
Point() = default;
constexpr Point(T x, T y)
: m_x(x)
, m_y(y)
{
}
template<typename U>
constexpr Point(U x, U y)
: m_x(x)
, m_y(y)
{
}
template<typename U>
explicit Point(Point<U> const& other)
: m_x(other.x())
, m_y(other.y())
{
}
[[nodiscard]] constexpr ALWAYS_INLINE T x() const { return m_x; }
[[nodiscard]] constexpr ALWAYS_INLINE T y() const { return m_y; }
ALWAYS_INLINE void set_x(T x) { m_x = x; }
ALWAYS_INLINE void set_y(T y) { m_y = y; }
[[nodiscard]] ALWAYS_INLINE bool is_zero() const { return m_x == 0 && m_y == 0; }
void translate_by(T dx, T dy)
{
m_x += dx;
m_y += dy;
}
ALWAYS_INLINE void translate_by(T dboth) { translate_by(dboth, dboth); }
ALWAYS_INLINE void translate_by(Point<T> const& delta) { translate_by(delta.x(), delta.y()); }
void scale_by(T dx, T dy)
{
m_x *= dx;
m_y *= dy;
}
ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); }
ALWAYS_INLINE void scale_by(Point<T> const& delta) { scale_by(delta.x(), delta.y()); }
void transform_by(AffineTransform const& transform) { *this = transform.map(*this); }
[[nodiscard]] Point<T> translated(Point<T> const& delta) const
{
Point<T> point = *this;
point.translate_by(delta);
return point;
}
[[nodiscard]] Point<T> translated(T dx, T dy) const
{
Point<T> point = *this;
point.translate_by(dx, dy);
return point;
}
[[nodiscard]] Point<T> translated(T dboth) const
{
Point<T> point = *this;
point.translate_by(dboth, dboth);
return point;
}
[[nodiscard]] Point<T> scaled(T dboth) const
{
Point<T> point = *this;
point.scale_by(dboth);
return point;
}
[[nodiscard]] Point<T> scaled(Point<T> const& delta) const
{
Point<T> point = *this;
point.scale_by(delta);
return point;
}
[[nodiscard]] Point<T> scaled(T sx, T sy) const
{
Point<T> point = *this;
point.scale_by(sx, sy);
return point;
}
[[nodiscard]] Point<T> transformed(AffineTransform const& transform) const
{
Point<T> point = *this;
point.transform_by(transform);
return point;
}
void constrain(Rect<T> const&);
[[nodiscard]] Point<T> constrained(Rect<T> const& rect) const
{
Point<T> point = *this;
point.constrain(rect);
return point;
}
[[nodiscard]] Point<T> moved_left(T amount) const { return { x() - amount, y() }; }
[[nodiscard]] Point<T> moved_right(T amount) const { return { x() + amount, y() }; }
[[nodiscard]] Point<T> moved_up(T amount) const { return { x(), y() - amount }; }
[[nodiscard]] Point<T> moved_down(T amount) const { return { x(), y() + amount }; }
template<class U>
[[nodiscard]] bool operator==(Point<U> const& other) const
{
return x() == other.x() && y() == other.y();
}
[[nodiscard]] Point<T> operator+(Point<T> const& other) const { return { m_x + other.m_x, m_y + other.m_y }; }
Point<T>& operator+=(Point<T> const& other)
{
m_x += other.m_x;
m_y += other.m_y;
return *this;
}
[[nodiscard]] Point<T> operator-() const { return { -m_x, -m_y }; }
[[nodiscard]] Point<T> operator-(Point<T> const& other) const { return { m_x - other.m_x, m_y - other.m_y }; }
Point<T>& operator-=(Point<T> const& other)
{
m_x -= other.m_x;
m_y -= other.m_y;
return *this;
}
[[nodiscard]] Point<T> operator*(T factor) const { return { m_x * factor, m_y * factor }; }
Point<T>& operator*=(T factor)
{
m_x *= factor;
m_y *= factor;
return *this;
}
[[nodiscard]] Point<T> operator/(T factor) const { return { m_x / factor, m_y / factor }; }
Point<T>& operator/=(T factor)
{
m_x /= factor;
m_y /= factor;
return *this;
}
[[nodiscard]] T primary_offset_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? y() : x();
}
void set_primary_offset_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_y(value);
} else {
set_x(value);
}
}
[[nodiscard]] T secondary_offset_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? x() : y();
}
void set_secondary_offset_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_x(value);
} else {
set_y(value);
}
}
[[nodiscard]] T dx_relative_to(Point<T> const& other) const
{
return x() - other.x();
}
[[nodiscard]] T dy_relative_to(Point<T> const& other) const
{
return y() - other.y();
}
// Returns pixels moved from other in either direction
[[nodiscard]] T pixels_moved(Point<T> const& other) const
{
return max(AK::abs(dx_relative_to(other)), AK::abs(dy_relative_to(other)));
}
[[nodiscard]] float distance_from(Point<T> const& other) const
{
if (*this == other)
return 0;
return AK::hypot<float>(m_x - other.m_x, m_y - other.m_y);
}
[[nodiscard]] Point absolute_relative_distance_to(Point const& other) const
{
return { AK::abs(dx_relative_to(other)), AK::abs(dy_relative_to(other)) };
}
[[nodiscard]] Point end_point_for_aspect_ratio(Point const& previous_end_point, float aspect_ratio) const;
template<typename U>
requires(!IsSame<T, U>)
[[nodiscard]] Point<U> to_type() const
{
return Point<U>(*this);
}
template<typename U>
[[nodiscard]] Point<U> to_rounded() const
{
return Point<U>(roundf(x()), roundf(y()));
}
template<typename U>
requires FloatingPoint<T>
[[nodiscard]] Point<U> to_ceiled() const
{
return Point<U>(ceil(x()), ceil(y()));
}
template<typename U>
requires FloatingPoint<T>
[[nodiscard]] Point<U> to_floored() const
{
return Point<U>(AK::floor(x()), AK::floor(y()));
}
[[nodiscard]] DeprecatedString to_deprecated_string() const;
private:
T m_x { 0 };
T m_y { 0 };
};
using IntPoint = Point<int>;
using FloatPoint = Point<float>;
template<typename T>
inline Point<T> linear_interpolate(Point<T> const& p1, Point<T> const& p2, float t)
{
return Point<T> { p1.x() + t * (p2.x() - p1.x()), p1.y() + t * (p2.y() - p1.y()) };
}
template<typename T>
inline Point<T> quadratic_interpolate(Point<T> const& p1, Point<T> const& p2, Point<T> const& c1, float t)
{
return linear_interpolate(linear_interpolate(p1, c1, t), linear_interpolate(c1, p2, t), t);
}
template<typename T>
inline Point<T> cubic_interpolate(Point<T> const& p1, Point<T> const& p2, Point<T> const& c1, Point<T> const& c2, float t)
{
return linear_interpolate(quadratic_interpolate(p1, c1, c2, t), quadratic_interpolate(c1, c2, p2, t), t);
}
}
namespace AK {
template<typename T>
struct Formatter<Gfx::Point<T>> : Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Gfx::Point<T> const& value)
{
return Formatter<FormatString>::format(builder, "[{},{}]"sv, value.x(), value.y());
}
};
}
namespace IPC {
template<>
ErrorOr<void> encode(Encoder&, Gfx::IntPoint const&);
template<>
ErrorOr<Gfx::IntPoint> decode(Decoder&);
}
template<typename T>
struct AK::Traits<Gfx::Point<T>> : public AK::GenericTraits<Gfx::Point<T>> {
static constexpr bool is_trivial() { return false; }
static unsigned hash(Gfx::Point<T> const& point)
{
return pair_int_hash(AK::Traits<T>::hash(point.x()), AK::Traits<T>::hash(point.y()));
}
};