1
0
mirror of https://github.com/SerenityOS/serenity synced 2024-07-09 08:00:47 +00:00
serenity/Kernel/Tasks/Process.h
Liav A. ecc9c5409d Kernel: Ignore dirfd if absolute path is given in VFS-related syscalls
To be able to do this, we add a new class called CustodyBase, which can
be resolved on-demand internally in the VirtualFileSystem resolving path
code.

When being resolved, CustodyBase will return a known custody if it was
constructed with such, if that's not the case it will provide the root
custody if the original path is absolute.
Lastly, if that's not the case as well, it will resolve the given dirfd
to provide a Custody object.
2024-06-01 19:25:15 +02:00

1130 lines
47 KiB
C++

/*
* Copyright (c) 2018-2023, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/FixedStringBuffer.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/IntrusiveListRelaxedConst.h>
#include <AK/OwnPtr.h>
#include <AK/RefPtr.h>
#include <AK/Userspace.h>
#include <AK/Variant.h>
#include <Kernel/API/POSIX/select.h>
#include <Kernel/API/POSIX/sys/resource.h>
#include <Kernel/API/Syscall.h>
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
# include <Kernel/Devices/KCOVInstance.h>
#endif
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/FileSystem/UnveilNode.h>
#include <Kernel/Forward.h>
#include <Kernel/Library/Assertions.h>
#include <Kernel/Library/LockWeakPtr.h>
#include <Kernel/Library/LockWeakable.h>
#include <Kernel/Library/StdLib.h>
#include <Kernel/Locking/Mutex.h>
#include <Kernel/Locking/MutexProtected.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/Security/Credentials.h>
#include <Kernel/Security/Jail.h>
#include <Kernel/Tasks/AtomicEdgeAction.h>
#include <Kernel/Tasks/FutexQueue.h>
#include <Kernel/Tasks/PerformanceEventBuffer.h>
#include <Kernel/Tasks/ProcessGroup.h>
#include <Kernel/Tasks/Thread.h>
#include <Kernel/UnixTypes.h>
#include <LibELF/ELFABI.h>
namespace Kernel {
MutexProtected<FixedStringBuffer<UTSNAME_ENTRY_LEN - 1>>& hostname();
UnixDateTime kgettimeofday();
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
__ENUMERATE_PLEDGE_PROMISE(getkeymap) \
__ENUMERATE_PLEDGE_PROMISE(jail) \
__ENUMERATE_PLEDGE_PROMISE(mount) \
__ENUMERATE_PLEDGE_PROMISE(no_error)
#define __ENUMERATE_PLEDGE_PROMISE(x) sizeof(#x) + 1 +
// NOTE: We truncate the last space from the string as it's not needed (with 0 - 1).
constexpr static unsigned all_promises_strings_length_with_spaces = ENUMERATE_PLEDGE_PROMISES 0 - 1;
#undef __ENUMERATE_PLEDGE_PROMISE
// NOTE: This is a sanity check because length of more than 1024 characters
// is not reasonable.
static_assert(all_promises_strings_length_with_spaces <= 1024);
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
LockedInherited,
};
static constexpr FlatPtr futex_key_private_flag = 0b1;
union GlobalFutexKey {
struct {
Memory::VMObject const* vmobject;
FlatPtr offset;
} shared;
struct {
Memory::AddressSpace const* address_space;
FlatPtr user_address;
} private_;
struct {
FlatPtr parent;
FlatPtr offset;
} raw;
};
static_assert(sizeof(GlobalFutexKey) == (sizeof(FlatPtr) * 2));
struct LoadResult;
class ProcessList;
class Process final
: public ListedRefCounted<Process, LockType::Spinlock>
, public LockWeakable<Process> {
class ProtectedValues {
public:
ProcessID pid { 0 };
ProcessID ppid { 0 };
// FIXME: This should be a NonnullRefPtr
RefPtr<Credentials> credentials;
RefPtr<ProcessGroup> process_group;
RefPtr<TTY> tty;
bool dumpable { false };
bool executable_is_setid { false };
bool has_promises { false };
u32 promises { 0 };
bool has_execpromises { false };
u32 execpromises { 0 };
mode_t umask { 022 };
VirtualAddress signal_trampoline;
Atomic<u32> thread_count { 0 };
u8 termination_status { 0 };
u8 termination_signal { 0 };
SetOnce reject_transition_to_executable_from_writable_prot;
};
public:
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
friend class Thread;
friend class Coredump;
auto with_protected_data(auto&& callback) const
{
SpinlockLocker locker(m_protected_data_lock);
return callback(m_protected_values_do_not_access_directly);
}
auto with_mutable_protected_data(auto&& callback)
{
SpinlockLocker locker(m_protected_data_lock);
unprotect_data();
auto guard = ScopeGuard([&] { protect_data(); });
return callback(m_protected_values_do_not_access_directly);
}
enum class State : u8 {
Running = 0,
Dying,
Dead
};
public:
static Process& current()
{
auto* current_thread = Processor::current_thread();
VERIFY(current_thread);
return current_thread->process();
}
static bool has_current()
{
return Processor::current_thread() != nullptr;
}
template<typename EntryFunction>
static void kernel_process_trampoline(void* data)
{
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
}
enum class RegisterProcess {
No,
Yes
};
struct ProcessAndFirstThread {
NonnullRefPtr<Process> process;
NonnullRefPtr<Thread> first_thread;
};
template<typename EntryFunction>
static ErrorOr<ProcessAndFirstThread> create_kernel_process(StringView name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_process(name, &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
}
static ErrorOr<ProcessAndFirstThread> create_kernel_process(StringView name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
static ErrorOr<ProcessAndFirstThread> create_user_process(StringView path, UserID, GroupID, Vector<NonnullOwnPtr<KString>> arguments, Vector<NonnullOwnPtr<KString>> environment, RefPtr<TTY>);
static void register_new(Process&);
~Process();
virtual void remove_from_secondary_lists();
ErrorOr<NonnullRefPtr<Thread>> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, StringView name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
NO_SANITIZE_COVERAGE KCOVInstance* kcov_instance()
{
return m_kcov_instance;
}
void set_kcov_instance(KCOVInstance* kcov_instance) { m_kcov_instance = kcov_instance; }
static bool is_kcov_busy();
#endif
bool should_generate_coredump() const
{
return m_should_generate_coredump;
}
void set_should_generate_coredump(bool b) { m_should_generate_coredump = b; }
bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }
bool is_stopped() const { return m_is_stopped; }
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
bool is_kernel_process() const { return m_is_kernel_process; }
bool is_user_process() const { return !m_is_kernel_process; }
static RefPtr<Process> from_pid_in_same_jail(ProcessID);
static RefPtr<Process> from_pid_ignoring_jails(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
using Name = FixedStringBuffer<32>;
SpinlockProtected<Name, LockRank::None> const& name() const;
void set_name(StringView);
ProcessID pid() const
{
return with_protected_data([](auto& protected_data) { return protected_data.pid; });
}
SessionID sid() const { return credentials()->sid(); }
bool is_session_leader() const { return sid().value() == pid().value(); }
ProcessGroupID pgid() const
{
return with_protected_data([](auto& protected_data) { return protected_data.process_group ? protected_data.process_group->pgid() : 0; });
}
bool is_group_leader() const { return pgid().value() == pid().value(); }
ProcessID ppid() const
{
return with_protected_data([](auto& protected_data) { return protected_data.ppid; });
}
SpinlockProtected<RefPtr<Jail>, LockRank::Process> const& jail() { return m_attached_jail; }
bool is_currently_in_jail() const
{
return m_attached_jail.with([&](auto& jail) -> bool { return !jail.is_null(); });
}
NonnullRefPtr<Credentials> credentials() const;
bool is_dumpable() const
{
return with_protected_data([](auto& protected_data) { return protected_data.dumpable; });
}
mode_t umask() const
{
return with_protected_data([](auto& protected_data) { return protected_data.umask; });
}
// Breakable iteration functions
template<IteratorFunction<Process&> Callback>
static void for_each_ignoring_jails(Callback);
static ErrorOr<void> for_each_in_same_jail(Function<ErrorOr<void>(Process&)>);
ErrorOr<void> for_each_in_pgrp_in_same_jail(ProcessGroupID, Function<ErrorOr<void>(Process&)>);
ErrorOr<void> for_each_child_in_same_jail(Function<ErrorOr<void>(Process&)>);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
ErrorOr<void> try_for_each_thread(Function<ErrorOr<void>(Thread const&)>) const;
// Non-breakable iteration functions
template<VoidFunction<Process&> Callback>
static void for_each_ignoring_jails(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
void die();
void finalize();
ThreadTracer* tracer() { return m_tracer.ptr(); }
bool is_traced() const { return !!m_tracer; }
ErrorOr<void> start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(Thread&, RegisterState const&);
ErrorOr<FlatPtr> sys$emuctl();
ErrorOr<FlatPtr> sys$yield();
ErrorOr<FlatPtr> sys$sync();
ErrorOr<FlatPtr> sys$beep(int tone);
ErrorOr<FlatPtr> sys$create_inode_watcher(u32 flags);
ErrorOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<Syscall::SC_inode_watcher_add_watch_params const*> user_params);
ErrorOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
ErrorOr<FlatPtr> sys$dbgputstr(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$dump_backtrace();
ErrorOr<FlatPtr> sys$gettid();
ErrorOr<FlatPtr> sys$setsid();
ErrorOr<FlatPtr> sys$getsid(pid_t);
ErrorOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
ErrorOr<FlatPtr> sys$getpgrp();
ErrorOr<FlatPtr> sys$getpgid(pid_t);
ErrorOr<FlatPtr> sys$getuid();
ErrorOr<FlatPtr> sys$getgid();
ErrorOr<FlatPtr> sys$geteuid();
ErrorOr<FlatPtr> sys$getegid();
ErrorOr<FlatPtr> sys$getpid();
ErrorOr<FlatPtr> sys$getppid();
ErrorOr<FlatPtr> sys$getresuid(Userspace<UserID*>, Userspace<UserID*>, Userspace<UserID*>);
ErrorOr<FlatPtr> sys$getresgid(Userspace<GroupID*>, Userspace<GroupID*>, Userspace<GroupID*>);
ErrorOr<FlatPtr> sys$getrusage(int, Userspace<rusage*>);
ErrorOr<FlatPtr> sys$umask(mode_t);
ErrorOr<FlatPtr> sys$open(Userspace<Syscall::SC_open_params const*>);
ErrorOr<FlatPtr> sys$close(int fd);
ErrorOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
ErrorOr<FlatPtr> sys$pread(int fd, Userspace<u8*>, size_t, off_t);
ErrorOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
ErrorOr<FlatPtr> sys$write(int fd, Userspace<u8 const*>, size_t);
ErrorOr<FlatPtr> sys$pwritev(int fd, Userspace<const struct iovec*> iov, int iov_count, off_t);
ErrorOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
ErrorOr<FlatPtr> sys$stat(Userspace<Syscall::SC_stat_params const*>);
ErrorOr<FlatPtr> sys$annotate_mapping(Userspace<void*>, int flags);
ErrorOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
ErrorOr<FlatPtr> sys$ftruncate(int fd, off_t);
ErrorOr<FlatPtr> sys$futimens(Userspace<Syscall::SC_futimens_params const*>);
ErrorOr<FlatPtr> sys$posix_fallocate(int fd, off_t, off_t);
ErrorOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
ErrorOr<FlatPtr> sys$sigreturn(RegisterState& registers);
ErrorOr<FlatPtr> sys$waitid(Userspace<Syscall::SC_waitid_params const*>);
ErrorOr<FlatPtr> sys$mmap(Userspace<Syscall::SC_mmap_params const*>);
ErrorOr<FlatPtr> sys$mremap(Userspace<Syscall::SC_mremap_params const*>);
ErrorOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$set_mmap_name(Userspace<Syscall::SC_set_mmap_name_params const*>);
ErrorOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
ErrorOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
ErrorOr<FlatPtr> sys$msync(Userspace<void*>, size_t, int flags);
ErrorOr<FlatPtr> sys$purge(int mode);
ErrorOr<FlatPtr> sys$poll(Userspace<Syscall::SC_poll_params const*>);
ErrorOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$chdir(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$fchdir(int fd);
ErrorOr<FlatPtr> sys$adjtime(Userspace<timeval const*>, Userspace<timeval*>);
ErrorOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
ErrorOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<timespec const*>);
ErrorOr<FlatPtr> sys$clock_nanosleep(Userspace<Syscall::SC_clock_nanosleep_params const*>);
ErrorOr<FlatPtr> sys$clock_getres(Userspace<Syscall::SC_clock_getres_params const*>);
ErrorOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$sethostname(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$uname(Userspace<utsname*>);
ErrorOr<FlatPtr> sys$readlink(Userspace<Syscall::SC_readlink_params const*>);
ErrorOr<FlatPtr> sys$fork(RegisterState&);
ErrorOr<FlatPtr> sys$execve(Userspace<Syscall::SC_execve_params const*>);
ErrorOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
ErrorOr<FlatPtr> sys$sigaction(int signum, Userspace<sigaction const*> act, Userspace<sigaction*> old_act);
ErrorOr<FlatPtr> sys$sigaltstack(Userspace<stack_t const*> ss, Userspace<stack_t*> old_ss);
ErrorOr<FlatPtr> sys$sigprocmask(int how, Userspace<sigset_t const*> set, Userspace<sigset_t*> old_set);
ErrorOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
ErrorOr<FlatPtr> sys$sigsuspend(Userspace<sigset_t const*>);
ErrorOr<FlatPtr> sys$sigtimedwait(Userspace<sigset_t const*>, Userspace<siginfo_t*>, Userspace<timespec const*>);
ErrorOr<FlatPtr> sys$getgroups(size_t, Userspace<GroupID*>);
ErrorOr<FlatPtr> sys$setgroups(size_t, Userspace<GroupID const*>);
ErrorOr<FlatPtr> sys$pipe(Userspace<int*>, int flags);
ErrorOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
ErrorOr<FlatPtr> sys$seteuid(UserID);
ErrorOr<FlatPtr> sys$setegid(GroupID);
ErrorOr<FlatPtr> sys$setuid(UserID);
ErrorOr<FlatPtr> sys$setgid(GroupID);
ErrorOr<FlatPtr> sys$setreuid(UserID, UserID);
ErrorOr<FlatPtr> sys$setresuid(UserID, UserID, UserID);
ErrorOr<FlatPtr> sys$setregid(GroupID, GroupID);
ErrorOr<FlatPtr> sys$setresgid(GroupID, GroupID, GroupID);
ErrorOr<FlatPtr> sys$alarm(unsigned seconds);
ErrorOr<FlatPtr> sys$faccessat(Userspace<Syscall::SC_faccessat_params const*>);
ErrorOr<FlatPtr> sys$fcntl(int fd, int cmd, uintptr_t extra_arg);
ErrorOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
ErrorOr<FlatPtr> sys$mkdir(int dirfd, Userspace<char const*> pathname, size_t path_length, mode_t mode);
ErrorOr<FlatPtr> sys$times(Userspace<tms*>);
ErrorOr<FlatPtr> sys$utime(Userspace<char const*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
ErrorOr<FlatPtr> sys$utimensat(Userspace<Syscall::SC_utimensat_params const*>);
ErrorOr<FlatPtr> sys$link(Userspace<Syscall::SC_link_params const*>);
ErrorOr<FlatPtr> sys$unlink(int dirfd, Userspace<char const*> pathname, size_t path_length, int flags);
ErrorOr<FlatPtr> sys$symlink(Userspace<Syscall::SC_symlink_params const*>);
ErrorOr<FlatPtr> sys$rmdir(Userspace<char const*> pathname, size_t path_length);
ErrorOr<FlatPtr> sys$fsmount(Userspace<Syscall::SC_fsmount_params const*>);
ErrorOr<FlatPtr> sys$fsopen(Userspace<Syscall::SC_fsopen_params const*>);
ErrorOr<FlatPtr> sys$umount(Userspace<char const*> mountpoint, size_t mountpoint_length);
ErrorOr<FlatPtr> sys$chmod(Userspace<Syscall::SC_chmod_params const*>);
ErrorOr<FlatPtr> sys$fchmod(int fd, mode_t);
ErrorOr<FlatPtr> sys$chown(Userspace<Syscall::SC_chown_params const*>);
ErrorOr<FlatPtr> sys$fchown(int fd, UserID, GroupID);
ErrorOr<FlatPtr> sys$fsync(int fd);
ErrorOr<FlatPtr> sys$socket(int domain, int type, int protocol);
ErrorOr<FlatPtr> sys$bind(int sockfd, Userspace<sockaddr const*> addr, socklen_t);
ErrorOr<FlatPtr> sys$listen(int sockfd, int backlog);
ErrorOr<FlatPtr> sys$accept4(Userspace<Syscall::SC_accept4_params const*>);
ErrorOr<FlatPtr> sys$connect(int sockfd, Userspace<sockaddr const*>, socklen_t);
ErrorOr<FlatPtr> sys$shutdown(int sockfd, int how);
ErrorOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
ErrorOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
ErrorOr<FlatPtr> sys$getsockopt(Userspace<Syscall::SC_getsockopt_params const*>);
ErrorOr<FlatPtr> sys$setsockopt(Userspace<Syscall::SC_setsockopt_params const*>);
ErrorOr<FlatPtr> sys$getsockname(Userspace<Syscall::SC_getsockname_params const*>);
ErrorOr<FlatPtr> sys$getpeername(Userspace<Syscall::SC_getpeername_params const*>);
ErrorOr<FlatPtr> sys$socketpair(Userspace<Syscall::SC_socketpair_params const*>);
ErrorOr<FlatPtr> sys$scheduler_set_parameters(Userspace<Syscall::SC_scheduler_parameters_params const*>);
ErrorOr<FlatPtr> sys$scheduler_get_parameters(Userspace<Syscall::SC_scheduler_parameters_params*>);
ErrorOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<Syscall::SC_create_thread_params const*>);
[[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
ErrorOr<FlatPtr> sys$detach_thread(pid_t tid);
ErrorOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
ErrorOr<FlatPtr> sys$rename(Userspace<Syscall::SC_rename_params const*>);
ErrorOr<FlatPtr> sys$mknod(Userspace<Syscall::SC_mknod_params const*>);
ErrorOr<FlatPtr> sys$realpath(Userspace<Syscall::SC_realpath_params const*>);
ErrorOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
ErrorOr<FlatPtr> sys$getkeymap(Userspace<Syscall::SC_getkeymap_params const*>);
ErrorOr<FlatPtr> sys$setkeymap(Userspace<Syscall::SC_setkeymap_params const*>);
ErrorOr<FlatPtr> sys$profiling_enable(pid_t, u64);
ErrorOr<FlatPtr> profiling_enable(pid_t, u64 event_mask);
ErrorOr<FlatPtr> sys$profiling_disable(pid_t);
ErrorOr<FlatPtr> sys$profiling_free_buffer(pid_t);
ErrorOr<FlatPtr> sys$futex(Userspace<Syscall::SC_futex_params const*>);
ErrorOr<FlatPtr> sys$pledge(Userspace<Syscall::SC_pledge_params const*>);
ErrorOr<FlatPtr> sys$unveil(Userspace<Syscall::SC_unveil_params const*>);
ErrorOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
ErrorOr<FlatPtr> sys$perf_register_string(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
ErrorOr<FlatPtr> sys$ptrace(Userspace<Syscall::SC_ptrace_params const*>);
ErrorOr<FlatPtr> sys$sendfd(int sockfd, int fd);
ErrorOr<FlatPtr> sys$recvfd(int sockfd, int options);
ErrorOr<FlatPtr> sys$sysconf(int name);
ErrorOr<FlatPtr> sys$disown(ProcessID);
ErrorOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2, FlatPtr arg3);
ErrorOr<FlatPtr> sys$anon_create(size_t, int options);
ErrorOr<FlatPtr> sys$statvfs(Userspace<Syscall::SC_statvfs_params const*> user_params);
ErrorOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
ErrorOr<FlatPtr> sys$map_time_page();
ErrorOr<FlatPtr> sys$jail_create(Userspace<Syscall::SC_jail_create_params*> user_params);
ErrorOr<FlatPtr> sys$jail_attach(Userspace<Syscall::SC_jail_attach_params const*> user_params);
ErrorOr<FlatPtr> sys$get_root_session_id(pid_t force_sid);
ErrorOr<FlatPtr> sys$remount(Userspace<Syscall::SC_remount_params const*> user_params);
ErrorOr<FlatPtr> sys$bindmount(Userspace<Syscall::SC_bindmount_params const*> user_params);
ErrorOr<FlatPtr> sys$archctl(int option, FlatPtr arg1);
enum SockOrPeerName {
SockName,
PeerName,
};
template<SockOrPeerName, typename Params>
ErrorOr<void> get_sock_or_peer_name(Params const&);
static void initialize();
[[noreturn]] void crash(int signal, Optional<RegisterState const&> regs, bool out_of_memory = false);
[[nodiscard]] siginfo_t wait_info() const;
RefPtr<TTY> tty();
RefPtr<TTY const> tty() const;
void set_tty(RefPtr<TTY>);
clock_t m_ticks_in_user { 0 };
clock_t m_ticks_in_kernel { 0 };
clock_t m_ticks_in_user_for_dead_children { 0 };
clock_t m_ticks_in_kernel_for_dead_children { 0 };
NonnullRefPtr<Custody> current_directory();
RefPtr<Custody> executable();
RefPtr<Custody const> executable() const;
UnixDateTime creation_time() const { return m_creation_time; }
static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
static constexpr size_t max_auxiliary_size = Thread::default_userspace_stack_size / 8;
Vector<NonnullOwnPtr<KString>> const& arguments() const { return m_arguments; }
Vector<NonnullOwnPtr<KString>> const& environment() const { return m_environment; }
ErrorOr<void> exec(NonnullOwnPtr<KString> path, Vector<NonnullOwnPtr<KString>> arguments, Vector<NonnullOwnPtr<KString>> environment, Thread*& new_main_thread, InterruptsState& previous_interrupts_state, int recursion_depth = 0);
ErrorOr<LoadResult> load(Memory::AddressSpace& new_space, NonnullRefPtr<OpenFileDescription> main_program_description, RefPtr<OpenFileDescription> interpreter_description, Elf_Ehdr const& main_program_header, Optional<size_t> minimum_stack_size = {});
void terminate_due_to_signal(u8 signal);
ErrorOr<void> send_signal(u8 signal, Process* sender);
u8 termination_signal() const
{
return with_protected_data([](auto& protected_data) -> u8 {
return protected_data.termination_signal;
});
}
u8 termination_status() const
{
return with_protected_data([](auto& protected_data) { return protected_data.termination_status; });
}
u16 thread_count() const
{
return with_protected_data([](auto& protected_data) {
return protected_data.thread_count.load(AK::MemoryOrder::memory_order_relaxed);
});
}
Mutex& big_lock() { return m_big_lock; }
Mutex& ptrace_lock() { return m_ptrace_lock; }
bool has_promises() const
{
return with_protected_data([](auto& protected_data) { return protected_data.has_promises; });
}
bool has_promised(Pledge pledge) const
{
return with_protected_data([&](auto& protected_data) {
return (protected_data.promises & (1U << (u32)pledge)) != 0;
});
}
VeilState veil_state() const
{
return m_unveil_data.with([&](auto const& unveil_data) { return unveil_data.state; });
}
struct UnveilData {
explicit UnveilData(UnveilNode&& p)
: paths(move(p))
{
}
VeilState state { VeilState::None };
UnveilNode paths;
};
auto& unveil_data() { return m_unveil_data; }
auto const& unveil_data() const { return m_unveil_data; }
auto& exec_unveil_data() { return m_exec_unveil_data; }
auto const& exec_unveil_data() const { return m_exec_unveil_data; }
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
ErrorOr<void> peek_user_data(Span<u8> destination, Userspace<u8 const*> address);
ErrorOr<FlatPtr> peek_user_data(Userspace<FlatPtr const*> address);
ErrorOr<void> poke_user_data(Userspace<FlatPtr*> address, FlatPtr data);
void disowned_by_waiter(Process& process);
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
Thread::WaitBlockerSet& wait_blocker_set() { return m_wait_blocker_set; }
template<typename Callback>
ErrorOr<void> for_each_coredump_property(Callback callback) const
{
return m_coredump_properties.with([&](auto const& coredump_properties) -> ErrorOr<void> {
for (auto const& property : coredump_properties) {
if (property.key && property.value)
TRY(callback(*property.key, *property.value));
}
return {};
});
}
ErrorOr<void> set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
ErrorOr<void> try_set_coredump_property(StringView key, StringView value);
Vector<NonnullRefPtr<Thread>> const& threads_for_coredump(Badge<Coredump>) const { return m_threads_for_coredump; }
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
PerformanceEventBuffer const* perf_events() const { return m_perf_event_buffer; }
SpinlockProtected<OwnPtr<Memory::AddressSpace>, LockRank::None>& address_space() { return m_space; }
SpinlockProtected<OwnPtr<Memory::AddressSpace>, LockRank::None> const& address_space() const { return m_space; }
VirtualAddress signal_trampoline() const
{
return with_protected_data([](auto& protected_data) { return protected_data.signal_trampoline; });
}
ErrorOr<void> require_promise(Pledge);
ErrorOr<void> require_no_promises() const;
bool should_reject_transition_to_executable_from_writable_prot() const
{
return with_protected_data([](auto& protected_data) {
return protected_data.reject_transition_to_executable_from_writable_prot.was_set();
});
}
ErrorOr<void> validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, Memory::Region const* region = nullptr) const;
ErrorOr<void> validate_inode_mmap_prot(int prot, bool description_readable, bool description_writable, bool map_shared) const;
template<size_t Size>
static ErrorOr<FixedStringBuffer<Size>> get_syscall_string_fixed_buffer(Syscall::StringArgument const& argument)
{
// NOTE: If the string is too much big for the FixedStringBuffer,
// we return E2BIG error here.
FixedStringBuffer<Size> buffer;
TRY(try_copy_string_from_user_into_fixed_string_buffer<Size>(reinterpret_cast<FlatPtr>(argument.characters), buffer, argument.length));
return buffer;
}
template<size_t Size>
static ErrorOr<FixedStringBuffer<Size>> get_syscall_name_string_fixed_buffer(Userspace<char const*> user_buffer, size_t user_length = Size)
{
// NOTE: If the string is too much big for the FixedStringBuffer,
// we return E2BIG error here.
FixedStringBuffer<Size> buffer;
TRY(try_copy_string_from_user_into_fixed_string_buffer<Size>(user_buffer, buffer, user_length));
return buffer;
}
template<size_t Size>
static ErrorOr<FixedStringBuffer<Size>> get_syscall_name_string_fixed_buffer(Syscall::StringArgument const& argument)
{
// NOTE: If the string is too much big for the FixedStringBuffer,
// we return ENAMETOOLONG error here.
FixedStringBuffer<Size> buffer;
TRY(try_copy_name_from_user_into_fixed_string_buffer<Size>(reinterpret_cast<FlatPtr>(argument.characters), buffer, argument.length));
return buffer;
}
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
friend class PerformanceManager;
bool add_thread(Thread&);
bool remove_thread(Thread&);
Process(StringView name, NonnullRefPtr<Credentials>, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory, RefPtr<Custody> executable, RefPtr<TTY> tty, UnveilNode unveil_tree, UnveilNode exec_unveil_tree, UnixDateTime creation_time);
static ErrorOr<ProcessAndFirstThread> create_with_forked_name(UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory = nullptr, RefPtr<Custody> executable = nullptr, RefPtr<TTY> = nullptr, Process* fork_parent = nullptr);
static ErrorOr<ProcessAndFirstThread> create(StringView name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory = nullptr, RefPtr<Custody> executable = nullptr, RefPtr<TTY> = nullptr, Process* fork_parent = nullptr);
ErrorOr<NonnullRefPtr<Thread>> attach_resources(NonnullOwnPtr<Memory::AddressSpace>&&, Process* fork_parent);
static ProcessID allocate_pid();
void kill_threads_except_self();
void kill_all_threads();
ErrorOr<void> dump_core();
ErrorOr<void> dump_perfcore();
bool create_perf_events_buffer_if_needed();
void delete_perf_events_buffer();
ErrorOr<void> do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, Vector<NonnullOwnPtr<KString>> arguments, Vector<NonnullOwnPtr<KString>> environment, RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, InterruptsState& previous_interrupts_state, Elf_Ehdr const& main_program_header, Optional<size_t> minimum_stack_size = {});
ErrorOr<FlatPtr> do_write(OpenFileDescription&, UserOrKernelBuffer const&, size_t, Optional<off_t> = {});
ErrorOr<FlatPtr> do_statvfs(FileSystem const& path, Custody const*, statvfs* buf);
ErrorOr<RefPtr<OpenFileDescription>> find_elf_interpreter_for_executable(StringView path, Elf_Ehdr const& main_executable_header, size_t main_executable_header_size, size_t file_size, Optional<size_t>& minimum_stack_size);
ErrorOr<void> do_kill(Process&, int signal);
ErrorOr<void> do_killpg(ProcessGroupID pgrp, int signal);
ErrorOr<void> do_killall(int signal);
ErrorOr<void> do_killself(int signal);
ErrorOr<siginfo_t> do_waitid(Variant<Empty, NonnullRefPtr<Process>, NonnullRefPtr<ProcessGroup>> waitee, int options);
static ErrorOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length);
static ErrorOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Syscall::StringArgument const&);
bool has_tracee_thread(ProcessID tracer_pid);
void clear_signal_handlers_for_exec();
void clear_futex_queues_on_exec();
ErrorOr<GlobalFutexKey> get_futex_key(FlatPtr user_address, bool shared);
ErrorOr<Memory::VirtualRange> remap_range_as_stack(FlatPtr address, size_t size);
ErrorOr<FlatPtr> open_impl(Userspace<Syscall::SC_open_params const*>);
ErrorOr<FlatPtr> close_impl(int fd);
ErrorOr<FlatPtr> read_impl(int fd, Userspace<u8*> buffer, size_t size);
ErrorOr<FlatPtr> pread_impl(int fd, Userspace<u8*>, size_t, off_t);
ErrorOr<FlatPtr> readv_impl(int fd, Userspace<const struct iovec*> iov, int iov_count);
public:
ErrorOr<void> traverse_as_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_as_directory(ProcFS&, StringView name) const;
ErrorOr<void> procfs_get_fds_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_perf_events(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_unveil_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_pledge_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_virtual_memory_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_binary_link(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_current_work_directory_link(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_command_line(KBufferBuilder& builder) const;
mode_t binary_link_required_mode() const;
ErrorOr<void> procfs_get_thread_stack(ThreadID thread_id, KBufferBuilder& builder) const;
ErrorOr<void> traverse_stacks_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_stacks_directory(ProcFS&, StringView name) const;
ErrorOr<size_t> procfs_get_file_description_link(unsigned fd, KBufferBuilder& builder) const;
ErrorOr<void> traverse_file_descriptions_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_file_descriptions_directory(ProcFS&, StringView name) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_children_directory(ProcFS&, StringView name) const;
ErrorOr<void> traverse_children_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<size_t> procfs_get_child_process_link(ProcessID child_pid, KBufferBuilder& builder) const;
private:
inline PerformanceEventBuffer* current_perf_events_buffer()
{
if (g_profiling_all_threads)
return g_global_perf_events;
if (m_profiling)
return m_perf_event_buffer.ptr();
return nullptr;
}
SpinlockProtected<Name, LockRank::None> m_name;
SpinlockProtected<OwnPtr<Memory::AddressSpace>, LockRank::None> m_space;
RecursiveSpinlock<LockRank::None> mutable m_protected_data_lock;
AtomicEdgeAction<u32> m_protected_data_refs;
void protect_data();
void unprotect_data();
OwnPtr<ThreadTracer> m_tracer;
public:
class OpenFileDescriptionAndFlags {
public:
bool is_valid() const { return !m_description.is_null(); }
bool is_allocated() const { return m_is_allocated; }
void allocate()
{
VERIFY(!m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = true;
}
void deallocate()
{
VERIFY(m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = false;
}
OpenFileDescription* description() { return m_description; }
OpenFileDescription const* description() const { return m_description; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
void clear();
void set(NonnullRefPtr<OpenFileDescription>, u32 flags = 0);
private:
RefPtr<OpenFileDescription> m_description;
bool m_is_allocated { false };
u32 m_flags { 0 };
};
class ScopedDescriptionAllocation;
class OpenFileDescriptions {
AK_MAKE_NONCOPYABLE(OpenFileDescriptions);
AK_MAKE_NONMOVABLE(OpenFileDescriptions);
friend class Process;
public:
OpenFileDescriptions() { }
ALWAYS_INLINE OpenFileDescriptionAndFlags const& operator[](size_t i) const { return at(i); }
ALWAYS_INLINE OpenFileDescriptionAndFlags& operator[](size_t i) { return at(i); }
ErrorOr<void> try_clone(Kernel::Process::OpenFileDescriptions const& other)
{
TRY(try_resize(other.m_fds_metadatas.size()));
for (size_t i = 0; i < other.m_fds_metadatas.size(); ++i) {
m_fds_metadatas[i] = other.m_fds_metadatas[i];
}
return {};
}
OpenFileDescriptionAndFlags const& at(size_t i) const;
OpenFileDescriptionAndFlags& at(size_t i);
OpenFileDescriptionAndFlags const* get_if_valid(size_t i) const;
OpenFileDescriptionAndFlags* get_if_valid(size_t i);
void enumerate(Function<void(OpenFileDescriptionAndFlags const&)>) const;
ErrorOr<void> try_enumerate(Function<ErrorOr<void>(OpenFileDescriptionAndFlags const&)>) const;
void change_each(Function<void(OpenFileDescriptionAndFlags&)>);
ErrorOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
size_t open_count() const;
ErrorOr<void> try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
static constexpr size_t max_open()
{
return s_max_open_file_descriptors;
}
void clear()
{
m_fds_metadatas.clear();
}
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd) const;
private:
static constexpr size_t s_max_open_file_descriptors { FD_SETSIZE };
Vector<OpenFileDescriptionAndFlags> m_fds_metadatas;
};
class ScopedDescriptionAllocation {
AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);
public:
ScopedDescriptionAllocation() = default;
ScopedDescriptionAllocation(int tracked_fd, OpenFileDescriptionAndFlags* description)
: fd(tracked_fd)
, m_description(description)
{
}
ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
: fd(other.fd)
{
// Take over the responsibility of tracking to deallocation.
swap(m_description, other.m_description);
}
ScopedDescriptionAllocation& operator=(ScopedDescriptionAllocation&& other)
{
if (this != &other) {
m_description = exchange(other.m_description, nullptr);
fd = exchange(other.fd, -1);
}
return *this;
}
~ScopedDescriptionAllocation()
{
if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
m_description->deallocate();
}
}
int fd { -1 };
private:
OpenFileDescriptionAndFlags* m_description { nullptr };
};
MutexProtected<OpenFileDescriptions>& fds() { return m_fds; }
MutexProtected<OpenFileDescriptions> const& fds() const { return m_fds; }
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd)
{
return m_fds.with_shared([fd](auto& fds) { return fds.open_file_description(fd); });
}
ErrorOr<RefPtr<OpenFileDescription>> open_file_description_ignoring_negative(int fd)
{
if (fd < 0)
return nullptr;
return open_file_description(fd);
}
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd) const
{
return m_fds.with_shared([fd](auto& fds) { return fds.open_file_description(fd); });
}
ErrorOr<RefPtr<OpenFileDescription>> open_file_description_ignoring_negative(int fd) const
{
if (fd < 0)
return nullptr;
return open_file_description(fd);
}
ErrorOr<ScopedDescriptionAllocation> allocate_fd()
{
return m_fds.with_exclusive([](auto& fds) { return fds.allocate(); });
}
ErrorOr<NonnullRefPtr<Custody>> custody_for_dirfd(Badge<CustodyBase>, int dirfd);
private:
ErrorOr<NonnullRefPtr<Custody>> custody_for_dirfd(int dirfd);
SpinlockProtected<Thread::ListInProcess, LockRank::None>& thread_list() { return m_thread_list; }
SpinlockProtected<Thread::ListInProcess, LockRank::None> const& thread_list() const { return m_thread_list; }
ErrorOr<NonnullRefPtr<Thread>> get_thread_from_pid_or_tid(pid_t pid_or_tid, Syscall::SchedulerParametersMode mode);
ErrorOr<NonnullRefPtr<Thread>> get_thread_from_thread_list(pid_t tid);
SpinlockProtected<Thread::ListInProcess, LockRank::None> m_thread_list {};
MutexProtected<OpenFileDescriptions> m_fds;
bool const m_is_kernel_process;
Atomic<State> m_state { State::Running };
bool m_profiling { false };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
bool m_should_generate_coredump { false };
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
KCOVInstance* m_kcov_instance { nullptr };
#endif
SpinlockProtected<RefPtr<Custody>, LockRank::None> m_executable;
SpinlockProtected<RefPtr<Custody>, LockRank::None> m_current_directory;
UnixDateTime const m_creation_time;
Vector<NonnullOwnPtr<KString>> m_arguments;
Vector<NonnullOwnPtr<KString>> m_environment;
IntrusiveListNode<Process> m_jail_process_list_node;
IntrusiveListNode<Process> m_all_processes_list_node;
public:
using AllProcessesList = IntrusiveListRelaxedConst<&Process::m_all_processes_list_node>;
using JailProcessList = IntrusiveListRelaxedConst<&Process::m_jail_process_list_node>;
private:
SpinlockProtected<RefPtr<ProcessList>, LockRank::None> m_jail_process_list;
SpinlockProtected<RefPtr<Jail>, LockRank::Process> m_attached_jail {};
Mutex m_big_lock { "Process"sv, Mutex::MutexBehavior::BigLock };
Mutex m_ptrace_lock { "ptrace"sv };
SpinlockProtected<RefPtr<Timer>, LockRank::None> m_alarm_timer;
SpinlockProtected<UnveilData, LockRank::None> m_unveil_data;
SpinlockProtected<UnveilData, LockRank::None> m_exec_unveil_data;
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
Thread::WaitBlockerSet m_wait_blocker_set;
struct CoredumpProperty {
OwnPtr<KString> key;
OwnPtr<KString> value;
};
SpinlockProtected<Array<CoredumpProperty, 4>, LockRank::None> m_coredump_properties {};
Vector<NonnullRefPtr<Thread>> m_threads_for_coredump;
struct SignalActionData {
VirtualAddress handler_or_sigaction;
int flags { 0 };
u32 mask { 0 };
};
Array<SignalActionData, NSIG> m_signal_action_data;
static_assert(sizeof(ProtectedValues) < (PAGE_SIZE));
alignas(4096) ProtectedValues m_protected_values_do_not_access_directly;
u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)];
public:
static SpinlockProtected<Process::AllProcessesList, LockRank::None>& all_instances();
};
class ProcessList : public RefCounted<ProcessList> {
public:
static ErrorOr<NonnullRefPtr<ProcessList>> create();
SpinlockProtected<Process::JailProcessList, LockRank::None>& attached_processes() { return m_attached_processes; }
SpinlockProtected<Process::JailProcessList, LockRank::None> const& attached_processes() const { return m_attached_processes; }
private:
ProcessList() = default;
SpinlockProtected<Process::JailProcessList, LockRank::None> m_attached_processes;
};
// Note: Process object should be 2 pages of 4096 bytes each.
// It's not expected that the Process object will expand further because the first
// page is used for all unprotected values (which should be plenty of space for them).
// The second page is being used exclusively for write-protected values.
static_assert(AssertSize<Process, (PAGE_SIZE * 2)>());
extern RecursiveSpinlock<LockRank::None> g_profiling_lock;
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_ignoring_jails(Callback callback)
{
Process::all_instances().with([&](auto const& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (callback(process) == IterationDecision::Break)
break;
}
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
inline ErrorOr<void> Process::try_for_each_thread(Function<ErrorOr<void>(Thread const&)> callback) const
{
return thread_list().with([&](auto& thread_list) -> ErrorOr<void> {
for (auto& thread : thread_list)
TRY(callback(thread));
return {};
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
}
#define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
VERIFY(process->big_lock().is_exclusively_locked_by_current_thread())
#define VERIFY_NO_PROCESS_BIG_LOCK(process) \
VERIFY(!process->big_lock().is_exclusively_locked_by_current_thread())
inline ErrorOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(Kernel::Syscall::StringArgument const& string)
{
Userspace<char const*> characters((FlatPtr)string.characters);
return try_copy_kstring_from_user(characters, string.length);
}
template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::Process const& value)
{
return value.name().with([&](auto& process_name) {
return AK::Formatter<FormatString>::format(builder, "{}({})"sv, process_name.representable_view(), value.pid().value());
});
}
};
namespace AK {
template<>
struct Traits<Kernel::GlobalFutexKey> : public DefaultTraits<Kernel::GlobalFutexKey> {
static unsigned hash(Kernel::GlobalFutexKey const& futex_key) { return pair_int_hash(ptr_hash(futex_key.raw.parent), ptr_hash(futex_key.raw.offset)); }
static bool equals(Kernel::GlobalFutexKey const& a, Kernel::GlobalFutexKey const& b) { return a.raw.parent == b.raw.parent && a.raw.offset == b.raw.offset; }
};
};