serenity/Kernel/Arch/x86_64/ProcessorInfo.cpp
konrad 823aab8296 Kernel: Use a descriptive name for x86-64 cpu_feature_to_string_view
Settled for `cpu_feature_to_name` as that naming is more descriptive
and similarly named `cpu_feature_to_description` function will be
provided for Aarch64.
2023-01-18 22:58:42 +01:00

187 lines
6 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/StringBuilder.h>
#include <AK/Types.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/Arch/x86_64/CPUID.h>
#include <Kernel/Arch/x86_64/ProcessorInfo.h>
namespace Kernel {
ProcessorInfo::ProcessorInfo(Processor const& processor)
: m_vendor_id_string(build_vendor_id_string())
, m_hypervisor_vendor_id_string(build_hypervisor_vendor_id_string(processor))
, m_brand_string(build_brand_string())
, m_features_string(build_features_string(processor))
{
CPUID cpuid(1);
m_stepping = cpuid.eax() & 0xf;
u32 model = (cpuid.eax() >> 4) & 0xf;
u32 family = (cpuid.eax() >> 8) & 0xf;
m_type = (cpuid.eax() >> 12) & 0x3;
u32 extended_model = (cpuid.eax() >> 16) & 0xf;
u32 extended_family = (cpuid.eax() >> 20) & 0xff;
if (family == 15) {
m_display_family = family + extended_family;
m_display_model = model + (extended_model << 4);
} else if (family == 6) {
m_display_family = family;
m_display_model = model + (extended_model << 4);
} else {
m_display_family = family;
m_display_model = model;
}
// NOTE: Intel exposes detailed CPU's cache information in CPUID 04. On the
// other hand, AMD uses CPUID's extended function set.
if (m_vendor_id_string->view() == s_amd_vendor_id)
populate_cache_sizes_amd();
else if (m_vendor_id_string->view() == s_intel_vendor_id)
populate_cache_sizes_intel();
}
static void emit_u32(StringBuilder& builder, u32 value)
{
builder.appendff("{:c}{:c}{:c}{:c}",
value & 0xff,
(value >> 8) & 0xff,
(value >> 16) & 0xff,
(value >> 24) & 0xff);
}
NonnullOwnPtr<KString> ProcessorInfo::build_vendor_id_string()
{
CPUID cpuid(0);
StringBuilder builder;
emit_u32(builder, cpuid.ebx());
emit_u32(builder, cpuid.edx());
emit_u32(builder, cpuid.ecx());
// NOTE: This isn't necessarily fixed length and might have null terminators at the end.
return KString::must_create(builder.string_view().trim("\0"sv, TrimMode::Right));
}
NonnullOwnPtr<KString> ProcessorInfo::build_hypervisor_vendor_id_string(Processor const& processor)
{
if (!processor.has_feature(CPUFeature::HYPERVISOR))
return KString::must_create({});
CPUID cpuid(0x40000000);
StringBuilder builder;
emit_u32(builder, cpuid.ebx());
emit_u32(builder, cpuid.ecx());
emit_u32(builder, cpuid.edx());
// NOTE: This isn't necessarily fixed length and might have null terminators at the end.
return KString::must_create(builder.string_view().trim("\0"sv, TrimMode::Right));
}
NonnullOwnPtr<KString> ProcessorInfo::build_brand_string()
{
u32 max_extended_leaf = CPUID(0x80000000).eax();
if (max_extended_leaf < 0x80000004)
return KString::must_create({});
StringBuilder builder;
auto append_brand_string_part_to_builder = [&](u32 i) {
CPUID cpuid(0x80000002 + i);
emit_u32(builder, cpuid.eax());
emit_u32(builder, cpuid.ebx());
emit_u32(builder, cpuid.ecx());
emit_u32(builder, cpuid.edx());
};
append_brand_string_part_to_builder(0);
append_brand_string_part_to_builder(1);
append_brand_string_part_to_builder(2);
// NOTE: This isn't necessarily fixed length and might have null terminators at the end.
return KString::must_create(builder.string_view().trim("\0"sv, TrimMode::Right));
}
NonnullOwnPtr<KString> ProcessorInfo::build_features_string(Processor const& processor)
{
StringBuilder builder;
bool first = true;
for (auto feature = CPUFeature::Type(1u); feature != CPUFeature::__End; feature <<= 1u) {
if (processor.has_feature(feature)) {
if (first)
first = false;
else
MUST(builder.try_append(' '));
MUST(builder.try_append(cpu_feature_to_name(feature)));
}
}
return KString::must_create(builder.string_view());
}
void ProcessorInfo::populate_cache_sizes_amd()
{
auto const max_extended_leaf = CPUID(0x80000000).eax();
if (max_extended_leaf < 0x80000005)
return;
auto const l1_cache_info = CPUID(0x80000005);
if (l1_cache_info.ecx() != 0) {
m_l1_data_cache = Cache {
.size = ((l1_cache_info.ecx() >> 24) & 0xff) * KiB,
.line_size = l1_cache_info.ecx() & 0xff,
};
}
if (l1_cache_info.edx() != 0) {
m_l1_instruction_cache = Cache {
.size = ((l1_cache_info.edx() >> 24) & 0xff) * KiB,
.line_size = l1_cache_info.edx() & 0xff,
};
}
if (max_extended_leaf < 0x80000006)
return;
auto const l2_l3_cache_info = CPUID(0x80000006);
if (l2_l3_cache_info.ecx() != 0) {
m_l2_cache = Cache {
.size = ((l2_l3_cache_info.ecx() >> 16) & 0xffff) * KiB,
.line_size = l2_l3_cache_info.ecx() & 0xff,
};
}
if (l2_l3_cache_info.edx() != 0) {
m_l3_cache = Cache {
.size = (static_cast<u64>((l2_l3_cache_info.edx() >> 18)) & 0x3fff) * 512 * KiB,
.line_size = l2_l3_cache_info.edx() & 0xff,
};
}
}
void ProcessorInfo::populate_cache_sizes_intel()
{
auto const collect_cache_info = [](u32 ecx) {
auto const cache_info = CPUID(0x04, ecx);
auto const ways = ((cache_info.ebx() >> 22) & 0x3ff) + 1;
auto const partitions = ((cache_info.ebx() >> 12) & 0x3ff) + 1;
auto const line_size = (cache_info.ebx() & 0xfff) + 1;
auto const sets = cache_info.ecx() + 1;
return Cache {
.size = ways * partitions * line_size * sets,
.line_size = line_size
};
};
// NOTE: Those ECX numbers are the one used on recent Intel CPUs, an algorithm
// also exists to retrieve them.
m_l1_instruction_cache = collect_cache_info(0);
m_l1_data_cache = collect_cache_info(1);
m_l2_cache = collect_cache_info(2);
m_l3_cache = collect_cache_info(3);
}
}