serenity/Kernel/Arch/x86_64/Processor.cpp
2024-05-14 14:02:06 -06:00

1746 lines
64 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BuiltinWrappers.h>
#include <AK/Format.h>
#include <AK/StackUnwinder.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86_64/Interrupts/APIC.h>
#include <Kernel/Interrupts/InterruptDisabler.h>
#include <Kernel/Library/StdLib.h>
#include <Kernel/Sections.h>
#include <Kernel/Security/Random.h>
#include <Kernel/Tasks/Process.h>
#include <Kernel/Tasks/Scheduler.h>
#include <Kernel/Tasks/Thread.h>
#include <Kernel/Arch/Interrupts.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/Arch/SafeMem.h>
#include <Kernel/Arch/TrapFrame.h>
#include <Kernel/Arch/x86_64/CPUID.h>
#include <Kernel/Arch/x86_64/MSR.h>
#include <Kernel/Arch/x86_64/ProcessorInfo.h>
#include <Kernel/Library/ScopedCritical.h>
#include <Kernel/Arch/PageDirectory.h>
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
namespace Kernel {
READONLY_AFTER_INIT static ProcessorContainer s_processors {};
READONLY_AFTER_INIT static bool volatile s_smp_enabled;
static Atomic<ProcessorMessage*> s_message_pool;
Atomic<u32> Processor::s_idle_cpu_mask { 0 };
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used));
extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) __attribute__((used));
extern "C" void syscall_entry();
template<typename T>
bool ProcessorBase<T>::is_smp_enabled()
{
return s_smp_enabled;
}
UNMAP_AFTER_INIT static void sse_init()
{
write_cr0((read_cr0() & 0xfffffffbu) | 0x2);
write_cr4(read_cr4() | 0x600);
}
UNMAP_AFTER_INIT void Processor::cpu_detect()
{
// NOTE: This is called during Processor::early_initialize, we cannot
// safely log at this point because we don't have kmalloc
// initialized yet!
m_features = CPUFeature::Type(0u);
CPUID processor_info(0x1);
auto handle_edx_bit_11_feature = [&] {
u32 stepping = processor_info.eax() & 0xf;
u32 model = (processor_info.eax() >> 4) & 0xf;
u32 family = (processor_info.eax() >> 8) & 0xf;
// FIXME: I have no clue what these mean or where it's from (the Intel manual I've seen just says EDX[11] is SEP).
// If you do, please convert them to constants or add comments!
if (!(family == 6 && model < 3 && stepping < 3))
m_features |= CPUFeature::SEP;
if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe))
m_features |= CPUFeature::CONSTANT_TSC;
};
if (processor_info.ecx() & (1 << 0))
m_features |= CPUFeature::SSE3;
if (processor_info.ecx() & (1 << 1))
m_features |= CPUFeature::PCLMULQDQ;
if (processor_info.ecx() & (1 << 2))
m_features |= CPUFeature::DTES64;
if (processor_info.ecx() & (1 << 3))
m_features |= CPUFeature::MONITOR;
if (processor_info.ecx() & (1 << 4))
m_features |= CPUFeature::DS_CPL;
if (processor_info.ecx() & (1 << 5))
m_features |= CPUFeature::VMX;
if (processor_info.ecx() & (1 << 6))
m_features |= CPUFeature::SMX;
if (processor_info.ecx() & (1 << 7))
m_features |= CPUFeature::EST;
if (processor_info.ecx() & (1 << 8))
m_features |= CPUFeature::TM2;
if (processor_info.ecx() & (1 << 9))
m_features |= CPUFeature::SSSE3;
if (processor_info.ecx() & (1 << 10))
m_features |= CPUFeature::CNXT_ID;
if (processor_info.ecx() & (1 << 11))
m_features |= CPUFeature::SDBG;
if (processor_info.ecx() & (1 << 12))
m_features |= CPUFeature::FMA;
if (processor_info.ecx() & (1 << 13))
m_features |= CPUFeature::CX16;
if (processor_info.ecx() & (1 << 14))
m_features |= CPUFeature::XTPR;
if (processor_info.ecx() & (1 << 15))
m_features |= CPUFeature::PDCM;
if (processor_info.ecx() & (1 << 17))
m_features |= CPUFeature::PCID;
if (processor_info.ecx() & (1 << 18))
m_features |= CPUFeature::DCA;
if (processor_info.ecx() & (1 << 19))
m_features |= CPUFeature::SSE4_1;
if (processor_info.ecx() & (1 << 20))
m_features |= CPUFeature::SSE4_2;
if (processor_info.ecx() & (1 << 21))
m_features |= CPUFeature::X2APIC;
if (processor_info.ecx() & (1 << 22))
m_features |= CPUFeature::MOVBE;
if (processor_info.ecx() & (1 << 23))
m_features |= CPUFeature::POPCNT;
if (processor_info.ecx() & (1 << 24))
m_features |= CPUFeature::TSC_DEADLINE;
if (processor_info.ecx() & (1 << 25))
m_features |= CPUFeature::AES;
if (processor_info.ecx() & (1 << 26))
m_features |= CPUFeature::XSAVE;
if (processor_info.ecx() & (1 << 27))
m_features |= CPUFeature::OSXSAVE;
if (processor_info.ecx() & (1 << 28))
m_features |= CPUFeature::AVX;
if (processor_info.ecx() & (1 << 29))
m_features |= CPUFeature::F16C;
if (processor_info.ecx() & (1 << 30))
m_features |= CPUFeature::RDRAND;
if (processor_info.ecx() & (1 << 31))
m_features |= CPUFeature::HYPERVISOR;
if (processor_info.edx() & (1 << 0))
m_features |= CPUFeature::FPU;
if (processor_info.edx() & (1 << 1))
m_features |= CPUFeature::VME;
if (processor_info.edx() & (1 << 2))
m_features |= CPUFeature::DE;
if (processor_info.edx() & (1 << 3))
m_features |= CPUFeature::PSE;
if (processor_info.edx() & (1 << 4))
m_features |= CPUFeature::TSC;
if (processor_info.edx() & (1 << 5))
m_features |= CPUFeature::MSR;
if (processor_info.edx() & (1 << 6))
m_features |= CPUFeature::PAE;
if (processor_info.edx() & (1 << 7))
m_features |= CPUFeature::MCE;
if (processor_info.edx() & (1 << 8))
m_features |= CPUFeature::CX8;
if (processor_info.edx() & (1 << 9))
m_features |= CPUFeature::APIC;
if (processor_info.edx() & (1 << 11))
handle_edx_bit_11_feature();
if (processor_info.edx() & (1 << 12))
m_features |= CPUFeature::MTRR;
if (processor_info.edx() & (1 << 13))
m_features |= CPUFeature::PGE;
if (processor_info.edx() & (1 << 14))
m_features |= CPUFeature::MCA;
if (processor_info.edx() & (1 << 15))
m_features |= CPUFeature::CMOV;
if (processor_info.edx() & (1 << 16))
m_features |= CPUFeature::PAT;
if (processor_info.edx() & (1 << 17))
m_features |= CPUFeature::PSE36;
if (processor_info.edx() & (1 << 18))
m_features |= CPUFeature::PSN;
if (processor_info.edx() & (1 << 19))
m_features |= CPUFeature::CLFLUSH;
if (processor_info.edx() & (1 << 21))
m_features |= CPUFeature::DS;
if (processor_info.edx() & (1 << 22))
m_features |= CPUFeature::ACPI;
if (processor_info.edx() & (1 << 23))
m_features |= CPUFeature::MMX;
if (processor_info.edx() & (1 << 24))
m_features |= CPUFeature::FXSR;
if (processor_info.edx() & (1 << 25))
m_features |= CPUFeature::SSE;
if (processor_info.edx() & (1 << 26))
m_features |= CPUFeature::SSE2;
if (processor_info.edx() & (1 << 27))
m_features |= CPUFeature::SS;
if (processor_info.edx() & (1 << 28))
m_features |= CPUFeature::HTT;
if (processor_info.edx() & (1 << 29))
m_features |= CPUFeature::TM;
if (processor_info.edx() & (1 << 30))
m_features |= CPUFeature::IA64;
if (processor_info.edx() & (1 << 31))
m_features |= CPUFeature::PBE;
CPUID extended_features(0x7);
if (extended_features.ebx() & (1 << 0))
m_features |= CPUFeature::FSGSBASE;
if (extended_features.ebx() & (1 << 1))
m_features |= CPUFeature::TSC_ADJUST;
if (extended_features.ebx() & (1 << 2))
m_features |= CPUFeature::SGX;
if (extended_features.ebx() & (1 << 3))
m_features |= CPUFeature::BMI1;
if (extended_features.ebx() & (1 << 4))
m_features |= CPUFeature::HLE;
if (extended_features.ebx() & (1 << 5))
m_features |= CPUFeature::AVX2;
if (extended_features.ebx() & (1 << 6))
m_features |= CPUFeature::FDP_EXCPTN_ONLY;
if (extended_features.ebx() & (1 << 7))
m_features |= CPUFeature::SMEP;
if (extended_features.ebx() & (1 << 8))
m_features |= CPUFeature::BMI2;
if (extended_features.ebx() & (1 << 9))
m_features |= CPUFeature::ERMS;
if (extended_features.ebx() & (1 << 10))
m_features |= CPUFeature::INVPCID;
if (extended_features.ebx() & (1 << 11))
m_features |= CPUFeature::RTM;
if (extended_features.ebx() & (1 << 12))
m_features |= CPUFeature::PQM;
if (extended_features.ebx() & (1 << 13))
m_features |= CPUFeature::ZERO_FCS_FDS;
if (extended_features.ebx() & (1 << 14))
m_features |= CPUFeature::MPX;
if (extended_features.ebx() & (1 << 15))
m_features |= CPUFeature::PQE;
if (extended_features.ebx() & (1 << 16))
m_features |= CPUFeature::AVX512_F;
if (extended_features.ebx() & (1 << 17))
m_features |= CPUFeature::AVX512_DQ;
if (extended_features.ebx() & (1 << 18))
m_features |= CPUFeature::RDSEED;
if (extended_features.ebx() & (1 << 19))
m_features |= CPUFeature::ADX;
if (extended_features.ebx() & (1 << 20))
m_features |= CPUFeature::SMAP;
if (extended_features.ebx() & (1 << 21))
m_features |= CPUFeature::AVX512_IFMA;
if (extended_features.ebx() & (1 << 22))
m_features |= CPUFeature::PCOMMIT;
if (extended_features.ebx() & (1 << 23))
m_features |= CPUFeature::CLFLUSHOPT;
if (extended_features.ebx() & (1 << 24))
m_features |= CPUFeature::CLWB;
if (extended_features.ebx() & (1 << 25))
m_features |= CPUFeature::INTEL_PT;
if (extended_features.ebx() & (1 << 26))
m_features |= CPUFeature::AVX512_PF;
if (extended_features.ebx() & (1 << 27))
m_features |= CPUFeature::AVX512_ER;
if (extended_features.ebx() & (1 << 28))
m_features |= CPUFeature::AVX512_CD;
if (extended_features.ebx() & (1 << 29))
m_features |= CPUFeature::SHA;
if (extended_features.ebx() & (1 << 30))
m_features |= CPUFeature::AVX512_BW;
if (extended_features.ebx() & (1 << 31))
m_features |= CPUFeature::AVX512_VL;
if (extended_features.ecx() & (1 << 0))
m_features |= CPUFeature::PREFETCHWT1;
if (extended_features.ecx() & (1 << 1))
m_features |= CPUFeature::AVX512_VBMI;
if (extended_features.ecx() & (1 << 2))
m_features |= CPUFeature::UMIP;
if (extended_features.ecx() & (1 << 3))
m_features |= CPUFeature::PKU;
if (extended_features.ecx() & (1 << 4))
m_features |= CPUFeature::OSPKE;
if (extended_features.ecx() & (1 << 5))
m_features |= CPUFeature::WAITPKG;
if (extended_features.ecx() & (1 << 6))
m_features |= CPUFeature::AVX512_VBMI2;
if (extended_features.ecx() & (1 << 7))
m_features |= CPUFeature::CET_SS;
if (extended_features.ecx() & (1 << 8))
m_features |= CPUFeature::GFNI;
if (extended_features.ecx() & (1 << 9))
m_features |= CPUFeature::VAES;
if (extended_features.ecx() & (1 << 10))
m_features |= CPUFeature::VPCLMULQDQ;
if (extended_features.ecx() & (1 << 11))
m_features |= CPUFeature::AVX512_VNNI;
if (extended_features.ecx() & (1 << 12))
m_features |= CPUFeature::AVX512_BITALG;
if (extended_features.ecx() & (1 << 13))
m_features |= CPUFeature::TME_EN;
if (extended_features.ecx() & (1 << 14))
m_features |= CPUFeature::AVX512_VPOPCNTDQ;
if (extended_features.ecx() & (1 << 16))
m_features |= CPUFeature::INTEL_5_LEVEL_PAGING;
if (extended_features.ecx() & (1 << 22))
m_features |= CPUFeature::RDPID;
if (extended_features.ecx() & (1 << 23))
m_features |= CPUFeature::KL;
if (extended_features.ecx() & (1 << 25))
m_features |= CPUFeature::CLDEMOTE;
if (extended_features.ecx() & (1 << 27))
m_features |= CPUFeature::MOVDIRI;
if (extended_features.ecx() & (1 << 28))
m_features |= CPUFeature::MOVDIR64B;
if (extended_features.ecx() & (1 << 29))
m_features |= CPUFeature::ENQCMD;
if (extended_features.ecx() & (1 << 30))
m_features |= CPUFeature::SGX_LC;
if (extended_features.ecx() & (1 << 31))
m_features |= CPUFeature::PKS;
if (extended_features.edx() & (1 << 2))
m_features |= CPUFeature::AVX512_4VNNIW;
if (extended_features.edx() & (1 << 3))
m_features |= CPUFeature::AVX512_4FMAPS;
if (extended_features.edx() & (1 << 4))
m_features |= CPUFeature::FSRM;
if (extended_features.edx() & (1 << 8))
m_features |= CPUFeature::AVX512_VP2INTERSECT;
if (extended_features.edx() & (1 << 9))
m_features |= CPUFeature::SRBDS_CTRL;
if (extended_features.edx() & (1 << 10))
m_features |= CPUFeature::MD_CLEAR;
if (extended_features.edx() & (1 << 11))
m_features |= CPUFeature::RTM_ALWAYS_ABORT;
if (extended_features.edx() & (1 << 13))
m_features |= CPUFeature::TSX_FORCE_ABORT;
if (extended_features.edx() & (1 << 14))
m_features |= CPUFeature::SERIALIZE;
if (extended_features.edx() & (1 << 15))
m_features |= CPUFeature::HYBRID;
if (extended_features.edx() & (1 << 16))
m_features |= CPUFeature::TSXLDTRK;
if (extended_features.edx() & (1 << 18))
m_features |= CPUFeature::PCONFIG;
if (extended_features.edx() & (1 << 19))
m_features |= CPUFeature::LBR;
if (extended_features.edx() & (1 << 20))
m_features |= CPUFeature::CET_IBT;
if (extended_features.edx() & (1 << 22))
m_features |= CPUFeature::AMX_BF16;
if (extended_features.edx() & (1 << 23))
m_features |= CPUFeature::AVX512_FP16;
if (extended_features.edx() & (1 << 24))
m_features |= CPUFeature::AMX_TILE;
if (extended_features.edx() & (1 << 25))
m_features |= CPUFeature::AMX_INT8;
if (extended_features.edx() & (1 << 26))
m_features |= CPUFeature::SPEC_CTRL;
if (extended_features.edx() & (1 << 27))
m_features |= CPUFeature::STIBP;
if (extended_features.edx() & (1 << 28))
m_features |= CPUFeature::L1D_FLUSH;
if (extended_features.edx() & (1 << 29))
m_features |= CPUFeature::IA32_ARCH_CAPABILITIES;
if (extended_features.edx() & (1 << 30))
m_features |= CPUFeature::IA32_CORE_CAPABILITIES;
if (extended_features.edx() & (1 << 31))
m_features |= CPUFeature::SSBD;
u32 max_extended_leaf = CPUID(0x80000000).eax();
if (max_extended_leaf >= 0x80000001) {
CPUID extended_processor_info(0x80000001);
if (extended_processor_info.ecx() & (1 << 0))
m_features |= CPUFeature::LAHF_LM;
if (extended_processor_info.ecx() & (1 << 1))
m_features |= CPUFeature::CMP_LEGACY;
if (extended_processor_info.ecx() & (1 << 2))
m_features |= CPUFeature::SVM;
if (extended_processor_info.ecx() & (1 << 3))
m_features |= CPUFeature::EXTAPIC;
if (extended_processor_info.ecx() & (1 << 4))
m_features |= CPUFeature::CR8_LEGACY;
if (extended_processor_info.ecx() & (1 << 5))
m_features |= CPUFeature::ABM;
if (extended_processor_info.ecx() & (1 << 6))
m_features |= CPUFeature::SSE4A;
if (extended_processor_info.ecx() & (1 << 7))
m_features |= CPUFeature::MISALIGNSSE;
if (extended_processor_info.ecx() & (1 << 8))
m_features |= CPUFeature::_3DNOWPREFETCH;
if (extended_processor_info.ecx() & (1 << 9))
m_features |= CPUFeature::OSVW;
if (extended_processor_info.ecx() & (1 << 10))
m_features |= CPUFeature::IBS;
if (extended_processor_info.ecx() & (1 << 11))
m_features |= CPUFeature::XOP;
if (extended_processor_info.ecx() & (1 << 12))
m_features |= CPUFeature::SKINIT;
if (extended_processor_info.ecx() & (1 << 13))
m_features |= CPUFeature::WDT;
if (extended_processor_info.ecx() & (1 << 15))
m_features |= CPUFeature::LWP;
if (extended_processor_info.ecx() & (1 << 16))
m_features |= CPUFeature::FMA4;
if (extended_processor_info.ecx() & (1 << 17))
m_features |= CPUFeature::TCE;
if (extended_processor_info.ecx() & (1 << 19))
m_features |= CPUFeature::NODEID_MSR;
if (extended_processor_info.ecx() & (1 << 21))
m_features |= CPUFeature::TBM;
if (extended_processor_info.ecx() & (1 << 22))
m_features |= CPUFeature::TOPOEXT;
if (extended_processor_info.ecx() & (1 << 23))
m_features |= CPUFeature::PERFCTR_CORE;
if (extended_processor_info.ecx() & (1 << 24))
m_features |= CPUFeature::PERFCTR_NB;
if (extended_processor_info.ecx() & (1 << 26))
m_features |= CPUFeature::DBX;
if (extended_processor_info.ecx() & (1 << 27))
m_features |= CPUFeature::PERFTSC;
if (extended_processor_info.ecx() & (1 << 28))
m_features |= CPUFeature::PCX_L2I;
if (extended_processor_info.edx() & (1 << 11))
m_features |= CPUFeature::SYSCALL; // Only available in 64 bit mode
if (extended_processor_info.edx() & (1 << 19))
m_features |= CPUFeature::MP;
if (extended_processor_info.edx() & (1 << 20))
m_features |= CPUFeature::NX;
if (extended_processor_info.edx() & (1 << 22))
m_features |= CPUFeature::MMXEXT;
if (extended_processor_info.edx() & (1 << 23))
m_features |= CPUFeature::RDTSCP;
if (extended_processor_info.edx() & (1 << 25))
m_features |= CPUFeature::FXSR_OPT;
if (extended_processor_info.edx() & (1 << 26))
m_features |= CPUFeature::PDPE1GB;
if (extended_processor_info.edx() & (1 << 27))
m_features |= CPUFeature::RDTSCP;
if (extended_processor_info.edx() & (1 << 29))
m_features |= CPUFeature::LM;
if (extended_processor_info.edx() & (1 << 30))
m_features |= CPUFeature::_3DNOWEXT;
if (extended_processor_info.edx() & (1 << 31))
m_features |= CPUFeature::_3DNOW;
}
if (max_extended_leaf >= 0x80000007) {
CPUID cpuid(0x80000007);
if (cpuid.edx() & (1 << 8)) {
m_features |= CPUFeature::CONSTANT_TSC;
m_features |= CPUFeature::NONSTOP_TSC;
}
}
if (max_extended_leaf >= 0x80000008) {
// CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor.
CPUID cpuid(0x80000008);
m_physical_address_bit_width = cpuid.eax() & 0xff;
// CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor.
m_virtual_address_bit_width = (cpuid.eax() >> 8) & 0xff;
} else {
// For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.
m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32;
// Processors that do not support CPUID function 80000008H, support a linear-address width of 32.
m_virtual_address_bit_width = 32;
// Workaround QEMU hypervisor.framework bug
// https://gitlab.com/qemu-project/qemu/-/issues/664
//
// We detect this as follows:
// * We're in a hypervisor
// * hypervisor_leaf_range is null under Hypervisor.framework
// * m_physical_address_bit_width is 36 bits
if (has_feature(CPUFeature::HYPERVISOR)) {
CPUID hypervisor_leaf_range(0x40000000);
if (!hypervisor_leaf_range.ebx() && m_physical_address_bit_width == 36) {
m_has_qemu_hvf_quirk.set();
m_virtual_address_bit_width = 48;
}
}
}
}
UNMAP_AFTER_INIT void Processor::cpu_setup()
{
// NOTE: This is called during Processor::early_initialize, we cannot
// safely log at this point because we don't have kmalloc
// initialized yet!
cpu_detect();
if (has_feature(CPUFeature::SSE)) {
// enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR.
// SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it.
VERIFY(has_feature(CPUFeature::FXSR));
sse_init();
}
write_cr0(read_cr0() | 0x00010000);
if (has_feature(CPUFeature::PGE)) {
// Turn on CR4.PGE so the CPU will respect the G bit in page tables.
write_cr4(read_cr4() | 0x80);
}
if (has_feature(CPUFeature::NX)) {
// Turn on IA32_EFER.NXE
MSR ia32_efer(MSR_IA32_EFER);
ia32_efer.set(ia32_efer.get() | 0x800);
}
if (has_feature(CPUFeature::PAT)) {
MSR ia32_pat(MSR_IA32_PAT);
// Set PA4 to Write Comine. This allows us to
// use this mode by only setting the bit in the PTE
// and leaving all other bits in the upper levels unset,
// which maps to setting bit 3 of the index, resulting
// in the index value 0 or 4.
u64 pat = ia32_pat.get() & ~(0x7ull << 32);
pat |= 0x1ull << 32; // set WC mode for PA4
ia32_pat.set(pat);
}
if (has_feature(CPUFeature::SMEP)) {
// Turn on CR4.SMEP
write_cr4(read_cr4() | 0x100000);
}
if (has_feature(CPUFeature::SMAP)) {
// Turn on CR4.SMAP
write_cr4(read_cr4() | 0x200000);
}
if (has_feature(CPUFeature::UMIP)) {
write_cr4(read_cr4() | 0x800);
}
if (has_feature(CPUFeature::XSAVE)) {
// Turn on CR4.OSXSAVE
write_cr4(read_cr4() | 0x40000);
// According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1."
// Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves.
write_xcr0(0x1);
if (has_feature(CPUFeature::AVX)) {
// Turn on SSE, AVX and x87 flags
write_xcr0(read_xcr0() | SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87);
}
}
// x86_64 processors must support the syscall feature.
VERIFY(has_feature(CPUFeature::SYSCALL));
MSR efer_msr(MSR_EFER);
efer_msr.set(efer_msr.get() | 1u);
// Write code and stack selectors to the STAR MSR. The first value stored in bits 63:48 controls the sysret CS (value + 0x10) and SS (value + 0x8),
// and the value stored in bits 47:32 controls the syscall CS (value) and SS (value + 0x8).
u64 star = 0;
star |= 0x13ul << 48u;
star |= 0x08ul << 32u;
MSR star_msr(MSR_STAR);
star_msr.set(star);
// Write the syscall entry point to the LSTAR MSR.
MSR lstar_msr(MSR_LSTAR);
lstar_msr.set(reinterpret_cast<u64>(&syscall_entry));
// Write the SFMASK MSR. This MSR controls which bits of rflags are masked when a syscall instruction is executed -
// if a bit is set in sfmask, the corresponding bit in rflags is cleared. The value set here clears most of rflags,
// but keeps the reserved and virtualization bits intact. The userspace rflags value is saved in r11 by syscall.
constexpr u64 rflags_mask = 0x257fd5u;
MSR sfmask_msr(MSR_SFMASK);
sfmask_msr.set(rflags_mask);
if (has_feature(CPUFeature::FSGSBASE)) {
// Turn off CR4.FSGSBASE to ensure the current Processor base kernel address is not leaked via
// the RDGSBASE instruction until we implement proper GS swapping at the userspace/kernel boundaries
write_cr4(read_cr4() & ~0x10000);
}
// Query OS-enabled CPUID features again, and set the flags if needed.
CPUID processor_info(0x1);
if (processor_info.ecx() & (1 << 27))
m_features |= CPUFeature::OSXSAVE;
CPUID extended_features(0x7);
if (extended_features.ecx() & (1 << 4))
m_features |= CPUFeature::OSPKE;
}
template<typename T>
UNMAP_AFTER_INIT void ProcessorBase<T>::early_initialize(u32 cpu)
{
m_self = static_cast<Processor*>(this);
auto self = static_cast<Processor*>(this);
m_cpu = cpu;
m_in_irq = 0;
m_in_critical = 0;
m_invoke_scheduler_async = false;
m_in_scheduler = true;
self->m_message_queue = nullptr;
m_idle_thread = nullptr;
m_current_thread = nullptr;
self->m_info = nullptr;
m_halt_requested = false;
if (cpu == 0) {
s_smp_enabled = false;
g_total_processors.store(1u, AK::MemoryOrder::memory_order_release);
} else {
g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel);
}
m_deferred_call_pool.init();
self->cpu_setup();
self->gdt_init();
VERIFY(is_initialized());
VERIFY(&current() == this); // sanity check
}
template<typename T>
UNMAP_AFTER_INIT void ProcessorBase<T>::initialize(u32 cpu)
{
VERIFY(m_self == this);
VERIFY(&current() == this); // sanity check
auto self = static_cast<Processor*>(this);
self->m_info = new ProcessorInfo(*self);
dmesgln("CPU[{}]: Supported features: {}", current_id(), self->m_info->features_string());
if (!has_feature(CPUFeature::RDRAND))
dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", current_id());
dmesgln("CPU[{}]: Physical address bit width: {}", current_id(), m_physical_address_bit_width);
dmesgln("CPU[{}]: Virtual address bit width: {}", current_id(), m_virtual_address_bit_width);
if (self->m_has_qemu_hvf_quirk.was_set())
dmesgln("CPU[{}]: Applied correction for QEMU Hypervisor.framework quirk", current_id());
if (cpu == 0)
initialize_interrupts();
else
flush_idt();
if (cpu == 0) {
VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0);
asm volatile("fninit");
// Initialize AVX state
if (has_feature(CPUFeature::XSAVE | CPUFeature::AVX)) {
asm volatile("xsave %0\n"
: "=m"(s_clean_fpu_state)
: "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
} else if (has_feature(CPUFeature::FXSR)) {
asm volatile("fxsave %0"
: "=m"(s_clean_fpu_state));
} else {
asm volatile("fnsave %0"
: "=m"(s_clean_fpu_state));
}
if (has_feature(CPUFeature::HYPERVISOR))
self->detect_hypervisor();
}
{
// We need to prevent races between APs starting up at the same time
VERIFY(cpu < s_processors.size());
s_processors[cpu] = static_cast<Processor*>(this);
}
}
UNMAP_AFTER_INIT void Processor::detect_hypervisor()
{
CPUID hypervisor_leaf_range(0x40000000);
auto hypervisor_vendor_id_string = m_info->hypervisor_vendor_id_string();
dmesgln("CPU[{}]: CPUID hypervisor signature '{}', max leaf {:#x}", current_id(), hypervisor_vendor_id_string, hypervisor_leaf_range.eax());
if (hypervisor_vendor_id_string == "Microsoft Hv"sv)
detect_hypervisor_hyperv(hypervisor_leaf_range);
}
UNMAP_AFTER_INIT void Processor::detect_hypervisor_hyperv(CPUID const& hypervisor_leaf_range)
{
if (hypervisor_leaf_range.eax() < 0x40000001)
return;
CPUID hypervisor_interface(0x40000001);
// Get signature of hypervisor interface.
alignas(sizeof(u32)) char interface_signature_buffer[5];
*reinterpret_cast<u32*>(interface_signature_buffer) = hypervisor_interface.eax();
interface_signature_buffer[4] = '\0';
StringView hyperv_interface_signature { interface_signature_buffer, strlen(interface_signature_buffer) };
dmesgln("CPU[{}]: Hyper-V interface signature '{}' ({:#x})", current_id(), hyperv_interface_signature, hypervisor_interface.eax());
if (hypervisor_leaf_range.eax() < 0x40000001)
return;
CPUID hypervisor_sysid(0x40000002);
dmesgln("CPU[{}]: Hyper-V system identity {}.{}, build number {}", current_id(), hypervisor_sysid.ebx() >> 16, hypervisor_sysid.ebx() & 0xFFFF, hypervisor_sysid.eax());
if (hypervisor_leaf_range.eax() < 0x40000005 || hyperv_interface_signature != "Hv#1"sv)
return;
dmesgln("CPU[{}]: Hyper-V hypervisor detected", current_id());
// TODO: Actually do something with Hyper-V.
}
void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high)
{
u16 i = (selector & 0xfffc) >> 3;
u32 prev_gdt_length = m_gdt_length;
if (i >= m_gdt_length) {
m_gdt_length = i + 1;
VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0]));
m_gdtr.limit = (m_gdt_length + 1) * 8 - 1;
}
m_gdt[i].low = low;
m_gdt[i].high = high;
// clear selectors we may have skipped
for (auto j = prev_gdt_length; j < i; ++j) {
m_gdt[j].low = 0;
m_gdt[j].high = 0;
}
}
void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor)
{
write_raw_gdt_entry(selector, descriptor.low, descriptor.high);
}
Descriptor& Processor::get_gdt_entry(u16 selector)
{
u16 i = (selector & 0xfffc) >> 3;
return *(Descriptor*)(&m_gdt[i]);
}
void Processor::flush_gdt()
{
m_gdtr.address = m_gdt;
m_gdtr.limit = (m_gdt_length * 8) - 1;
asm volatile("lgdt %0" ::"m"(m_gdtr)
: "memory");
}
DescriptorTablePointer const& Processor::get_gdtr()
{
return m_gdtr;
}
template<typename T>
ErrorOr<Vector<FlatPtr, 32>> ProcessorBase<T>::capture_stack_trace(Thread& thread, size_t max_frames)
{
FlatPtr frame_ptr = 0, ip = 0;
Vector<FlatPtr, 32> stack_trace;
auto walk_stack = [&](FlatPtr frame_ptr) -> ErrorOr<void> {
constexpr size_t max_stack_frames = 4096;
bool is_walking_userspace_stack = false;
TRY(stack_trace.try_append(ip));
TRY(AK::unwind_stack_from_frame_pointer(
frame_ptr,
[&is_walking_userspace_stack](FlatPtr address) -> ErrorOr<FlatPtr> {
if (!Memory::is_user_address(VirtualAddress { address })) {
if (is_walking_userspace_stack) {
dbgln("SHENANIGANS! Userspace stack points back into kernel memory");
return EFAULT;
}
} else {
is_walking_userspace_stack = true;
}
FlatPtr value;
if (Memory::is_user_range(VirtualAddress { address }, sizeof(FlatPtr))) {
TRY(copy_from_user(&value, bit_cast<FlatPtr*>(address)));
} else {
void* fault_at;
if (!safe_memcpy(&value, bit_cast<FlatPtr*>(address), sizeof(FlatPtr), fault_at))
return EFAULT;
}
return value;
},
[&stack_trace, max_frames](AK::StackFrame stack_frame) -> ErrorOr<IterationDecision> {
if (stack_trace.size() >= max_stack_frames || (max_frames != 0 && stack_trace.size() >= max_frames))
return IterationDecision::Break;
TRY(stack_trace.try_append(stack_frame.return_address));
return IterationDecision::Continue;
}));
return {};
};
auto capture_current_thread = [&]() {
frame_ptr = (FlatPtr)__builtin_frame_address(0);
ip = (FlatPtr)__builtin_return_address(0);
return walk_stack(frame_ptr);
};
// Since the thread may be running on another processor, there
// is a chance a context switch may happen while we're trying
// to get it. It also won't be entirely accurate and merely
// reflect the status at the last context switch.
SpinlockLocker lock(g_scheduler_lock);
if (&thread == Processor::current_thread()) {
VERIFY(thread.state() == Thread::State::Running);
// Leave the scheduler lock. If we trigger page faults we may
// need to be preempted. Since this is our own thread it won't
// cause any problems as the stack won't change below this frame.
lock.unlock();
TRY(capture_current_thread());
} else if (thread.is_active()) {
VERIFY(thread.cpu() != Processor::current_id());
// If this is the case, the thread is currently running
// on another processor. We can't trust the kernel stack as
// it may be changing at any time. We need to probably send
// an IPI to that processor, have it walk the stack and wait
// until it returns the data back to us
auto& proc = Processor::current();
ErrorOr<void> result;
Processor::smp_unicast(
thread.cpu(),
[&]() {
dbgln("CPU[{}] getting stack for cpu #{}", Processor::current_id(), proc.id());
ScopedAddressSpaceSwitcher switcher(thread.process());
VERIFY(&Processor::current() != &proc);
VERIFY(&thread == Processor::current_thread());
// NOTE: Because the other processor is still holding the
// scheduler lock while waiting for this callback to finish,
// the current thread on the target processor cannot change
// TODO: What to do about page faults here? We might deadlock
// because the other processor is still holding the
// scheduler lock...
result = capture_current_thread();
},
false);
TRY(result);
} else {
switch (thread.state()) {
case Thread::State::Running:
VERIFY_NOT_REACHED(); // should have been handled above
case Thread::State::Runnable:
case Thread::State::Stopped:
case Thread::State::Blocked:
case Thread::State::Dying:
case Thread::State::Dead: {
ScopedAddressSpaceSwitcher switcher(thread.process());
auto& regs = thread.regs();
ip = regs.ip();
frame_ptr = regs.rbp;
// TODO: We need to leave the scheduler lock here, but we also
// need to prevent the target thread from being run while
// we walk the stack
lock.unlock();
TRY(walk_stack(frame_ptr));
break;
}
default:
dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string());
break;
}
}
return stack_trace;
}
ProcessorContainer& Processor::processors()
{
return s_processors;
}
template<typename T>
Processor& ProcessorBase<T>::by_id(u32 id)
{
return *s_processors[id];
}
template<typename T>
void ProcessorBase<T>::exit_trap(TrapFrame& trap)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(&Processor::current() == this);
auto* self = static_cast<Processor*>(this);
// Temporarily enter a critical section. This is to prevent critical
// sections entered and left within e.g. smp_process_pending_messages
// to trigger a context switch while we're executing this function
// See the comment at the end of the function why we don't use
// ScopedCritical here.
m_in_critical = m_in_critical + 1;
VERIFY(m_in_irq >= trap.prev_irq_level);
m_in_irq = trap.prev_irq_level;
if (s_smp_enabled)
self->smp_process_pending_messages();
// Process the deferred call queue. Among other things, this ensures
// that any pending thread unblocks happen before we enter the scheduler.
m_deferred_call_pool.execute_pending();
auto* current_thread = Processor::current_thread();
if (current_thread) {
auto& current_trap = current_thread->current_trap();
current_trap = trap.next_trap;
ExecutionMode new_previous_mode;
if (current_trap) {
VERIFY(current_trap->regs);
// If we have another higher level trap then we probably returned
// from an interrupt or irq handler.
new_previous_mode = current_trap->regs->previous_mode();
} else {
// If we don't have a higher level trap then we're back in user mode.
// Which means that the previous mode prior to being back in user mode was kernel mode
new_previous_mode = ExecutionMode::Kernel;
}
if (current_thread->set_previous_mode(new_previous_mode))
current_thread->update_time_scheduled(TimeManagement::scheduler_current_time(), true, false);
}
VERIFY_INTERRUPTS_DISABLED();
// Leave the critical section without actually enabling interrupts.
// We don't want context switches to happen until we're explicitly
// triggering a switch in check_invoke_scheduler.
m_in_critical = m_in_critical - 1;
if (!m_in_irq && !m_in_critical)
check_invoke_scheduler();
}
template<typename T>
void ProcessorBase<T>::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
{
auto ptr = vaddr.as_ptr();
while (page_count > 0) {
asm volatile("invlpg %0"
:
: "m"(*ptr)
: "memory");
ptr += PAGE_SIZE;
page_count--;
}
}
template<typename T>
void ProcessorBase<T>::flush_entire_tlb_local()
{
write_cr3(read_cr3());
}
template<typename T>
void ProcessorBase<T>::flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
{
if (s_smp_enabled && (!Memory::is_user_address(vaddr) || Process::current().thread_count() > 1))
Processor::smp_broadcast_flush_tlb(page_directory, vaddr, page_count);
else
flush_tlb_local(vaddr, page_count);
}
void Processor::smp_return_to_pool(ProcessorMessage& msg)
{
ProcessorMessage* next = nullptr;
for (;;) {
msg.next = next;
if (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel))
break;
Processor::pause();
}
}
ProcessorMessage& Processor::smp_get_from_pool()
{
ProcessorMessage* msg;
// The assumption is that messages are never removed from the pool!
for (;;) {
msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume);
if (!msg) {
if (!Processor::current().smp_process_pending_messages()) {
Processor::pause();
}
continue;
}
// If another processor were to use this message in the meanwhile,
// "msg" is still valid (because it never gets freed). We'd detect
// this because the expected value "msg" and pool would
// no longer match, and the compare_exchange will fail. But accessing
// "msg->next" is always safe here.
if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) {
// We successfully "popped" this available message
break;
}
}
VERIFY(msg != nullptr);
return *msg;
}
template<typename T>
u32 ProcessorBase<T>::smp_wake_n_idle_processors(u32 wake_count)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(wake_count > 0);
if (!s_smp_enabled)
return 0;
// Wake at most N - 1 processors
if (wake_count >= Processor::count()) {
wake_count = Processor::count() - 1;
VERIFY(wake_count > 0);
}
u32 current_id = Processor::current_id();
u32 did_wake_count = 0;
auto& apic = APIC::the();
while (did_wake_count < wake_count) {
// Try to get a set of idle CPUs and flip them to busy
u32 idle_mask = Processor::s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id);
u32 idle_count = popcount(idle_mask);
if (idle_count == 0)
break; // No (more) idle processor available
u32 found_mask = 0;
for (u32 i = 0; i < idle_count; i++) {
u32 cpu = bit_scan_forward(idle_mask) - 1;
idle_mask &= ~(1u << cpu);
found_mask |= 1u << cpu;
}
idle_mask = Processor::s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask;
if (idle_mask == 0)
continue; // All of them were flipped to busy, try again
idle_count = popcount(idle_mask);
for (u32 i = 0; i < idle_count; i++) {
u32 cpu = bit_scan_forward(idle_mask) - 1;
idle_mask &= ~(1u << cpu);
// Send an IPI to that CPU to wake it up. There is a possibility
// someone else woke it up as well, or that it woke up due to
// a timer interrupt. But we tried hard to avoid this...
apic.send_ipi(cpu);
did_wake_count++;
}
}
return did_wake_count;
}
template<typename T>
UNMAP_AFTER_INIT void ProcessorBase<T>::smp_enable()
{
size_t msg_pool_size = Processor::count() * 100u;
size_t msg_entries_cnt = Processor::count();
auto msgs = new ProcessorMessage[msg_pool_size];
auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt];
size_t msg_entry_i = 0;
for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) {
auto& msg = msgs[i];
msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr;
msg.per_proc_entries = &msg_entries[msg_entry_i];
for (size_t k = 0; k < msg_entries_cnt; k++)
msg_entries[msg_entry_i + k].msg = &msg;
}
s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release);
// Start sending IPI messages
s_smp_enabled = true;
}
void Processor::smp_cleanup_message(ProcessorMessage& msg)
{
switch (msg.type) {
case ProcessorMessage::Callback:
msg.callback_value().~Function();
break;
default:
break;
}
}
bool Processor::smp_process_pending_messages()
{
VERIFY(s_smp_enabled);
bool did_process = false;
enter_critical();
if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) {
// We pulled the stack of pending messages in LIFO order, so we need to reverse the list first
auto reverse_list =
[](ProcessorMessageEntry* list) -> ProcessorMessageEntry* {
ProcessorMessageEntry* rev_list = nullptr;
while (list) {
auto next = list->next;
list->next = rev_list;
rev_list = list;
list = next;
}
return rev_list;
};
pending_msgs = reverse_list(pending_msgs);
// now process in the right order
ProcessorMessageEntry* next_msg;
for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) {
next_msg = cur_msg->next;
auto msg = cur_msg->msg;
dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", current_id(), VirtualAddress(msg));
switch (msg->type) {
case ProcessorMessage::Callback:
msg->invoke_callback();
break;
case ProcessorMessage::FlushTlb:
if (Memory::is_user_address(VirtualAddress(msg->flush_tlb.ptr))) {
// We assume that we don't cross into kernel land!
VERIFY(Memory::is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE));
if (read_cr3() != msg->flush_tlb.page_directory->cr3()) {
// This processor isn't using this page directory right now, we can ignore this request
dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", current_id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr));
break;
}
}
flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count);
break;
}
bool is_async = msg->async; // Need to cache this value *before* dropping the ref count!
auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel);
VERIFY(prev_refs != 0);
if (prev_refs == 1) {
// All processors handled this. If this is an async message,
// we need to clean it up and return it to the pool
if (is_async) {
smp_cleanup_message(*msg);
smp_return_to_pool(*msg);
}
}
if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed))
halt_this();
}
did_process = true;
} else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) {
halt_this();
}
leave_critical();
return did_process;
}
bool Processor::smp_enqueue_message(ProcessorMessage& msg)
{
// Note that it's quite possible that the other processor may pop
// the queue at any given time. We rely on the fact that the messages
// are pooled and never get freed!
auto& msg_entry = msg.per_proc_entries[id()];
VERIFY(msg_entry.msg == &msg);
ProcessorMessageEntry* next = nullptr;
for (;;) {
msg_entry.next = next;
if (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel))
break;
Processor::pause();
}
// If the enqueued message was the only message in the queue when posted,
// we return true. This is used by callers when deciding whether to generate an IPI.
return next == nullptr;
}
void Processor::smp_broadcast_message(ProcessorMessage& msg)
{
auto& current_processor = Processor::current();
dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} processor: {}", current_processor.id(), VirtualAddress(&msg), count(), VirtualAddress(&current_processor));
msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release);
VERIFY(msg.refs > 0);
bool need_broadcast = false;
for_each(
[&](Processor& proc) {
if (&proc != &current_processor) {
if (proc.smp_enqueue_message(msg))
need_broadcast = true;
}
});
// Now trigger an IPI on all other APs (unless all targets already had messages queued)
if (need_broadcast)
APIC::the().broadcast_ipi();
}
void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg)
{
auto& cur_proc = Processor::current();
VERIFY(!msg.async);
// If synchronous then we must cleanup and return the message back
// to the pool. Otherwise, the last processor to complete it will return it
while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
Processor::pause();
// We need to process any messages that may have been sent to
// us while we're waiting. This also checks if another processor
// may have requested us to halt.
cur_proc.smp_process_pending_messages();
}
smp_cleanup_message(msg);
smp_return_to_pool(msg);
}
void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async)
{
auto& current_processor = Processor::current();
VERIFY(cpu != current_processor.id());
auto& target_processor = processors()[cpu];
msg.async = async;
dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} processor: {}", current_processor.id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_processor));
msg.refs.store(1u, AK::MemoryOrder::memory_order_release);
if (target_processor->smp_enqueue_message(msg)) {
APIC::the().send_ipi(cpu);
}
if (!async) {
// If synchronous then we must cleanup and return the message back
// to the pool. Otherwise, the last processor to complete it will return it
while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
Processor::pause();
// We need to process any messages that may have been sent to
// us while we're waiting. This also checks if another processor
// may have requested us to halt.
current_processor.smp_process_pending_messages();
}
smp_cleanup_message(msg);
smp_return_to_pool(msg);
}
}
void Processor::smp_unicast(u32 cpu, Function<void()> callback, bool async)
{
auto& msg = smp_get_from_pool();
msg.type = ProcessorMessage::Callback;
new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
smp_unicast_message(cpu, msg, async);
}
void Processor::smp_broadcast_flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
{
auto& msg = smp_get_from_pool();
msg.async = false;
msg.type = ProcessorMessage::FlushTlb;
msg.flush_tlb.page_directory = page_directory;
msg.flush_tlb.ptr = vaddr.as_ptr();
msg.flush_tlb.page_count = page_count;
smp_broadcast_message(msg);
// While the other processors handle this request, we'll flush ours
flush_tlb_local(vaddr, page_count);
// Now wait until everybody is done as well
smp_broadcast_wait_sync(msg);
}
void Processor::smp_broadcast_halt()
{
// We don't want to use a message, because this could have been triggered
// by being out of memory and we might not be able to get a message
for_each(
[&](Processor& proc) {
proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release);
});
// Now trigger an IPI on all other APs
APIC::the().broadcast_ipi();
}
template<typename T>
void ProcessorBase<T>::halt()
{
if (s_smp_enabled)
Processor::smp_broadcast_halt();
halt_this();
}
UNMAP_AFTER_INIT void Processor::gdt_init()
{
m_gdt_length = 0;
m_gdtr.address = nullptr;
m_gdtr.limit = 0;
write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000);
write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00af9a00); // code0
write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00af9200); // data0
write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x008ff200); // data3
write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00affa00); // code3
Descriptor tss_descriptor {};
tss_descriptor.set_base(VirtualAddress { (size_t)&m_tss & 0xffffffff });
tss_descriptor.set_limit(sizeof(TSS) - 1);
tss_descriptor.dpl = 0;
tss_descriptor.segment_present = 1;
tss_descriptor.granularity = 0;
tss_descriptor.operation_size64 = 0;
tss_descriptor.operation_size32 = 1;
tss_descriptor.descriptor_type = 0;
tss_descriptor.type = Descriptor::SystemType::AvailableTSS;
write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss
Descriptor tss_descriptor_part2 {};
tss_descriptor_part2.low = (size_t)&m_tss >> 32;
write_gdt_entry(GDT_SELECTOR_TSS_PART2, tss_descriptor_part2);
flush_gdt();
load_task_register(GDT_SELECTOR_TSS);
MSR gs_base(MSR_GS_BASE);
gs_base.set((u64)this);
}
extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, [[maybe_unused]] TrapFrame* trap)
{
do_context_first_init(from_thread, to_thread);
}
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread)
{
VERIFY(from_thread == to_thread || from_thread->state() != Thread::State::Running);
VERIFY(to_thread->state() == Thread::State::Running);
bool has_fxsr = Processor::current().has_feature(CPUFeature::FXSR);
bool has_xsave_avx_support = Processor::current().has_feature(CPUFeature::XSAVE) && Processor::current().has_feature(CPUFeature::AVX);
Processor::set_current_thread(*to_thread);
auto& from_regs = from_thread->regs();
auto& to_regs = to_thread->regs();
// NOTE: IOPL should never be non-zero in any situation, so let's panic immediately
// instead of carrying on with elevated I/O privileges.
VERIFY(get_iopl_from_eflags(to_regs.flags()) == 0);
if (has_xsave_avx_support) {
// The specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the logical-AND of EDX:EAX and XCR0.
// https://www.moritz.systems/blog/how-debuggers-work-getting-and-setting-x86-registers-part-2/
asm volatile("xsave %0\n"
: "=m"(from_thread->fpu_state())
: "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
} else if (has_fxsr) {
asm volatile("fxsave %0"
: "=m"(from_thread->fpu_state()));
} else {
asm volatile("fnsave %0"
: "=m"(from_thread->fpu_state()));
}
if (from_thread->process().is_traced())
read_debug_registers_into(from_thread->debug_register_state());
if (to_thread->process().is_traced()) {
write_debug_registers_from(to_thread->debug_register_state());
} else {
clear_debug_registers();
}
auto& processor = Processor::current();
Processor::set_fs_base(to_thread->arch_specific_data().fs_base);
if (from_regs.cr3 != to_regs.cr3)
write_cr3(to_regs.cr3);
to_thread->set_cpu(processor.id());
auto in_critical = to_thread->saved_critical();
VERIFY(in_critical > 0);
Processor::restore_critical(in_critical);
if (has_xsave_avx_support)
asm volatile("xrstor %0" ::"m"(to_thread->fpu_state()), "a"(static_cast<u32>(SIMD::StateComponent::AVX | SIMD::StateComponent::SSE | SIMD::StateComponent::X87)), "d"(0u));
else if (has_fxsr)
asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state()));
else
asm volatile("frstor %0" ::"m"(to_thread->fpu_state()));
}
extern "C" NO_SANITIZE_COVERAGE FlatPtr do_init_context(Thread* thread, u32 flags)
{
VERIFY_INTERRUPTS_DISABLED();
thread->regs().set_flags(flags);
return Processor::current().init_context(*thread, true);
}
// FIXME: Share this code with other architectures.
template<typename T>
void ProcessorBase<T>::assume_context(Thread& thread, InterruptsState new_interrupts_state)
{
dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread);
VERIFY_INTERRUPTS_DISABLED();
Scheduler::prepare_after_exec();
// in_critical() should be 2 here. The critical section in Process::exec
// and then the scheduler lock
VERIFY(Processor::in_critical() == 2);
u32 flags = 2 | (new_interrupts_state == InterruptsState::Enabled ? 0x200 : 0);
do_assume_context(&thread, flags);
VERIFY_NOT_REACHED();
}
template<typename T>
u32 ProcessorBase<T>::clear_critical()
{
InterruptDisabler disabler;
auto prev_critical = in_critical();
write_gs_ptr(__builtin_offsetof(Processor, m_in_critical), 0);
auto& proc = current();
if (proc.m_in_irq == 0)
proc.check_invoke_scheduler();
return prev_critical;
}
NAKED void thread_context_first_enter(void)
{
// enter_thread_context returns to here first time a thread is executing
asm(
// switch_context will have pushed from_thread and to_thread to our news
// stack prior to thread_context_first_enter() being called, and the
// pointer to TrapFrame was the top of the stack before that
" popq %rdi \n" // from_thread (argument 0)
" popq %rsi \n" // to_thread (argument 1)
" popq %rdx \n" // pointer to TrapFrame (argument 2)
" cld \n"
" call context_first_init \n"
" jmp common_trap_exit \n");
}
NAKED NO_SANITIZE_COVERAGE void do_assume_context(Thread*, u32)
{
// clang-format off
// FIXME: I hope (Thread* thread, u32 flags) aren't compiled away
asm(
" movq %rdi, %r12 \n" // save thread ptr
" movq %rsi, %r13 \n" // save flags
// We're going to call Processor::init_context, so just make sure
// we have enough stack space so we don't stomp over it
" subq $(" __STRINGIFY(16 + REGISTER_STATE_SIZE + TRAP_FRAME_SIZE + 8) "), %rsp \n"
" cld \n"
" call do_init_context \n"
" movq %rax, %rsp \n" // move stack pointer to what Processor::init_context set up for us
" movq %r12, %rdi \n" // to_thread
" movq %r12, %rsi \n" // from_thread
" pushq %r12 \n" // to_thread (for thread_context_first_enter)
" pushq %r12 \n" // from_thread (for thread_context_first_enter)
" leaq thread_context_first_enter(%rip), %r12 \n" // should be same as regs.rip
" pushq %r12 \n"
" jmp enter_thread_context \n");
// clang-format on
}
template<typename T>
StringView ProcessorBase<T>::platform_string()
{
return "x86_64"sv;
}
template<typename T>
FlatPtr ProcessorBase<T>::init_context(Thread& thread, bool leave_crit)
{
VERIFY(is_kernel_mode());
VERIFY(g_scheduler_lock.is_locked());
if (leave_crit) {
// Leave the critical section we set up in in Process::exec,
// but because we still have the scheduler lock we should end up with 1
VERIFY(in_critical() == 2);
m_in_critical = 1; // leave it without triggering anything or restoring flags
}
u64 kernel_stack_top = thread.kernel_stack_top();
// Add a random offset between 0-256 (16-byte aligned)
kernel_stack_top -= round_up_to_power_of_two(get_fast_random<u8>(), 16);
u64 stack_top = kernel_stack_top;
// TODO: handle NT?
VERIFY((cpu_flags() & 0x24000) == 0); // Assume !(NT | VM)
auto& regs = thread.regs();
bool return_to_user = (regs.cs & 3) != 0;
stack_top -= 1 * sizeof(u64);
*reinterpret_cast<u64*>(kernel_stack_top - 2 * sizeof(u64)) = FlatPtr(&exit_kernel_thread);
stack_top -= sizeof(RegisterState);
// we want to end up 16-byte aligned, %rsp + 8 should be aligned
stack_top -= sizeof(u64);
*reinterpret_cast<u64*>(kernel_stack_top - sizeof(u64)) = 0;
// set up the stack so that after returning from thread_context_first_enter()
// we will end up either in kernel mode or user mode, depending on how the thread is set up
// However, the first step is to always start in kernel mode with thread_context_first_enter
RegisterState& iretframe = *reinterpret_cast<RegisterState*>(stack_top);
iretframe.rdi = regs.rdi;
iretframe.rsi = regs.rsi;
iretframe.rbp = regs.rbp;
iretframe.rsp = 0;
iretframe.rbx = regs.rbx;
iretframe.rdx = regs.rdx;
iretframe.rcx = regs.rcx;
iretframe.rax = regs.rax;
iretframe.r8 = regs.r8;
iretframe.r9 = regs.r9;
iretframe.r10 = regs.r10;
iretframe.r11 = regs.r11;
iretframe.r12 = regs.r12;
iretframe.r13 = regs.r13;
iretframe.r14 = regs.r14;
iretframe.r15 = regs.r15;
iretframe.rflags = regs.rflags;
iretframe.rip = regs.rip;
iretframe.cs = regs.cs;
if (return_to_user) {
iretframe.userspace_rsp = regs.rsp;
iretframe.userspace_ss = GDT_SELECTOR_DATA3 | 3;
} else {
iretframe.userspace_rsp = kernel_stack_top;
iretframe.userspace_ss = 0;
}
// make space for a trap frame
stack_top -= sizeof(TrapFrame);
TrapFrame& trap = *reinterpret_cast<TrapFrame*>(stack_top);
trap.regs = &iretframe;
trap.prev_irq_level = 0;
trap.next_trap = nullptr;
stack_top -= sizeof(u64); // pointer to TrapFrame
*reinterpret_cast<u64*>(stack_top) = stack_top + 8;
if constexpr (CONTEXT_SWITCH_DEBUG) {
if (return_to_user) {
dbgln("init_context {} ({}) set up to execute at rip={}:{}, rsp={}, stack_top={}, user_top={}",
thread,
VirtualAddress(&thread),
iretframe.cs, regs.rip,
VirtualAddress(regs.rsp),
VirtualAddress(stack_top),
iretframe.userspace_rsp);
} else {
dbgln("init_context {} ({}) set up to execute at rip={}:{}, rsp={}, stack_top={}",
thread,
VirtualAddress(&thread),
iretframe.cs, regs.rip,
VirtualAddress(regs.rsp),
VirtualAddress(stack_top));
}
}
// make switch_context() always first return to thread_context_first_enter()
// in kernel mode, so set up these values so that we end up popping iretframe
// off the stack right after the context switch completed, at which point
// control is transferred to what iretframe is pointing to.
regs.rip = FlatPtr(&thread_context_first_enter);
regs.rsp0 = kernel_stack_top;
regs.rsp = stack_top;
regs.cs = GDT_SELECTOR_CODE0;
return stack_top;
}
template<typename T>
void ProcessorBase<T>::switch_context(Thread*& from_thread, Thread*& to_thread)
{
VERIFY(!m_in_irq);
VERIFY(m_in_critical == 1);
VERIFY(is_kernel_mode());
auto* self = static_cast<Processor*>(this);
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context --> switching out of: {} {}", VirtualAddress(from_thread), *from_thread);
// m_in_critical is restored in enter_thread_context
from_thread->save_critical(m_in_critical);
// clang-format off
// Switch to new thread context, passing from_thread and to_thread
// through to the new context using registers rdx and rax
asm volatile(
// NOTE: changing how much we push to the stack affects thread_context_first_enter()!
"pushfq \n"
"pushq %%rbx \n"
"pushq %%rcx \n"
"pushq %%rbp \n"
"pushq %%rsi \n"
"pushq %%rdi \n"
"pushq %%r8 \n"
"pushq %%r9 \n"
"pushq %%r10 \n"
"pushq %%r11 \n"
"pushq %%r12 \n"
"pushq %%r13 \n"
"pushq %%r14 \n"
"pushq %%r15 \n"
"movq %%rsp, %[from_rsp] \n"
"leaq 1f(%%rip), %%rbx \n"
"movq %%rbx, %[from_rip] \n"
"movq %[to_rsp0], %%rbx \n"
"movl %%ebx, %[tss_rsp0l] \n"
"shrq $32, %%rbx \n"
"movl %%ebx, %[tss_rsp0h] \n"
"movq %[to_rsp], %%rsp \n"
"movq %%rbp, %[from_rbp] \n"
"pushq %[to_thread] \n"
"pushq %[from_thread] \n"
"pushq %[to_rip] \n"
"cld \n"
"movq 16(%%rsp), %%rsi \n"
"movq 8(%%rsp), %%rdi \n"
"jmp enter_thread_context \n"
"1: \n"
"popq %%rdx \n"
"popq %%rax \n"
"popq %%r15 \n"
"popq %%r14 \n"
"popq %%r13 \n"
"popq %%r12 \n"
"popq %%r11 \n"
"popq %%r10 \n"
"popq %%r9 \n"
"popq %%r8 \n"
"popq %%rdi \n"
"popq %%rsi \n"
"popq %%rbp \n"
"popq %%rcx \n"
"popq %%rbx \n"
"popfq \n"
: [from_rsp] "=m" (from_thread->regs().rsp),
[from_rbp] "=m" (from_thread->regs().rbp),
[from_rip] "=m" (from_thread->regs().rip),
[tss_rsp0l] "=m" (self->m_tss.rsp0l),
[tss_rsp0h] "=m" (self->m_tss.rsp0h),
"=d" (from_thread), // needed so that from_thread retains the correct value
"=a" (to_thread) // needed so that to_thread retains the correct value
: [to_rsp] "g" (to_thread->regs().rsp),
[to_rsp0] "g" (to_thread->regs().rsp0),
[to_rip] "c" (to_thread->regs().rip),
[from_thread] "d" (from_thread),
[to_thread] "a" (to_thread)
: "memory", "rbx"
);
// clang-format on
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {}", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
}
template<typename T>
UNMAP_AFTER_INIT void ProcessorBase<T>::initialize_context_switching(Thread& initial_thread)
{
VERIFY(initial_thread.process().is_kernel_process());
auto* self = static_cast<Processor*>(this);
auto& regs = initial_thread.regs();
self->m_tss.iomapbase = sizeof(self->m_tss);
self->m_tss.rsp0l = regs.rsp0 & 0xffffffff;
self->m_tss.rsp0h = regs.rsp0 >> 32;
m_scheduler_initialized.set();
// clang-format off
asm volatile(
"movq %[new_rsp], %%rsp \n" // switch to new stack
"pushq %[from_to_thread] \n" // to_thread
"pushq %[from_to_thread] \n" // from_thread
"pushq %[new_rip] \n" // save the entry rip to the stack
"cld \n"
"pushq %[cpu] \n" // push argument for init_finished before register is clobbered
"call pre_init_finished \n"
"pop %%rdi \n" // move argument for init_finished into place
"call init_finished \n"
"call post_init_finished \n"
"movq 24(%%rsp), %%rdi \n" // move pointer to TrapFrame into place
"call enter_trap_no_irq \n"
"retq \n"
:: [new_rsp] "g" (regs.rsp),
[new_rip] "a" (regs.rip),
[from_to_thread] "b" (&initial_thread),
[cpu] "c" ((u64)id())
);
// clang-format on
VERIFY_NOT_REACHED();
}
void Processor::set_fs_base(FlatPtr fs_base)
{
MSR fs_base_msr(MSR_FS_BASE);
fs_base_msr.set(fs_base);
}
template<typename T>
void ProcessorBase<T>::idle_begin() const
{
Processor::s_idle_cpu_mask.fetch_or(1u << m_cpu, AK::MemoryOrder::memory_order_relaxed);
}
template<typename T>
void ProcessorBase<T>::idle_end() const
{
Processor::s_idle_cpu_mask.fetch_and(~(1u << m_cpu), AK::MemoryOrder::memory_order_relaxed);
}
template<typename T>
void ProcessorBase<T>::wait_for_interrupt() const
{
asm("hlt");
}
}
#include <Kernel/Arch/ProcessorFunctions.include>