1
0
mirror of https://github.com/SerenityOS/serenity synced 2024-07-09 10:00:46 +00:00
serenity/Kernel/Memory/MemoryManager.cpp
Idan Horowitz 26cff62a0a Kernel: Rename Memory::PhysicalPage to Memory::PhysicalRAMPage
Since these are now only used to represent RAM pages, (and not MMIO
pages) rename them to make their purpose more obvious.
2024-05-17 15:38:28 -06:00

1545 lines
70 KiB
C++

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/MemoryStream.h>
#include <AK/QuickSort.h>
#include <AK/StringView.h>
#include <Kernel/Arch/CPU.h>
#include <Kernel/Arch/PageDirectory.h>
#include <Kernel/Arch/PageFault.h>
#include <Kernel/Arch/RegisterState.h>
#include <Kernel/Boot/BootInfo.h>
#include <Kernel/Boot/Multiboot.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/InterruptDisabler.h>
#include <Kernel/KSyms.h>
#include <Kernel/Library/Panic.h>
#include <Kernel/Library/StdLib.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MMIOVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PhysicalRegion.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/Prekernel/Prekernel.h>
#include <Kernel/Sections.h>
#include <Kernel/Security/AddressSanitizer.h>
#include <Kernel/Tasks/Process.h>
#include <Userland/Libraries/LibDeviceTree/FlattenedDeviceTree.h>
extern u8 start_of_kernel_image[];
extern u8 end_of_kernel_image[];
extern u8 start_of_kernel_text[];
extern u8 start_of_kernel_data[];
extern u8 end_of_kernel_bss[];
extern u8 start_of_ro_after_init[];
extern u8 end_of_ro_after_init[];
extern u8 start_of_unmap_after_init[];
extern u8 end_of_unmap_after_init[];
extern u8 start_of_kernel_ksyms[];
extern u8 end_of_kernel_ksyms[];
extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
extern size_t multiboot_copy_boot_modules_count;
namespace Kernel::Memory {
ErrorOr<FlatPtr> page_round_up(FlatPtr x)
{
if (x > (explode_byte(0xFF) & ~0xFFF)) {
return Error::from_errno(EINVAL);
}
return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
}
// NOTE: We can NOT use Singleton for this class, because
// MemoryManager::initialize is called *before* global constructors are
// run. If we do, then Singleton would get re-initialized, causing
// the memory manager to be initialized twice!
static MemoryManager* s_the;
MemoryManager& MemoryManager::the()
{
return *s_the;
}
bool MemoryManager::is_initialized()
{
return s_the != nullptr;
}
static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
{
#if ARCH(X86_64)
size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
#elif ARCH(AARCH64) || ARCH(RISCV64)
// NOTE: This is not the same as x86_64, because the aarch64 and riscv64 kernels currently don't use the pre-kernel.
return VirtualRange { VirtualAddress(kernel_mapping_base), KERNEL_PD_END - kernel_mapping_base };
#else
# error Unknown architecture
#endif
}
MemoryManager::GlobalData::GlobalData()
: region_tree(kernel_virtual_range())
{
}
UNMAP_AFTER_INIT MemoryManager::MemoryManager()
{
s_the = this;
parse_memory_map();
activate_kernel_page_directory(kernel_page_directory());
protect_kernel_image();
// We're temporarily "committing" to two pages that we need to allocate below
auto committed_pages = commit_physical_pages(2).release_value();
m_shared_zero_page = committed_pages.take_one();
// We're wasting a page here, we just need a special tag (physical
// address) so that we know when we need to lazily allocate a page
// that we should be drawing this page from the committed pool rather
// than potentially failing if no pages are available anymore.
// By using a tag we don't have to query the VMObject for every page
// whether it was committed or not
m_lazy_committed_page = committed_pages.take_one();
#ifdef HAS_ADDRESS_SANITIZER
initialize_kasan_shadow_memory();
#endif
}
UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
{
SpinlockLocker page_lock(kernel_page_directory().get_lock());
// Disable writing to the kernel text and rodata segments.
for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_writable(false);
}
if (Processor::current().has_nx()) {
// Disable execution of the kernel data, bss and heap segments.
for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
}
}
UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
{
SpinlockLocker page_lock(kernel_page_directory().get_lock());
auto start = start_of_prekernel_image.page_base().get();
auto end = end_of_prekernel_image.page_base().get();
for (auto i = start; i <= end; i += PAGE_SIZE)
release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
}
UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
{
SpinlockLocker page_lock(kernel_page_directory().get_lock());
// Disable writing to the .ro_after_init section
for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_writable(false);
flush_tlb(&kernel_page_directory(), VirtualAddress(i));
}
}
void MemoryManager::unmap_text_after_init()
{
SpinlockLocker page_lock(kernel_page_directory().get_lock());
auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
// Unmap the entire .unmap_after_init section
for (auto i = start; i < end; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.clear();
flush_tlb(&kernel_page_directory(), VirtualAddress(i));
}
dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
}
UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
{
SpinlockLocker page_lock(kernel_page_directory().get_lock());
auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
for (auto i = start; i < end; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_writable(false);
flush_tlb(&kernel_page_directory(), VirtualAddress(i));
}
dmesgln("Write-protected kernel symbols after init.");
}
IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
{
return m_global_data.with([&](auto& global_data) {
VERIFY(!global_data.physical_memory_ranges.is_empty());
for (auto& current_range : global_data.physical_memory_ranges) {
IterationDecision decision = callback(current_range);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
{
m_global_data.with([&](auto& global_data) {
VERIFY(!global_data.physical_memory_ranges.is_empty());
ContiguousReservedMemoryRange range;
for (auto& current_range : global_data.physical_memory_ranges) {
if (current_range.type != PhysicalMemoryRangeType::Reserved) {
if (range.start.is_null())
continue;
global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
range.start.set((FlatPtr) nullptr);
continue;
}
if (!range.start.is_null()) {
continue;
}
range.start = current_range.start;
}
if (global_data.physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
return;
if (range.start.is_null())
return;
global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, global_data.physical_memory_ranges.last().start.get() + global_data.physical_memory_ranges.last().length - range.start.get() });
});
}
bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
{
// Note: Guard against overflow in case someone tries to mmap on the edge of
// the RAM
if (start_address.offset_addition_would_overflow(read_length))
return false;
auto end_address = start_address.offset(read_length);
return m_global_data.with([&](auto& global_data) {
for (auto const& current_range : global_data.reserved_memory_ranges) {
if (current_range.start > start_address)
continue;
if (current_range.start.offset(current_range.length) < end_address)
continue;
return true;
}
return false;
});
}
UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
{
// Register used memory regions that we know of.
m_global_data.with([this](auto& global_data) {
global_data.used_memory_ranges.ensure_capacity(4);
#if ARCH(X86_64)
// NOTE: We don't touch the first 1 MiB of RAM on x86-64 even if it's usable as indicated
// by a certain memory map. There are 2 reasons for this:
//
// The first reason is specified for Linux doing the same thing in
// https://cateee.net/lkddb/web-lkddb/X86_RESERVE_LOW.html -
// "By default we reserve the first 64K of physical RAM, as a number of BIOSes are known
// to corrupt that memory range during events such as suspend/resume or monitor cable insertion,
// so it must not be used by the kernel."
//
// Linux also allows configuring this knob in compiletime for this reserved range length, that might
// also include the EBDA and other potential ranges in the first 1 MiB that could be corrupted by the BIOS:
// "You can set this to 4 if you are absolutely sure that you trust the BIOS to get all its memory
// reservations and usages right. If you know your BIOS have problems beyond the default 64K area,
// you can set this to 640 to avoid using the entire low memory range."
//
// The second reason is that the first 1 MiB memory range should also include the actual BIOS blob
// together with possible execution blob code for various option ROMs, which should not be touched
// by our kernel.
//
// **To be completely on the safe side** and never worry about where the EBDA is located, how BIOS might
// corrupt the low memory range during power state changing, other bad behavior of some BIOS might change
// a value in the very first 64k bytes of RAM, etc - we should just ignore this range completely.
global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
#endif
global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
#if ARCH(RISCV64)
// FIXME: AARCH64 might be able to make use of this code path
// Some x86 platforms also provide flattened device trees
parse_memory_map_fdt(global_data, s_fdt_storage);
#else
parse_memory_map_multiboot(global_data);
#endif
// Now we need to setup the physical regions we will use later
struct ContiguousPhysicalVirtualRange {
PhysicalAddress lower;
PhysicalAddress upper;
};
Optional<ContiguousPhysicalVirtualRange> last_contiguous_physical_range;
for (auto range : global_data.physical_memory_ranges) {
if (range.type != PhysicalMemoryRangeType::Usable)
continue;
auto address = range.start.get();
auto length = range.length;
// Fix up unaligned memory regions.
auto diff = (FlatPtr)address % PAGE_SIZE;
if (diff != 0) {
dmesgln("MM: Got an unaligned usable physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
diff = PAGE_SIZE - diff;
address += diff;
length -= diff;
}
if ((length % PAGE_SIZE) != 0) {
dmesgln("MM: Got an unaligned usable physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
length -= length % PAGE_SIZE;
}
if (length < PAGE_SIZE) {
dmesgln("MM: Memory usable physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
continue;
}
// FIXME: This might have a nicer solution than slicing the ranges apart,
// to just put them back together when we dont find a used range in them
for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
auto addr = PhysicalAddress(page_base);
// Skip used memory ranges.
bool should_skip = false;
for (auto& used_range : global_data.used_memory_ranges) {
if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
should_skip = true;
page_base = used_range.end.get();
break;
}
}
if (should_skip)
continue;
if (!last_contiguous_physical_range.has_value() || last_contiguous_physical_range->upper.offset(PAGE_SIZE) != addr) {
if (last_contiguous_physical_range.has_value()) {
auto range = last_contiguous_physical_range.release_value();
// FIXME: OOM?
global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
}
last_contiguous_physical_range = ContiguousPhysicalVirtualRange { .lower = addr, .upper = addr };
} else {
last_contiguous_physical_range->upper = addr;
}
}
// FIXME: If this is ever false, theres a good chance that all physical memory is already spent
if (last_contiguous_physical_range.has_value()) {
auto range = last_contiguous_physical_range.release_value();
// FIXME: OOM?
global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
}
}
for (auto& region : global_data.physical_regions)
global_data.system_memory_info.physical_pages += region->size();
register_reserved_ranges();
for (auto& range : global_data.reserved_memory_ranges) {
dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
}
initialize_physical_pages();
VERIFY(global_data.system_memory_info.physical_pages > 0);
// We start out with no committed pages
global_data.system_memory_info.physical_pages_uncommitted = global_data.system_memory_info.physical_pages;
for (auto& used_range : global_data.used_memory_ranges) {
dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
}
for (auto& region : global_data.physical_regions) {
dmesgln("MM: User physical region: {} - {} (size {:#x})", region->lower(), region->upper().offset(-1), PAGE_SIZE * region->size());
region->initialize_zones();
}
});
}
UNMAP_AFTER_INIT void MemoryManager::parse_memory_map_fdt(MemoryManager::GlobalData& global_data, u8 const* fdt_addr)
{
auto const& fdt_header = *reinterpret_cast<DeviceTree::FlattenedDeviceTreeHeader const*>(fdt_addr);
auto fdt_buffer = ReadonlyBytes(fdt_addr, fdt_header.totalsize);
auto const* mem_reserve_block = reinterpret_cast<DeviceTree::FlattenedDeviceTreeReserveEntry const*>(&fdt_buffer[fdt_header.off_mem_rsvmap]);
u64 next_block_offset = fdt_header.off_mem_rsvmap + sizeof(DeviceTree::FlattenedDeviceTreeReserveEntry);
while ((next_block_offset < fdt_header.off_dt_struct) && (*mem_reserve_block != DeviceTree::FlattenedDeviceTreeReserveEntry {})) {
dbgln("MM: Reserved Range /memreserve/: address: {} size {:#x}", PhysicalAddress { mem_reserve_block->address }, mem_reserve_block->size);
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, PhysicalAddress { mem_reserve_block->address }, mem_reserve_block->size });
// FIXME: Not all of these are "used", only those in "memory" are actually "used"
global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress { mem_reserve_block->address }, PhysicalAddress { mem_reserve_block->address + mem_reserve_block->size } });
++mem_reserve_block;
next_block_offset += sizeof(DeviceTree::FlattenedDeviceTreeReserveEntry);
}
// Schema:
// https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/root-node.yaml
// -> /#address-cells ∈ [1,2], /#size-cells ∈ [1,2]
// Reserved Memory:
// https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
// -> #address-cells === /#address-cells, #size-cells === /#size-cells
// https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/reserved-memory/reserved-memory.yaml
// Memory:
// https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/memory.yaml
// -> #address-cells: /#address-cells , #size-cells: /#size-cells
// FIXME: When booting from UEFI, the /memory node may not be relied upon
enum class State {
Root,
InReservedMemory,
InReservedMemoryChild,
InMemory
};
struct {
u32 depth = 0;
State state = State::Root;
Optional<u64> start {};
Optional<u64> size {};
u32 address_cells = 0;
u32 size_cells = 0;
} state;
MUST(DeviceTree::walk_device_tree(
fdt_header, fdt_buffer,
DeviceTree::DeviceTreeCallbacks {
.on_node_begin = [&state](StringView node_name) -> ErrorOr<IterationDecision> {
switch (state.state) {
case State::Root:
if (state.depth != 1)
break;
if (node_name == "reserved-memory")
state.state = State::InReservedMemory;
else if (node_name.starts_with("memory"sv))
state.state = State::InMemory;
break;
case State::InReservedMemory:
// FIXME: The node names may hint to the purpose
state.state = State::InReservedMemoryChild;
state.start = {};
state.size = {};
break;
case State::InReservedMemoryChild:
case State::InMemory:
// We should never be here
VERIFY_NOT_REACHED();
}
state.depth++;
return IterationDecision::Continue;
},
.on_node_end = [&global_data, &state](StringView node_name) -> ErrorOr<IterationDecision> {
switch (state.state) {
case State::Root:
break;
case State::InReservedMemory:
state.state = State::Root;
break;
case State::InMemory:
VERIFY(state.start.has_value() && state.size.has_value());
dbgln("MM: Memory Range {}: address: {} size {:#x}", node_name, PhysicalAddress { state.start.value() }, state.size.value());
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, PhysicalAddress { state.start.value() }, state.size.value() });
state.state = State::Root;
break;
case State::InReservedMemoryChild:
// FIXME: Handle non static allocations,
if (!state.start.has_value()) {
VERIFY(state.size.has_value());
dbgln("MM: Non static reserved memory range {} of size {:#x}, skipping for now", node_name, state.size.value());
state.state = State::InReservedMemory;
break;
}
VERIFY(state.start.has_value() && state.size.has_value());
dbgln("MM: Reserved Range {}: address: {} size {:#x}", node_name, PhysicalAddress { state.start.value() }, state.size.value());
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, PhysicalAddress { state.start.value() }, state.size.value() });
// FIXME: Not all of these are "used", only those in "memory" are actually "used"
// There might be for example debug DMA control registers, which are marked as reserved
global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress { state.start.value() }, PhysicalAddress { state.start.value() + state.size.value() } });
state.state = State::InReservedMemory;
break;
}
state.depth--;
return IterationDecision::Continue;
},
.on_property = [&state](StringView property_name, ReadonlyBytes data) -> ErrorOr<IterationDecision> {
switch (state.state) {
case State::Root:
if (state.depth != 1)
break;
if (property_name == "#address-cells"sv) {
BigEndian<u32> data_as_int;
__builtin_memcpy(&data_as_int, data.data(), sizeof(u32));
state.address_cells = data_as_int;
VERIFY(state.address_cells != 0);
VERIFY(state.address_cells <= 2);
} else if (property_name == "#size-cells"sv) {
BigEndian<u32> data_as_int;
__builtin_memcpy(&data_as_int, data.data(), sizeof(u32));
state.size_cells = data_as_int;
VERIFY(state.size_cells != 0);
VERIFY(state.size_cells <= 2);
}
break;
case State::InReservedMemory:
// FIXME: We could check and verify that the address and size cells
// are the same as in the root node
// FIXME: Handle the ranges attribute if not empty
if (property_name == "ranges"sv && data.size() != 0)
TODO();
break;
case State::InReservedMemoryChild:
case State::InMemory:
if (property_name == "reg"sv) {
VERIFY(state.address_cells);
VERIFY(state.size_cells);
// FIXME: We may get more than one range here
if (data.size() > (state.address_cells + state.size_cells) * sizeof(u32))
TODO();
if (state.address_cells == 1) {
BigEndian<u32> data_as_int;
__builtin_memcpy(&data_as_int, data.data(), sizeof(u32));
state.start = data_as_int;
data = data.slice(sizeof(u32));
} else {
BigEndian<u64> data_as_int;
__builtin_memcpy(&data_as_int, data.data(), sizeof(u64));
state.start = data_as_int;
data = data.slice(sizeof(u64));
}
if (state.size_cells == 1) {
BigEndian<u32> data_as_int;
__builtin_memcpy(&data_as_int, data.data(), sizeof(u32));
state.size = data_as_int;
data = data.slice(sizeof(u32));
} else {
BigEndian<u64> data_as_int;
__builtin_memcpy(&data_as_int, data.data(), sizeof(u64));
state.size = data_as_int;
data = data.slice(sizeof(u64));
}
} else {
// Reserved Memory:
// FIXME: Handle `compatible: "framebuffer";`
// FIMXE: Handle `compatible: "shared-dma-pool";`, `compatible: "restricted-dma-pool";`
// FIXME: Handle "iommu-addresses" property
// FIXME: Support "size" and "align" property
// Also "alloc-ranges"
// FIXME: Support no-map
// FIXME: Support no-map-fixup
// FIXME: Support reusable
}
break;
}
return IterationDecision::Continue;
},
.on_noop = []() -> ErrorOr<IterationDecision> { return IterationDecision::Continue; },
.on_end = []() -> ErrorOr<void> { return {}; },
}));
// FDTs do not seem to be fully sort memory ranges, especially as we get them from at least two structures
quick_sort(global_data.physical_memory_ranges, [](auto& a, auto& b) -> bool { return a.start > b.start; });
}
UNMAP_AFTER_INIT void MemoryManager::parse_memory_map_multiboot(MemoryManager::GlobalData& global_data)
{
// Register used memory regions that we know of.
if (multiboot_flags & 0x4 && !multiboot_module_physical_ptr.is_null()) {
dmesgln("MM: Multiboot module @ {}, length={}", multiboot_module_physical_ptr, multiboot_module_length);
VERIFY(multiboot_module_length != 0);
global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, multiboot_module_physical_ptr, multiboot_module_physical_ptr.offset(multiboot_module_length) });
}
auto* mmap_begin = multiboot_memory_map;
auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
struct ContiguousPhysicalVirtualRange {
PhysicalAddress lower;
PhysicalAddress upper;
};
Optional<ContiguousPhysicalVirtualRange> last_contiguous_physical_range;
for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
// We have to copy these onto the stack, because we take a reference to these when printing them out,
// and doing so on a packed struct field is UB.
auto address = mmap->addr;
auto length = mmap->len;
ArmedScopeGuard write_back_guard = [&]() {
mmap->addr = address;
mmap->len = length;
};
dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
auto start_address = PhysicalAddress(address);
switch (mmap->type) {
case (MULTIBOOT_MEMORY_AVAILABLE):
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
break;
case (MULTIBOOT_MEMORY_RESERVED):
#if ARCH(X86_64)
// Workaround for https://gitlab.com/qemu-project/qemu/-/commit/8504f129450b909c88e199ca44facd35d38ba4de
// That commit added a reserved 12GiB entry for the benefit of virtual firmware.
// We can safely ignore this block as it isn't actually reserved on any real hardware.
// From: https://lore.kernel.org/all/20220701161014.3850-1-joao.m.martins@oracle.com/
// "Always add the HyperTransport range into e820 even when the relocation isn't
// done *and* there's >= 40 phys bit that would put max phyusical boundary to 1T
// This should allow virtual firmware to avoid the reserved range at the
// 1T boundary on VFs with big bars."
if (address != 0x000000fd00000000 || length != (0x000000ffffffffff - 0x000000fd00000000) + 1)
#endif
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
break;
case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
break;
case (MULTIBOOT_MEMORY_NVS):
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
break;
case (MULTIBOOT_MEMORY_BADRAM):
dmesgln("MM: Warning, detected bad memory range!");
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
break;
default:
dbgln("MM: Unknown range!");
global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
break;
}
}
}
UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
{
m_global_data.with([&](auto& global_data) {
// We assume that the physical page range is contiguous and doesn't contain huge gaps!
PhysicalAddress highest_physical_address;
#if ARCH(X86_64)
// On x86 LAPIC is at 0xfee00000 or a similar address. Round up to 0x100000000LL to cover variations.
highest_physical_address = PhysicalAddress { 0x100000000LL };
#endif
for (auto& range : global_data.used_memory_ranges) {
if (range.end.get() > highest_physical_address.get())
highest_physical_address = range.end;
}
for (auto& region : global_data.physical_memory_ranges) {
auto range_end = PhysicalAddress(region.start).offset(region.length);
if (range_end.get() > highest_physical_address.get())
highest_physical_address = range_end;
}
#if ARCH(X86_64)
// Map multiboot framebuffer
if ((multiboot_flags & MULTIBOOT_INFO_FRAMEBUFFER_INFO) && !multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
PhysicalAddress multiboot_framebuffer_addr_end = multiboot_framebuffer_addr.offset(multiboot_framebuffer_height * multiboot_framebuffer_pitch);
if (multiboot_framebuffer_addr_end > highest_physical_address)
highest_physical_address = multiboot_framebuffer_addr_end;
}
#endif
// Calculate how many total physical pages the array will have
m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
VERIFY(m_physical_page_entries_count != 0);
VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
// Calculate how many bytes the array will consume
auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
// Calculate how many page tables we will need to be able to map them all
auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
// Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
PhysicalRegion* found_region { nullptr };
Optional<size_t> found_region_index;
for (size_t i = 0; i < global_data.physical_regions.size(); ++i) {
auto& region = global_data.physical_regions[i];
if (region->size() >= physical_page_array_pages_and_page_tables_count) {
found_region = region;
found_region_index = i;
break;
}
}
if (!found_region) {
dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
VERIFY_NOT_REACHED();
}
VERIFY(global_data.system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
global_data.system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
// We're stealing the entire region
global_data.physical_pages_region = global_data.physical_regions.take(*found_region_index);
} else {
global_data.physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
}
global_data.used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, global_data.physical_pages_region->lower(), global_data.physical_pages_region->upper() });
// Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
{
// Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
MUST(global_data.region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
}
// Allocate a virtual address range for our array
// This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
auto& region = *MUST(Region::create_unbacked()).leak_ptr();
MUST(global_data.region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
auto range = region.range();
// Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
// try to map the entire region into kernel space so we always have it
// We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
// mapped yet so we can't create them
// Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
auto page_tables_base = global_data.physical_pages_region->lower();
auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
auto physical_page_array_current_page = physical_page_array_base.get();
auto virtual_page_array_base = range.base().get();
auto virtual_page_array_current_page = virtual_page_array_base;
for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
__builtin_memset(pt, 0, PAGE_SIZE);
for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
auto& pte = pt[pte_index];
pte.set_physical_page_base(physical_page_array_current_page);
pte.set_user_allowed(false);
pte.set_writable(true);
if (Processor::current().has_nx())
pte.set_execute_disabled(false);
pte.set_global(true);
pte.set_present(true);
physical_page_array_current_page += PAGE_SIZE;
virtual_page_array_current_page += PAGE_SIZE;
}
unquickmap_page();
// Hook the page table into the kernel page directory
u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
PageDirectoryEntry& pde = pd[page_directory_index];
VERIFY(!pde.is_present()); // Nothing should be using this PD yet
// We can't use ensure_pte quite yet!
pde.set_page_table_base(pt_paddr.get());
pde.set_user_allowed(false);
pde.set_present(true);
pde.set_writable(true);
pde.set_global(true);
unquickmap_page();
flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
}
// We now have the entire PhysicalPageEntry array mapped!
m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
for (size_t i = 0; i < m_physical_page_entries_count; i++)
new (&m_physical_page_entries[i]) PageTableEntry();
// Now we should be able to allocate PhysicalPage instances,
// so finish setting up the kernel page directory
m_kernel_page_directory->allocate_kernel_directory();
// Now create legit PhysicalPage objects for the page tables we created.
virtual_page_array_current_page = virtual_page_array_base;
for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
VERIFY(virtual_page_array_current_page <= range.end().get());
auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
auto& physical_page_entry = m_physical_page_entries[physical_page_index];
auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalRAMPage(MayReturnToFreeList::No));
// NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
(void)physical_page.leak_ref();
virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
}
dmesgln("MM: Physical page entries: {}", range);
});
}
#ifdef HAS_ADDRESS_SANITIZER
void MemoryManager::initialize_kasan_shadow_memory()
{
m_global_data.with([&](auto& global_data) {
// We map every 8 bytes of normal memory to 1 byte of shadow memory, so we need a 1/9 of total memory for the shadow memory.
auto virtual_range = global_data.region_tree.total_range();
auto shadow_range_size = MUST(page_round_up(ceil_div(virtual_range.size(), 9ul)));
dbgln("MM: Reserving {} bytes for KASAN shadow memory", shadow_range_size);
auto vmobject = MUST(AnonymousVMObject::try_create_with_size(shadow_range_size, AllocationStrategy::AllocateNow));
auto* shadow_region = MUST(Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWrite)).leak_ptr();
auto shadow_range = VirtualRange { virtual_range.base().offset(virtual_range.size() - shadow_range_size), shadow_range_size };
MUST(global_data.region_tree.place_specifically(*shadow_region, shadow_range));
MUST(shadow_region->map(kernel_page_directory()));
AddressSanitizer::init(shadow_region->vaddr().get());
});
}
#endif
PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
{
auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
VERIFY(physical_page_entry_index < m_physical_page_entries_count);
return m_physical_page_entries[physical_page_entry_index];
}
PhysicalAddress MemoryManager::get_physical_address(PhysicalRAMPage const& physical_page)
{
PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
VERIFY(physical_page_entry_index < m_physical_page_entries_count);
return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
}
PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(page_directory.get_lock().is_locked_by_current_processor());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
PageDirectoryEntry const& pde = pd[page_directory_index];
if (!pde.is_present())
return nullptr;
return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
}
PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(page_directory.get_lock().is_locked_by_current_processor());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
auto& pde = pd[page_directory_index];
if (pde.is_present())
return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
bool did_purge = false;
auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
if (page_table_or_error.is_error()) {
dbgln("MM: Unable to allocate page table to map {}", vaddr);
return nullptr;
}
auto page_table = page_table_or_error.release_value();
if (did_purge) {
// If any memory had to be purged, ensure_pte may have been called as part
// of the purging process. So we need to re-map the pd in this case to ensure
// we're writing to the correct underlying physical page
pd = quickmap_pd(page_directory, page_directory_table_index);
VERIFY(&pde == &pd[page_directory_index]); // Sanity check
VERIFY(!pde.is_present()); // Should have not changed
}
pde.set_page_table_base(page_table->paddr().get());
pde.set_user_allowed(true);
pde.set_present(true);
pde.set_writable(true);
pde.set_global(&page_directory == m_kernel_page_directory.ptr());
// NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
(void)page_table.leak_ref();
return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
}
void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(page_directory.get_lock().is_locked_by_current_processor());
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
auto* pd = quickmap_pd(page_directory, page_directory_table_index);
PageDirectoryEntry& pde = pd[page_directory_index];
if (pde.is_present()) {
auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
auto& pte = page_table[page_table_index];
pte.clear();
if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
// If this is the last PTE in a region or the last PTE in a page table then
// check if we can also release the page table
bool all_clear = true;
for (u32 i = 0; i <= 0x1ff; i++) {
if (!page_table[i].is_null()) {
all_clear = false;
break;
}
}
if (all_clear) {
get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
pde.clear();
}
}
}
}
UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
{
dmesgln("Initialize MMU");
ProcessorSpecific<MemoryManagerData>::initialize();
if (cpu == 0) {
new MemoryManager;
kmalloc_enable_expand();
}
}
Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
{
return space.find_region_containing({ vaddr, 1 });
}
void MemoryManager::validate_syscall_preconditions(Process& process, RegisterState const& regs)
{
bool should_crash = false;
char const* crash_description = nullptr;
int crash_signal = 0;
auto unlock_and_handle_crash = [&](char const* description, int signal) {
should_crash = true;
crash_description = description;
crash_signal = signal;
};
process.address_space().with([&](auto& space) -> void {
VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
if (!MM.validate_user_stack(*space, userspace_sp)) {
dbgln("Invalid stack pointer: {}", userspace_sp);
return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
}
VirtualAddress ip = VirtualAddress { regs.ip() };
auto* calling_region = MM.find_user_region_from_vaddr(*space, ip);
if (!calling_region) {
dbgln("Syscall from {:p} which has no associated region", ip);
return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
}
if (calling_region->is_writable()) {
dbgln("Syscall from writable memory at {:p}", ip);
return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
}
if (space->enforces_syscall_regions() && !calling_region->is_syscall_region()) {
dbgln("Syscall from non-syscall region");
return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
}
});
if (should_crash) {
handle_crash(regs, crash_description, crash_signal);
}
}
PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
{
auto faulted_in_range = [&fault](auto const* start, auto const* end) {
return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
};
if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init)) {
dbgln("Attempt to write into READONLY_AFTER_INIT section");
return PageFaultResponse::ShouldCrash;
}
if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
dbgln("Attempt to access UNMAP_AFTER_INIT section ({}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
return PageFaultResponse::ShouldCrash;
}
if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms)) {
dbgln("Attempt to access KSYMS section");
return PageFaultResponse::ShouldCrash;
}
if (Processor::current_in_irq()) {
dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
dump_kernel_regions();
return PageFaultResponse::ShouldCrash;
}
dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
// The faulting region may be unmapped concurrently to handling this page fault, and since
// regions are singly-owned it would usually result in the region being immediately
// de-allocated. To ensure the region is not de-allocated while we're still handling the
// fault we increase a page fault counter on the region, and the region will refrain from
// de-allocating itself until the counter reaches zero. (Since unmapping the region also
// includes removing it from the region tree while holding the address space spinlock, and
// because we increment the counter while still holding the spinlock it is guaranteed that
// we always increment the counter before it gets a chance to be deleted)
Region* region = nullptr;
if (is_user_address(fault.vaddr())) {
auto page_directory = PageDirectory::find_current();
if (!page_directory)
return PageFaultResponse::ShouldCrash;
auto* process = page_directory->process();
VERIFY(process);
region = process->address_space().with([&](auto& space) -> Region* {
auto* region = find_user_region_from_vaddr(*space, fault.vaddr());
if (!region)
return nullptr;
region->start_handling_page_fault({});
return region;
});
} else {
region = MM.m_global_data.with([&](auto& global_data) -> Region* {
auto* region = global_data.region_tree.find_region_containing(fault.vaddr());
if (!region)
return nullptr;
region->start_handling_page_fault({});
return region;
});
}
if (!region)
return PageFaultResponse::ShouldCrash;
auto response = region->handle_fault(fault);
region->finish_handling_page_fault({});
return response;
}
ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
{
VERIFY(!(size % PAGE_SIZE));
OwnPtr<KString> name_kstring;
if (!name.is_null())
name_kstring = TRY(KString::try_create(name));
auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
TRY(region->map(kernel_page_directory()));
return region;
}
ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalRAMPage>& dma_buffer_page)
{
auto page = TRY(allocate_physical_page());
dma_buffer_page = page;
// Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behavior by default)
return allocate_kernel_region_with_physical_pages({ &page, 1 }, name, access, Region::Cacheable::No);
}
ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
{
RefPtr<Memory::PhysicalRAMPage> dma_buffer_page;
return allocate_dma_buffer_page(name, access, dma_buffer_page);
}
ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, Vector<NonnullRefPtr<Memory::PhysicalRAMPage>>& dma_buffer_pages)
{
VERIFY(!(size % PAGE_SIZE));
dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
// Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behavior by default)
return allocate_kernel_region_with_physical_pages(dma_buffer_pages, name, access, Region::Cacheable::No);
}
ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
{
VERIFY(!(size % PAGE_SIZE));
Vector<NonnullRefPtr<Memory::PhysicalRAMPage>> dma_buffer_pages;
return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
}
ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
{
VERIFY(!(size % PAGE_SIZE));
OwnPtr<KString> name_kstring;
if (!name.is_null())
name_kstring = TRY(KString::try_create(name));
auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
TRY(region->map(kernel_page_directory()));
return region;
}
ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_physical_pages(Span<NonnullRefPtr<PhysicalRAMPage>> pages, StringView name, Region::Access access, Region::Cacheable cacheable)
{
auto vmobject = TRY(AnonymousVMObject::try_create_with_physical_pages(pages));
OwnPtr<KString> name_kstring;
if (!name.is_null())
name_kstring = TRY(KString::try_create(name));
auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, pages.size() * PAGE_SIZE, PAGE_SIZE); }));
TRY(region->map(kernel_page_directory()));
return region;
}
ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_mmio_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
{
VERIFY(!(size % PAGE_SIZE));
auto vmobject = TRY(MMIOVMObject::try_create_for_physical_range(paddr, size));
OwnPtr<KString> name_kstring;
if (!name.is_null())
name_kstring = TRY(KString::try_create(name));
auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE); }));
TRY(region->map(kernel_page_directory(), paddr));
return region;
}
ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
{
VERIFY(!(size % PAGE_SIZE));
OwnPtr<KString> name_kstring;
if (!name.is_null())
name_kstring = TRY(KString::try_create(name));
auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); }));
TRY(region->map(kernel_page_directory()));
return region;
}
ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
{
VERIFY(page_count > 0);
auto result = m_global_data.with([&](auto& global_data) -> ErrorOr<CommittedPhysicalPageSet> {
if (global_data.system_memory_info.physical_pages_uncommitted < page_count) {
dbgln("MM: Unable to commit {} pages, have only {}", page_count, global_data.system_memory_info.physical_pages_uncommitted);
return ENOMEM;
}
global_data.system_memory_info.physical_pages_uncommitted -= page_count;
global_data.system_memory_info.physical_pages_committed += page_count;
return CommittedPhysicalPageSet { {}, page_count };
});
if (result.is_error()) {
Process::for_each_ignoring_jails([&](Process const& process) {
size_t amount_resident = 0;
size_t amount_shared = 0;
size_t amount_virtual = 0;
process.address_space().with([&](auto& space) {
amount_resident = space->amount_resident();
amount_shared = space->amount_shared();
amount_virtual = space->amount_virtual();
});
process.name().with([&](auto& process_name) {
dbgln("{}({}) resident:{}, shared:{}, virtual:{}",
process_name.representable_view(),
process.pid(),
amount_resident / PAGE_SIZE,
amount_shared / PAGE_SIZE,
amount_virtual / PAGE_SIZE);
});
return IterationDecision::Continue;
});
}
return result;
}
void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
{
VERIFY(page_count > 0);
m_global_data.with([&](auto& global_data) {
VERIFY(global_data.system_memory_info.physical_pages_committed >= page_count);
global_data.system_memory_info.physical_pages_uncommitted += page_count;
global_data.system_memory_info.physical_pages_committed -= page_count;
});
}
void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
{
return m_global_data.with([&](auto& global_data) {
// Are we returning a user page?
for (auto& region : global_data.physical_regions) {
if (!region->contains(paddr))
continue;
region->return_page(paddr);
--global_data.system_memory_info.physical_pages_used;
// Always return pages to the uncommitted pool. Pages that were
// committed and allocated are only freed upon request. Once
// returned there is no guarantee being able to get them back.
++global_data.system_memory_info.physical_pages_uncommitted;
return;
}
PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
});
}
RefPtr<PhysicalRAMPage> MemoryManager::find_free_physical_page(bool committed)
{
RefPtr<PhysicalRAMPage> page;
m_global_data.with([&](auto& global_data) {
if (committed) {
// Draw from the committed pages pool. We should always have these pages available
VERIFY(global_data.system_memory_info.physical_pages_committed > 0);
global_data.system_memory_info.physical_pages_committed--;
} else {
// We need to make sure we don't touch pages that we have committed to
if (global_data.system_memory_info.physical_pages_uncommitted == 0)
return;
global_data.system_memory_info.physical_pages_uncommitted--;
}
for (auto& region : global_data.physical_regions) {
page = region->take_free_page();
if (!page.is_null()) {
++global_data.system_memory_info.physical_pages_used;
break;
}
}
});
if (page.is_null())
dbgln("MM: couldn't find free physical page. Continuing...");
return page;
}
NonnullRefPtr<PhysicalRAMPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
{
auto page = find_free_physical_page(true);
VERIFY(page);
if (should_zero_fill == ShouldZeroFill::Yes) {
InterruptDisabler disabler;
auto* ptr = quickmap_page(*page);
memset(ptr, 0, PAGE_SIZE);
unquickmap_page();
}
return page.release_nonnull();
}
ErrorOr<NonnullRefPtr<PhysicalRAMPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
{
return m_global_data.with([&](auto&) -> ErrorOr<NonnullRefPtr<PhysicalRAMPage>> {
auto page = find_free_physical_page(false);
bool purged_pages = false;
if (!page) {
// We didn't have a single free physical page. Let's try to free something up!
// First, we look for a purgeable VMObject in the volatile state.
for_each_vmobject([&](auto& vmobject) {
if (!vmobject.is_anonymous())
return IterationDecision::Continue;
auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
return IterationDecision::Continue;
if (auto purged_page_count = anonymous_vmobject.purge()) {
dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
page = find_free_physical_page(false);
purged_pages = true;
VERIFY(page);
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
if (!page) {
// Second, we look for a file-backed VMObject with clean pages.
for_each_vmobject([&](auto& vmobject) {
if (!vmobject.is_inode())
return IterationDecision::Continue;
auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject);
if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) {
dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count);
page = find_free_physical_page(false);
VERIFY(page);
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
if (!page) {
dmesgln("MM: no physical pages available");
return ENOMEM;
}
if (should_zero_fill == ShouldZeroFill::Yes) {
auto* ptr = quickmap_page(*page);
memset(ptr, 0, PAGE_SIZE);
unquickmap_page();
}
if (did_purge)
*did_purge = purged_pages;
return page.release_nonnull();
});
}
ErrorOr<Vector<NonnullRefPtr<PhysicalRAMPage>>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
{
VERIFY(!(size % PAGE_SIZE));
size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
auto physical_pages = TRY(m_global_data.with([&](auto& global_data) -> ErrorOr<Vector<NonnullRefPtr<PhysicalRAMPage>>> {
// We need to make sure we don't touch pages that we have committed to
if (global_data.system_memory_info.physical_pages_uncommitted < page_count)
return ENOMEM;
for (auto& physical_region : global_data.physical_regions) {
auto physical_pages = physical_region->take_contiguous_free_pages(page_count);
if (!physical_pages.is_empty()) {
global_data.system_memory_info.physical_pages_uncommitted -= page_count;
global_data.system_memory_info.physical_pages_used += page_count;
return physical_pages;
}
}
dmesgln("MM: no contiguous physical pages available");
return ENOMEM;
}));
{
auto cleanup_region = TRY(MM.allocate_kernel_region_with_physical_pages(physical_pages, {}, Region::Access::Read | Region::Access::Write));
memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
}
return physical_pages;
}
void MemoryManager::enter_process_address_space(Process& process)
{
process.address_space().with([](auto& space) {
enter_address_space(*space);
});
}
void MemoryManager::enter_address_space(AddressSpace& space)
{
auto* current_thread = Thread::current();
VERIFY(current_thread != nullptr);
activate_page_directory(space.page_directory(), current_thread);
}
void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
{
Processor::flush_tlb_local(vaddr, page_count);
}
void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
{
Processor::flush_tlb(page_directory, vaddr, page_count);
}
PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
{
VERIFY_INTERRUPTS_DISABLED();
VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
auto& pte = boot_pd_kernel_pt1023[pte_index];
auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
if (pte.physical_page_base() != pd_paddr.get()) {
pte.set_physical_page_base(pd_paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb_local(vaddr);
}
return (PageDirectoryEntry*)vaddr.get();
}
PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
{
VERIFY_INTERRUPTS_DISABLED();
VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index];
if (pte.physical_page_base() != pt_paddr.get()) {
pte.set_physical_page_base(pt_paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb_local(vaddr);
}
return (PageTableEntry*)vaddr.get();
}
u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
{
VERIFY_INTERRUPTS_DISABLED();
auto& mm_data = get_data();
mm_data.m_quickmap_previous_interrupts_state = mm_data.m_quickmap_in_use.lock();
VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
if (pte.physical_page_base() != physical_address.get()) {
pte.set_physical_page_base(physical_address.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb_local(vaddr);
}
return vaddr.as_ptr();
}
void MemoryManager::unquickmap_page()
{
VERIFY_INTERRUPTS_DISABLED();
auto& mm_data = get_data();
VERIFY(mm_data.m_quickmap_in_use.is_locked());
VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
pte.clear();
flush_tlb_local(vaddr);
mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_previous_interrupts_state);
}
bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
{
if (!is_user_address(vaddr))
return false;
auto* region = find_user_region_from_vaddr(space, vaddr);
return region && region->is_user() && region->is_stack();
}
void MemoryManager::unregister_kernel_region(Region& region)
{
VERIFY(region.is_kernel());
m_global_data.with([&](auto& global_data) { global_data.region_tree.remove(region); });
}
void MemoryManager::dump_kernel_regions()
{
dbgln("Kernel regions:");
char const* addr_padding = " ";
dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
addr_padding, addr_padding, addr_padding);
m_global_data.with([&](auto& global_data) {
for (auto& region : global_data.region_tree.regions()) {
dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
region.vaddr().get(),
region.vaddr().offset(region.size() - 1).get(),
region.size(),
region.is_readable() ? 'R' : ' ',
region.is_writable() ? 'W' : ' ',
region.is_executable() ? 'X' : ' ',
region.is_shared() ? 'S' : ' ',
region.is_stack() ? 'T' : ' ',
region.is_syscall_region() ? 'C' : ' ',
region.name());
}
});
}
void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
{
SpinlockLocker page_lock(kernel_page_directory().get_lock());
auto* pte = ensure_pte(kernel_page_directory(), vaddr);
VERIFY(pte);
if (pte->is_writable() == writable)
return;
pte->set_writable(writable);
flush_tlb(&kernel_page_directory(), vaddr);
}
CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
{
if (m_page_count)
MM.uncommit_physical_pages({}, m_page_count);
}
NonnullRefPtr<PhysicalRAMPage> CommittedPhysicalPageSet::take_one()
{
VERIFY(m_page_count > 0);
--m_page_count;
return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
}
void CommittedPhysicalPageSet::uncommit_one()
{
VERIFY(m_page_count > 0);
--m_page_count;
MM.uncommit_physical_pages({}, 1);
}
void MemoryManager::copy_physical_page(PhysicalRAMPage& physical_page, u8 page_buffer[PAGE_SIZE])
{
auto* quickmapped_page = quickmap_page(physical_page);
memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
unquickmap_page();
}
ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
{
auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
region->m_range = range;
TRY(region->map(MM.kernel_page_directory()));
return region;
}
ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
{
auto region = TRY(Region::create_unbacked());
TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment); }));
return region;
}
MemoryManager::SystemMemoryInfo MemoryManager::get_system_memory_info()
{
return m_global_data.with([&](auto& global_data) {
auto physical_pages_unused = global_data.system_memory_info.physical_pages_committed + global_data.system_memory_info.physical_pages_uncommitted;
VERIFY(global_data.system_memory_info.physical_pages == (global_data.system_memory_info.physical_pages_used + physical_pages_unused));
return global_data.system_memory_info;
});
}
}