serenity/Kernel/Process.cpp
Andreas Kling e05237485c Kernel: Various stability improvements.
- Don't cli() in Process::do_exec() unless current is execing.
  Eventually this should go away once the scheduler is less retarded
  in the face of interrupts.

- Improved memory access validation for ring0 processes.
  We now look at the kernel ELF header to determine if an access
  is appropriate. :^) It's very hackish but also kinda neat.

- Have Process::die() put the process into a new "Dying" state where
  it can still get scheduled but no signals will be dispatched.
  This way we can keep executing in die() but won't get our EIP
  hijacked by signal dispatch. The main problem here was that die()
  wanted to take various locks.
2019-02-06 17:34:27 +01:00

2189 lines
63 KiB
C++

#include "types.h"
#include "Process.h"
#include "kmalloc.h"
#include "StdLib.h"
#include "i386.h"
#include "system.h"
#include <Kernel/FileDescriptor.h>
#include <Kernel/VirtualFileSystem.h>
#include "ELFLoader.h"
#include "MemoryManager.h"
#include "i8253.h"
#include "RTC.h"
#include <AK/StdLibExtras.h>
#include <LibC/signal_numbers.h>
#include <LibC/errno_numbers.h>
#include "Syscall.h"
#include "Scheduler.h"
#include "FIFO.h"
#include "KSyms.h"
#include <WindowServer/WSWindow.h>
#include "MasterPTY.h"
#include "elf.h"
//#define DEBUG_IO
//#define TASK_DEBUG
//#define FORK_DEBUG
#define SIGNAL_DEBUG
#define MAX_PROCESS_GIDS 32
static const dword default_kernel_stack_size = 16384;
static const dword default_userspace_stack_size = 65536;
static pid_t next_pid;
InlineLinkedList<Process>* g_processes;
static String* s_hostname;
static String& hostname_storage(InterruptDisabler&)
{
ASSERT(s_hostname);
return *s_hostname;
}
static String get_hostname()
{
InterruptDisabler disabler;
return hostname_storage(disabler).isolated_copy();
}
CoolGlobals* g_cool_globals;
void Process::initialize()
{
#ifdef COOL_GLOBALS
g_cool_globals = reinterpret_cast<CoolGlobals*>(0x1000);
#endif
next_pid = 0;
g_processes = new InlineLinkedList<Process>;
s_hostname = new String("courage");
Scheduler::initialize();
initialize_gui_statics();
}
Vector<pid_t> Process::all_pids()
{
InterruptDisabler disabler;
Vector<pid_t> pids;
pids.ensure_capacity(g_processes->size_slow());
for (auto* process = g_processes->head(); process; process = process->next())
pids.unchecked_append(process->pid());
return pids;
}
Vector<Process*> Process::all_processes()
{
InterruptDisabler disabler;
Vector<Process*> processes;
processes.ensure_capacity(g_processes->size_slow());
for (auto* process = g_processes->head(); process; process = process->next())
processes.unchecked_append(process);
return processes;
}
Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit)
{
size = PAGE_ROUND_UP(size);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_next_region;
m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable)));
MM.map_region(*this, *m_regions.last());
if (commit)
m_regions.last()->commit();
return m_regions.last().ptr();
}
Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr<Inode>&& inode, String&& name, bool is_readable, bool is_writable)
{
size = PAGE_ROUND_UP(size);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_next_region;
m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
m_regions.append(adopt(*new Region(laddr, size, move(inode), move(name), is_readable, is_writable)));
MM.map_region(*this, *m_regions.last());
return m_regions.last().ptr();
}
Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable)
{
ASSERT(vmo);
size = PAGE_ROUND_UP(size);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_next_region;
m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
offset_in_vmo &= PAGE_MASK;
size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable)));
MM.map_region(*this, *m_regions.last());
return m_regions.last().ptr();
}
bool Process::deallocate_region(Region& region)
{
InterruptDisabler disabler;
for (size_t i = 0; i < m_regions.size(); ++i) {
if (m_regions[i].ptr() == &region) {
MM.unmap_region(region);
m_regions.remove(i);
return true;
}
}
return false;
}
Region* Process::region_from_range(LinearAddress laddr, size_t size)
{
for (auto& region : m_regions) {
if (region->laddr() == laddr && region->size() == size)
return region.ptr();
}
return nullptr;
}
int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
{
if (!validate_read_str(name))
return -EFAULT;
auto* region = region_from_range(LinearAddress((dword)addr), size);
if (!region)
return -EINVAL;
region->set_name(String(name));
return 0;
}
void* Process::sys$mmap(const Syscall::SC_mmap_params* params)
{
if (!validate_read(params, sizeof(Syscall::SC_mmap_params)))
return (void*)-EFAULT;
void* addr = (void*)params->addr;
size_t size = params->size;
int prot = params->prot;
int flags = params->flags;
int fd = params->fd;
off_t offset = params->offset;
if (size == 0)
return (void*)-EINVAL;
if ((dword)addr & ~PAGE_MASK || size & ~PAGE_MASK)
return (void*)-EINVAL;
if (flags & MAP_ANONYMOUS) {
InterruptDisabler disabler;
// FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae.
ASSERT(addr == nullptr);
auto* region = allocate_region(LinearAddress(), size, "mmap", prot & PROT_READ, prot & PROT_WRITE, false);
if (!region)
return (void*)-ENOMEM;
return region->laddr().as_ptr();
}
if (offset & ~PAGE_MASK)
return (void*)-EINVAL;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return (void*)-EBADF;
if (!descriptor->supports_mmap())
return (void*)-ENODEV;
// FIXME: If PROT_EXEC, check that the underlying file system isn't mounted noexec.
auto region_name = descriptor->absolute_path();
InterruptDisabler disabler;
// FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae.
ASSERT(addr == nullptr);
auto* region = allocate_file_backed_region(LinearAddress(), size, descriptor->inode(), move(region_name), prot & PROT_READ, prot & PROT_WRITE);
if (!region)
return (void*)-ENOMEM;
return region->laddr().as_ptr();
}
int Process::sys$munmap(void* addr, size_t size)
{
InterruptDisabler disabler;
auto* region = region_from_range(LinearAddress((dword)addr), size);
if (!region)
return -1;
if (!deallocate_region(*region))
return -1;
return 0;
}
int Process::sys$gethostname(char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto hostname = get_hostname();
if (size < (hostname.length() + 1))
return -ENAMETOOLONG;
memcpy(buffer, hostname.characters(), size);
return 0;
}
Process* Process::fork(RegisterDump& regs)
{
auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copy_ref(), m_executable.copy_ref(), m_tty, this);
if (!child)
return nullptr;
memcpy(child->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
child->m_signal_mask = m_signal_mask;
#ifdef FORK_DEBUG
dbgprintf("fork: child=%p\n", child);
#endif
child->m_initial_arguments = m_initial_arguments;
child->m_initial_environment = m_initial_environment;
for (auto& region : m_regions) {
#ifdef FORK_DEBUG
dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name.characters(), region->laddr().get());
#endif
auto cloned_region = region->clone();
child->m_regions.append(move(cloned_region));
MM.map_region(*child, *child->m_regions.last());
if (region.ptr() == m_display_framebuffer_region.ptr())
child->m_display_framebuffer_region = child->m_regions.last().copy_ref();
}
for (auto gid : m_gids)
child->m_gids.set(gid);
child->m_tss.eax = 0; // fork() returns 0 in the child :^)
child->m_tss.ebx = regs.ebx;
child->m_tss.ecx = regs.ecx;
child->m_tss.edx = regs.edx;
child->m_tss.ebp = regs.ebp;
child->m_tss.esp = regs.esp_if_crossRing;
child->m_tss.esi = regs.esi;
child->m_tss.edi = regs.edi;
child->m_tss.eflags = regs.eflags;
child->m_tss.eip = regs.eip;
child->m_tss.cs = regs.cs;
child->m_tss.ds = regs.ds;
child->m_tss.es = regs.es;
child->m_tss.fs = regs.fs;
child->m_tss.gs = regs.gs;
child->m_tss.ss = regs.ss_if_crossRing;
child->m_fpu_state = m_fpu_state;
child->m_has_used_fpu = m_has_used_fpu;
#ifdef FORK_DEBUG
dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp);
#endif
{
InterruptDisabler disabler;
g_processes->prepend(child);
system.nprocess++;
}
#ifdef TASK_DEBUG
kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
#endif
return child;
}
pid_t Process::sys$fork(RegisterDump& regs)
{
auto* child = fork(regs);
ASSERT(child);
return child->pid();
}
int Process::do_exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
{
ASSERT(is_ring3());
auto parts = path.split('/');
if (parts.is_empty())
return -ENOENT;
int error;
auto descriptor = VFS::the().open(path, error, 0, 0, *cwd_inode());
if (!descriptor) {
ASSERT(error != 0);
return error;
}
if (!descriptor->metadata().may_execute(m_euid, m_gids))
return -EACCES;
if (!descriptor->metadata().size) {
kprintf("exec() of 0-length binaries not supported\n");
return -ENOTIMPL;
}
dword entry_eip = 0;
// FIXME: Is there a race here?
auto old_page_directory = move(m_page_directory);
m_page_directory = PageDirectory::create();
#ifdef MM_DEBUG
dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr());
#endif
ProcessPagingScope paging_scope(*this);
auto vmo = VMObject::create_file_backed(descriptor->inode());
vmo->set_name(descriptor->absolute_path());
RetainPtr<Region> region = allocate_region_with_vmo(LinearAddress(), descriptor->metadata().size, vmo.copy_ref(), 0, "helper", true, false);
// FIXME: Should we consider doing on-demand paging here? Is it actually useful?
bool success = region->page_in();
ASSERT(success);
{
InterruptDisabler disabler;
// Okay, here comes the sleight of hand, pay close attention..
auto old_regions = move(m_regions);
ELFLoader loader(region->laddr().as_ptr());
loader.map_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, const String& name) {
ASSERT(size);
ASSERT(alignment == PAGE_SIZE);
size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
(void) allocate_region_with_vmo(laddr, size, vmo.copy_ref(), offset_in_image, String(name), is_readable, is_writable);
return laddr.as_ptr();
};
loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
ASSERT(size);
ASSERT(alignment == PAGE_SIZE);
size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
(void) allocate_region(laddr, size, String(name), is_readable, is_writable);
return laddr.as_ptr();
};
bool success = loader.load();
if (!success) {
m_page_directory = move(old_page_directory);
// FIXME: RAII this somehow instead.
ASSERT(current == this);
MM.enter_process_paging_scope(*this);
m_regions = move(old_regions);
kprintf("sys$execve: Failure loading %s\n", path.characters());
return -ENOEXEC;
}
entry_eip = loader.entry().get();
if (!entry_eip) {
m_page_directory = move(old_page_directory);
// FIXME: RAII this somehow instead.
ASSERT(current == this);
MM.enter_process_paging_scope(*this);
m_regions = move(old_regions);
return -ENOEXEC;
}
}
m_regions.append(move(region));
m_signal_stack_kernel_region = nullptr;
m_signal_stack_user_region = nullptr;
m_display_framebuffer_region = nullptr;
set_default_signal_dispositions();
m_signal_mask = 0xffffffff;
m_pending_signals = 0;
for (size_t i = 0; i < m_fds.size(); ++i) {
auto& daf = m_fds[i];
if (daf.descriptor && daf.flags & FD_CLOEXEC) {
daf.descriptor->close();
daf = { };
}
}
// We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield().
// The reason is that the task redirection we've set up above will be clobbered by the timer IRQ.
// If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
if (current == this)
cli();
Scheduler::prepare_to_modify_tss(*this);
m_name = parts.take_last();
dword old_esp0 = m_tss.esp0;
memset(&m_tss, 0, sizeof(m_tss));
m_tss.eflags = 0x0202;
m_tss.eip = entry_eip;
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.ss = 0x23;
m_tss.cr3 = page_directory().cr3();
m_stack_region = allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
ASSERT(m_stack_region);
m_stack_top3 = m_stack_region->laddr().offset(default_userspace_stack_size).get();
m_tss.esp = m_stack_top3;
m_tss.ss0 = 0x10;
m_tss.esp0 = old_esp0;
m_tss.ss2 = m_pid;
m_executable = descriptor->inode();
m_initial_arguments = move(arguments);
m_initial_environment = move(environment);
#ifdef TASK_DEBUG
kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip);
#endif
set_state(Skip1SchedulerPass);
return 0;
}
int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
{
// The bulk of exec() is done by do_exec(), which ensures that all locals
// are cleaned up by the time we yield-teleport below.
int rc = do_exec(path, move(arguments), move(environment));
if (rc < 0)
return rc;
if (current == this) {
Scheduler::yield();
ASSERT_NOT_REACHED();
}
return 0;
}
int Process::sys$execve(const char* filename, const char** argv, const char** envp)
{
if (!validate_read_str(filename))
return -EFAULT;
if (argv) {
if (!validate_read_typed(argv))
return -EFAULT;
for (size_t i = 0; argv[i]; ++i) {
if (!validate_read_str(argv[i]))
return -EFAULT;
}
}
if (envp) {
if (!validate_read_typed(envp))
return -EFAULT;
for (size_t i = 0; envp[i]; ++i) {
if (!validate_read_str(envp[i]))
return -EFAULT;
}
}
String path(filename);
auto parts = path.split('/');
Vector<String> arguments;
if (argv) {
for (size_t i = 0; argv[i]; ++i) {
arguments.append(argv[i]);
}
} else {
arguments.append(parts.last());
}
Vector<String> environment;
if (envp) {
for (size_t i = 0; envp[i]; ++i)
environment.append(envp[i]);
}
int rc = exec(path, move(arguments), move(environment));
ASSERT(rc < 0); // We should never continue after a successful exec!
return rc;
}
Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
{
// FIXME: Don't split() the path twice (sys$spawn also does it...)
auto parts = path.split('/');
if (arguments.is_empty()) {
arguments.append(parts.last());
}
RetainPtr<Inode> cwd;
{
InterruptDisabler disabler;
if (auto* parent = Process::from_pid(parent_pid))
cwd = parent->m_cwd.copy_ref();
}
if (!cwd)
cwd = VFS::the().root_inode();
auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty);
error = process->exec(path, move(arguments), move(environment));
if (error != 0) {
delete process;
return nullptr;
}
{
InterruptDisabler disabler;
g_processes->prepend(process);
system.nprocess++;
}
#ifdef TASK_DEBUG
kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
#endif
error = 0;
return process;
}
int Process::sys$get_environment(char*** environ)
{
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ");
if (!region)
return -ENOMEM;
MM.map_region(*this, *region);
char* envpage = (char*)region->laddr().get();
*environ = (char**)envpage;
char* bufptr = envpage + (sizeof(char*) * (m_initial_environment.size() + 1));
for (size_t i = 0; i < m_initial_environment.size(); ++i) {
(*environ)[i] = bufptr;
memcpy(bufptr, m_initial_environment[i].characters(), m_initial_environment[i].length());
bufptr += m_initial_environment[i].length();
*(bufptr++) = '\0';
}
(*environ)[m_initial_environment.size()] = nullptr;
return 0;
}
int Process::sys$get_arguments(int* argc, char*** argv)
{
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv");
if (!region)
return -ENOMEM;
MM.map_region(*this, *region);
char* argpage = (char*)region->laddr().get();
*argc = m_initial_arguments.size();
*argv = (char**)argpage;
char* bufptr = argpage + (sizeof(char*) * (m_initial_arguments.size() + 1));
for (size_t i = 0; i < m_initial_arguments.size(); ++i) {
(*argv)[i] = bufptr;
memcpy(bufptr, m_initial_arguments[i].characters(), m_initial_arguments[i].length());
bufptr += m_initial_arguments[i].length();
*(bufptr++) = '\0';
}
(*argv)[m_initial_arguments.size()] = nullptr;
return 0;
}
Process* Process::create_kernel_process(String&& name, void (*e)())
{
auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
process->m_tss.eip = (dword)e;
if (process->pid() != 0) {
{
InterruptDisabler disabler;
g_processes->prepend(process);
system.nprocess++;
}
#ifdef TASK_DEBUG
kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
#endif
}
return process;
}
Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<Inode>&& cwd, RetainPtr<Inode>&& executable, TTY* tty, Process* fork_parent)
: m_name(move(name))
, m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
, m_uid(uid)
, m_gid(gid)
, m_euid(uid)
, m_egid(gid)
, m_state(Runnable)
, m_ring(ring)
, m_cwd(move(cwd))
, m_executable(move(executable))
, m_tty(tty)
, m_ppid(ppid)
{
set_default_signal_dispositions();
memset(&m_fpu_state, 0, sizeof(FPUState));
m_gids.set(m_gid);
if (fork_parent) {
m_sid = fork_parent->m_sid;
m_pgid = fork_parent->m_pgid;
} else {
// FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though..
InterruptDisabler disabler;
if (auto* parent = Process::from_pid(m_ppid)) {
m_sid = parent->m_sid;
m_pgid = parent->m_pgid;
}
}
m_page_directory = PageDirectory::create();
#ifdef MM_DEBUG
dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr());
#endif
if (fork_parent) {
m_fds.resize(fork_parent->m_fds.size());
for (size_t i = 0; i < fork_parent->m_fds.size(); ++i) {
if (!fork_parent->m_fds[i].descriptor)
continue;
#ifdef FORK_DEBUG
dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].descriptor.ptr(), fork_parent->m_fds[i].descriptor->is_tty());
#endif
m_fds[i].descriptor = fork_parent->m_fds[i].descriptor->clone();
m_fds[i].flags = fork_parent->m_fds[i].flags;
}
} else {
m_fds.resize(m_max_open_file_descriptors);
if (tty) {
int error;
m_fds[0].set(tty->open(error, O_RDONLY));
m_fds[1].set(tty->open(error, O_WRONLY));
m_fds[2].set(tty->open(error, O_WRONLY));
}
}
if (fork_parent)
m_next_region = fork_parent->m_next_region;
else
m_next_region = LinearAddress(0x10000000);
if (fork_parent) {
memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss));
} else {
memset(&m_tss, 0, sizeof(m_tss));
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
word cs, ds, ss;
if (is_ring0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = ds;
m_tss.ss = ss;
m_tss.cs = cs;
}
m_tss.cr3 = page_directory().cr3();
if (is_ring0()) {
// FIXME: This memory is leaked.
// But uh, there's also no kernel process termination, so I guess it's not technically leaked...
dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
m_tss.esp = m_stack_top0;
} else {
if (fork_parent) {
m_stack_top3 = fork_parent->m_stack_top3;
} else {
auto* region = allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
ASSERT(region);
m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
m_tss.esp = m_stack_top3;
}
}
if (is_ring3()) {
// Ring3 processes need a separate stack for Ring0.
m_kernel_stack = kmalloc(default_kernel_stack_size);
m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_stack_top0;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_pid;
m_far_ptr.offset = 0x98765432;
}
Process::~Process()
{
InterruptDisabler disabler;
system.nprocess--;
if (g_last_fpu_process == this)
g_last_fpu_process = nullptr;
if (selector())
gdt_free_entry(selector());
if (m_kernel_stack) {
kfree(m_kernel_stack);
m_kernel_stack = nullptr;
}
}
void Process::dump_regions()
{
kprintf("Process %s(%u) regions:\n", name().characters(), pid());
kprintf("BEGIN END SIZE NAME\n");
for (auto& region : m_regions) {
kprintf("%x -- %x %x %s\n",
region->laddr().get(),
region->laddr().offset(region->size() - 1).get(),
region->size(),
region->name().characters());
}
}
void Process::sys$exit(int status)
{
cli();
#ifdef TASK_DEBUG
kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
#endif
die();
m_termination_status = status;
m_termination_signal = 0;
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
void Process::terminate_due_to_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
m_termination_status = 0;
m_termination_signal = signal;
die();
}
void Process::send_signal(byte signal, Process* sender)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
m_pending_signals |= 1 << signal;
if (sender)
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid());
else
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid());
}
bool Process::has_unmasked_pending_signals() const
{
return m_pending_signals & m_signal_mask;
}
ShouldUnblockProcess Process::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
dword signal_candidates = m_pending_signals & m_signal_mask;
ASSERT(signal_candidates);
byte signal = 0;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << signal)) {
break;
}
}
return dispatch_signal(signal);
}
ShouldUnblockProcess Process::dispatch_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << signal);
auto handler_laddr = action.handler_or_sigaction;
if (handler_laddr.is_null()) {
// FIXME: Is termination really always the appropriate action?
terminate_due_to_signal(signal);
return ShouldUnblockProcess::No;
}
if (handler_laddr.as_ptr() == SIG_IGN) {
dbgprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
return ShouldUnblockProcess::Yes;
}
Scheduler::prepare_to_modify_tss(*this);
word ret_cs = m_tss.cs;
dword ret_eip = m_tss.eip;
dword ret_eflags = m_tss.eflags;
bool interrupting_in_kernel = (ret_cs & 3) == 0;
if (interrupting_in_kernel) {
dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
ASSERT(is_blocked());
m_tss_to_resume_kernel = m_tss;
#ifdef SIGNAL_DEBUG
dbgprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip);
#endif
}
ProcessPagingScope paging_scope(*this);
if (interrupting_in_kernel) {
if (!m_signal_stack_user_region) {
m_signal_stack_user_region = allocate_region(LinearAddress(), default_userspace_stack_size, "signal stack (user)");
ASSERT(m_signal_stack_user_region);
m_signal_stack_kernel_region = allocate_region(LinearAddress(), default_userspace_stack_size, "signal stack (kernel)");
ASSERT(m_signal_stack_user_region);
}
m_tss.ss = 0x23;
m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get() & 0xfffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_signal_stack_kernel_region->laddr().offset(default_userspace_stack_size).get() & 0xfffffff8;
push_value_on_stack(ret_eflags);
push_value_on_stack(ret_cs);
push_value_on_stack(ret_eip);
} else {
push_value_on_stack(ret_cs);
push_value_on_stack(ret_eip);
push_value_on_stack(ret_eflags);
}
// PUSHA
dword old_esp = m_tss.esp;
push_value_on_stack(m_tss.eax);
push_value_on_stack(m_tss.ecx);
push_value_on_stack(m_tss.edx);
push_value_on_stack(m_tss.ebx);
push_value_on_stack(old_esp);
push_value_on_stack(m_tss.ebp);
push_value_on_stack(m_tss.esi);
push_value_on_stack(m_tss.edi);
m_tss.eax = (dword)signal;
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.eip = handler_laddr.get();
if (m_return_to_ring3_from_signal_trampoline.is_null()) {
// FIXME: This should be a global trampoline shared by all processes, not one created per process!
// FIXME: Remap as read-only after setup.
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true);
m_return_to_ring3_from_signal_trampoline = region->laddr();
byte* code_ptr = m_return_to_ring3_from_signal_trampoline.as_ptr();
*code_ptr++ = 0x61; // popa
*code_ptr++ = 0x9d; // popf
*code_ptr++ = 0xc3; // ret
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr);
*code_ptr++ = 0x61; // popa
*code_ptr++ = 0xb8; // mov eax, <dword>
*(dword*)code_ptr = Syscall::SC_sigreturn;
code_ptr += sizeof(dword);
*code_ptr++ = 0xcd; // int 0x80
*code_ptr++ = 0x80;
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
// FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that
// unmasks the signal so it can be received again? I guess then I would need one trampoline
// per signal number if it's hard-coded, but it's just a few bytes per each.
}
if (interrupting_in_kernel)
push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get());
else
push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get());
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
set_state(Skip1SchedulerPass);
#ifdef SIGNAL_DEBUG
dbgprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
#endif
return ShouldUnblockProcess::Yes;
}
void Process::sys$sigreturn()
{
InterruptDisabler disabler;
Scheduler::prepare_to_modify_tss(*this);
m_tss = m_tss_to_resume_kernel;
#ifdef SIGNAL_DEBUG
dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid());
dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip);
#endif
set_state(Skip1SchedulerPass);
Scheduler::yield();
kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid());
ASSERT_NOT_REACHED();
}
void Process::push_value_on_stack(dword value)
{
m_tss.esp -= 4;
dword* stack_ptr = (dword*)m_tss.esp;
*stack_ptr = value;
}
void Process::crash()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(is_ring3());
ASSERT(state() != Dead);
m_termination_signal = SIGSEGV;
dump_regions();
die();
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
Process* Process::from_pid(pid_t pid)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process; process = process->next()) {
if (process->pid() == pid)
return process;
}
return nullptr;
}
FileDescriptor* Process::file_descriptor(int fd)
{
if (fd < 0)
return nullptr;
if ((size_t)fd < m_fds.size())
return m_fds[fd].descriptor.ptr();
return nullptr;
}
const FileDescriptor* Process::file_descriptor(int fd) const
{
if (fd < 0)
return nullptr;
if ((size_t)fd < m_fds.size())
return m_fds[fd].descriptor.ptr();
return nullptr;
}
ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
return descriptor->get_dir_entries((byte*)buffer, size);
}
int Process::sys$lseek(int fd, off_t offset, int whence)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
return descriptor->seek(offset, whence);
}
int Process::sys$ttyname_r(int fd, char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (!descriptor->is_tty())
return -ENOTTY;
auto tty_name = descriptor->tty()->tty_name();
if (size < tty_name.length() + 1)
return -ERANGE;
strcpy(buffer, tty_name.characters());
return 0;
}
int Process::sys$ptsname_r(int fd, char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
auto* master_pty = descriptor->master_pty();
if (!master_pty)
return -ENOTTY;
auto pts_name = master_pty->pts_name();
if (size < pts_name.length() + 1)
return -ERANGE;
strcpy(buffer, pts_name.characters());
return 0;
}
ssize_t Process::sys$write(int fd, const void* data, size_t size)
{
if (!validate_read(data, size))
return -EFAULT;
#ifdef DEBUG_IO
dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size);
#endif
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
ssize_t nwritten = 0;
if (descriptor->is_blocking()) {
while (nwritten < (ssize_t)size) {
#ifdef IO_DEBUG
dbgprintf("while %u < %u\n", nwritten, size);
#endif
if (!descriptor->can_write(*this)) {
#ifdef IO_DEBUG
dbgprintf("block write on %d\n", fd);
#endif
m_blocked_fd = fd;
block(BlockedWrite);
Scheduler::yield();
}
ssize_t rc = descriptor->write(*this, (const byte*)data + nwritten, size - nwritten);
#ifdef IO_DEBUG
dbgprintf(" -> write returned %d\n", rc);
#endif
if (rc < 0) {
// FIXME: Support returning partial nwritten with errno.
ASSERT(nwritten == 0);
return rc;
}
if (rc == 0)
break;
if (has_unmasked_pending_signals()) {
block(BlockedSignal);
Scheduler::yield();
if (nwritten == 0)
return -EINTR;
}
nwritten += rc;
}
} else {
nwritten = descriptor->write(*this, (const byte*)data, size);
}
if (has_unmasked_pending_signals()) {
block(BlockedSignal);
Scheduler::yield();
if (nwritten == 0)
return -EINTR;
}
#ifdef DEBUG_IO
dbgprintf("%s(%u) sys$write: nwritten=%u\n", name().characters(), pid(), nwritten);
#endif
return nwritten;
}
ssize_t Process::sys$read(int fd, void* outbuf, size_t nread)
{
if (!validate_write(outbuf, nread))
return -EFAULT;
#ifdef DEBUG_IO
dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, outbuf, nread);
#endif
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
#ifdef DEBUG_IO
dbgprintf(" > descriptor:%p, is_blocking:%u, can_read:%u\n", descriptor, descriptor->is_blocking(), descriptor->can_read(*this));
dbgprintf(" > inode:K%x, device:K%x\n", descriptor->inode(), descriptor->character_device());
#endif
if (descriptor->is_blocking()) {
if (!descriptor->can_read(*this)) {
m_blocked_fd = fd;
block(BlockedRead);
Scheduler::yield();
if (m_was_interrupted_while_blocked)
return -EINTR;
}
}
nread = descriptor->read(*this, (byte*)outbuf, nread);
#ifdef DEBUG_IO
dbgprintf("%s(%u) Process::sys$read: nread=%u\n", name().characters(), pid(), nread);
#endif
return nread;
}
int Process::sys$close(int fd)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
int rc = descriptor->close();
m_fds[fd] = { };
return rc;
}
int Process::sys$utime(const char* pathname, const utimbuf* buf)
{
if (!validate_read_str(pathname))
return -EFAULT;
if (buf && !validate_read_typed(buf))
return -EFAULT;
String path(pathname);
int error;
auto descriptor = VFS::the().open(move(path), error, 0, 0, *cwd_inode());
if (!descriptor)
return error;
auto& inode = *descriptor->inode();
if (inode.fs().is_readonly())
return -EROFS;
time_t atime;
time_t mtime;
if (buf) {
atime = buf->actime;
mtime = buf->modtime;
} else {
auto now = RTC::now();
mtime = now;
atime = now;
}
inode.set_atime(atime);
inode.set_mtime(mtime);
return 0;
}
int Process::sys$access(const char* pathname, int mode)
{
(void) mode;
if (!validate_read_str(pathname))
return -EFAULT;
ASSERT_NOT_REACHED();
}
int Process::sys$fcntl(int fd, int cmd, dword arg)
{
(void) cmd;
(void) arg;
dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg);
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
// NOTE: The FD flags are not shared between FileDescriptor objects.
// This means that dup() doesn't copy the FD_CLOEXEC flag!
switch (cmd) {
case F_DUPFD: {
int arg_fd = (int)arg;
if (arg_fd < 0)
return -EINVAL;
int new_fd = -1;
for (int i = arg_fd; i < (int)m_max_open_file_descriptors; ++i) {
if (!m_fds[i]) {
new_fd = i;
break;
}
}
if (new_fd == -1)
return -EMFILE;
m_fds[new_fd].set(descriptor);
break;
}
case F_GETFD:
return m_fds[fd].flags;
case F_SETFD:
m_fds[fd].flags = arg;
break;
case F_GETFL:
return descriptor->file_flags();
case F_SETFL:
// FIXME: Support changing O_NONBLOCK
descriptor->set_file_flags(arg);
break;
default:
ASSERT_NOT_REACHED();
}
return 0;
}
int Process::sys$fstat(int fd, stat* statbuf)
{
if (!validate_write_typed(statbuf))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
return descriptor->fstat(statbuf);
}
int Process::sys$lstat(const char* path, stat* statbuf)
{
if (!validate_write_typed(statbuf))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(move(path), error, O_NOFOLLOW_NOERROR | O_DONT_OPEN_DEVICE, 0, *cwd_inode());
if (!descriptor)
return error;
return descriptor->fstat(statbuf);
}
int Process::sys$stat(const char* path, stat* statbuf)
{
if (!validate_write_typed(statbuf))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(move(path), error, O_DONT_OPEN_DEVICE, 0, *cwd_inode());
if (!descriptor)
return error;
return descriptor->fstat(statbuf);
}
int Process::sys$readlink(const char* path, char* buffer, size_t size)
{
if (!validate_read_str(path))
return -EFAULT;
if (!validate_write(buffer, size))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, 0, *cwd_inode());
if (!descriptor)
return error;
if (!descriptor->metadata().is_symlink())
return -EINVAL;
auto contents = descriptor->read_entire_file(*this);
if (!contents)
return -EIO; // FIXME: Get a more detailed error from VFS.
memcpy(buffer, contents.pointer(), min(size, contents.size()));
if (contents.size() + 1 < size)
buffer[contents.size()] = '\0';
return 0;
}
int Process::sys$chdir(const char* path)
{
if (!validate_read_str(path))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(path, error, 0, 0, *cwd_inode());
if (!descriptor)
return error;
if (!descriptor->is_directory())
return -ENOTDIR;
m_cwd = descriptor->inode();
return 0;
}
int Process::sys$getcwd(char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
ASSERT(cwd_inode());
auto path = VFS::the().absolute_path(*cwd_inode());
if (path.is_null())
return -EINVAL;
if (size < path.length() + 1)
return -ERANGE;
strcpy(buffer, path.characters());
return 0;
}
size_t Process::number_of_open_file_descriptors() const
{
size_t count = 0;
for (auto& descriptor : m_fds) {
if (descriptor)
++count;
}
return count;
}
int Process::sys$open(const char* path, int options, mode_t mode)
{
#ifdef DEBUG_IO
dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path);
#endif
if (!validate_read_str(path))
return -EFAULT;
if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
return -EMFILE;
int error = -EWHYTHO;
ASSERT(cwd_inode());
auto descriptor = VFS::the().open(path, error, options, mode, *cwd_inode());
if (!descriptor)
return error;
if (options & O_DIRECTORY && !descriptor->is_directory())
return -ENOTDIR; // FIXME: This should be handled by VFS::open.
if (options & O_NONBLOCK)
descriptor->set_blocking(false);
int fd = 0;
for (; fd < (int)m_max_open_file_descriptors; ++fd) {
if (!m_fds[fd])
break;
}
dword flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0;
m_fds[fd].set(move(descriptor), flags);
return fd;
}
int Process::alloc_fd()
{
int fd = -1;
for (int i = 0; i < (int)m_max_open_file_descriptors; ++i) {
if (!m_fds[i]) {
fd = i;
break;
}
}
return fd;
}
int Process::sys$pipe(int pipefd[2])
{
if (!validate_write_typed(pipefd))
return -EFAULT;
if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors())
return -EMFILE;
auto fifo = FIFO::create();
int reader_fd = alloc_fd();
m_fds[reader_fd].set(FileDescriptor::create_pipe_reader(*fifo));
pipefd[0] = reader_fd;
int writer_fd = alloc_fd();
m_fds[writer_fd].set(FileDescriptor::create_pipe_writer(*fifo));
pipefd[1] = writer_fd;
return 0;
}
int Process::sys$killpg(int pgrp, int signum)
{
if (signum < 1 || signum >= 32)
return -EINVAL;
(void) pgrp;
ASSERT_NOT_REACHED();
}
int Process::sys$setuid(uid_t)
{
ASSERT_NOT_REACHED();
}
int Process::sys$setgid(gid_t)
{
ASSERT_NOT_REACHED();
}
unsigned Process::sys$alarm(unsigned seconds)
{
(void) seconds;
ASSERT_NOT_REACHED();
}
int Process::sys$uname(utsname* buf)
{
if (!validate_write_typed(buf))
return -EFAULT;
strcpy(buf->sysname, "Serenity");
strcpy(buf->release, "1.0-dev");
strcpy(buf->version, "FIXME");
strcpy(buf->machine, "i386");
strcpy(buf->nodename, get_hostname().characters());
return 0;
}
int Process::sys$isatty(int fd)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (!descriptor->is_tty())
return -ENOTTY;
return 1;
}
int Process::sys$kill(pid_t pid, int signal)
{
if (pid == 0) {
// FIXME: Send to same-group processes.
ASSERT(pid != 0);
}
if (pid == -1) {
// FIXME: Send to all processes.
ASSERT(pid != -1);
}
ASSERT(pid != current->pid()); // FIXME: Support this scenario.
InterruptDisabler disabler;
auto* peer = Process::from_pid(pid);
if (!peer)
return -ESRCH;
peer->send_signal(signal, this);
return 0;
}
int Process::sys$usleep(useconds_t usec)
{
if (!usec)
return 0;
sleep(usec / 1000);
if (m_wakeup_time > system.uptime) {
ASSERT(m_was_interrupted_while_blocked);
dword ticks_left_until_original_wakeup_time = m_wakeup_time - system.uptime;
return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
}
return 0;
}
int Process::sys$sleep(unsigned seconds)
{
if (!seconds)
return 0;
sleep(seconds * TICKS_PER_SECOND);
if (m_wakeup_time > system.uptime) {
ASSERT(m_was_interrupted_while_blocked);
dword ticks_left_until_original_wakeup_time = m_wakeup_time - system.uptime;
return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
}
return 0;
}
int Process::sys$gettimeofday(timeval* tv)
{
if (!validate_write_typed(tv))
return -EFAULT;
InterruptDisabler disabler;
auto now = RTC::now();
tv->tv_sec = now;
tv->tv_usec = PIT::ticks_since_boot() % 1000;
return 0;
}
uid_t Process::sys$getuid()
{
return m_uid;
}
gid_t Process::sys$getgid()
{
return m_gid;
}
uid_t Process::sys$geteuid()
{
return m_euid;
}
gid_t Process::sys$getegid()
{
return m_egid;
}
pid_t Process::sys$getpid()
{
return m_pid;
}
pid_t Process::sys$getppid()
{
return m_ppid;
}
mode_t Process::sys$umask(mode_t mask)
{
auto old_mask = m_umask;
m_umask = mask;
return old_mask;
}
int Process::reap(Process& process)
{
InterruptDisabler disabler;
int exit_status = (process.m_termination_status << 8) | process.m_termination_signal;
if (process.ppid()) {
auto* parent = Process::from_pid(process.ppid());
if (parent) {
parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children;
parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children;
}
}
dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), to_string(process.state()));
ASSERT(process.state() == Dead);
g_processes->remove(&process);
delete &process;
return exit_status;
}
pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options)
{
dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options);
// FIXME: Respect options
(void) options;
if (wstatus)
if (!validate_write_typed(wstatus))
return -EFAULT;
int dummy_wstatus;
int& exit_status = wstatus ? *wstatus : dummy_wstatus;
{
InterruptDisabler disabler;
if (waitee != -1 && !Process::from_pid(waitee))
return -ECHILD;
}
if (options & WNOHANG) {
if (waitee == -1) {
pid_t reaped_pid = 0;
InterruptDisabler disabler;
for_each_child([&reaped_pid, &exit_status] (Process& process) {
if (process.state() == Dead) {
reaped_pid = process.pid();
exit_status = reap(process);
}
return true;
});
return reaped_pid;
} else {
ASSERT(waitee > 0); // FIXME: Implement other PID specs.
auto* waitee_process = Process::from_pid(waitee);
if (!waitee_process)
return -ECHILD;
if (waitee_process->state() == Dead) {
exit_status = reap(*waitee_process);
return waitee;
}
return 0;
}
}
m_waitee_pid = waitee;
block(BlockedWait);
Scheduler::yield();
if (m_was_interrupted_while_blocked)
return -EINTR;
Process* waitee_process;
{
InterruptDisabler disabler;
// NOTE: If waitee was -1, m_waitee will have been filled in by the scheduler.
waitee_process = Process::from_pid(m_waitee_pid);
}
ASSERT(waitee_process);
exit_status = reap(*waitee_process);
return m_waitee_pid;
}
void Process::unblock()
{
if (current == this) {
system.nblocked--;
m_state = Process::Running;
return;
}
ASSERT(m_state != Process::Runnable && m_state != Process::Running);
system.nblocked--;
m_state = Process::Runnable;
}
void Process::block(Process::State new_state)
{
if (state() != Process::Running) {
kprintf("Process::block: %s(%u) block(%u/%s) with state=%u/%s\n", name().characters(), pid(), new_state, to_string(new_state), state(), to_string(state()));
}
ASSERT(state() == Process::Running);
system.nblocked++;
m_was_interrupted_while_blocked = false;
set_state(new_state);
}
void block(Process::State state)
{
current->block(state);
Scheduler::yield();
}
void sleep(dword ticks)
{
ASSERT(current->state() == Process::Running);
current->set_wakeup_time(system.uptime + ticks);
current->block(Process::BlockedSleep);
Scheduler::yield();
}
static bool check_kernel_memory_access(LinearAddress laddr, bool is_write)
{
auto* kernel_elf_header = (Elf32_Ehdr*)0xf000;
auto* kernel_program_headers = (Elf32_Phdr*)(0xf000 + kernel_elf_header->e_phoff);
for (unsigned i = 0; i < kernel_elf_header->e_phnum; ++i) {
auto& segment = kernel_program_headers[i];
if (laddr.get() < segment.p_vaddr || laddr.get() > (segment.p_vaddr + segment.p_memsz))
continue;
if (is_write && !(kernel_program_headers[i].p_flags & PF_W))
return false;
if (!is_write && !(kernel_program_headers[i].p_flags & PF_R))
return false;
return true;
}
// Returning true in this case means "it's not inside the kernel binary. let the other checks deal with it."
return true;
}
bool Process::validate_read_from_kernel(LinearAddress laddr) const
{
// We check extra carefully here since the first 4MB of the address space is identity-mapped.
// This code allows access outside of the known used address ranges to get caught.
InterruptDisabler disabler;
if (check_kernel_memory_access(laddr, false))
return true;
if (is_kmalloc_address(laddr.as_ptr()))
return true;
return validate_read(laddr.as_ptr(), 1);
}
bool Process::validate_read(const void* address, size_t size) const
{
if (is_ring0()) {
if (check_kernel_memory_access(LinearAddress((dword)address), false))
return true;
if (is_kmalloc_address(address))
return true;
}
ASSERT(size);
if (!size)
return false;
LinearAddress first_address((dword)address);
LinearAddress last_address = first_address.offset(size - 1);
if (first_address.page_base() != last_address.page_base()) {
if (!MM.validate_user_read(*this, last_address))
return false;
}
return MM.validate_user_read(*this, first_address);
}
bool Process::validate_write(void* address, size_t size) const
{
if (is_ring0()) {
if (is_kmalloc_address(address))
return true;
if (check_kernel_memory_access(LinearAddress((dword)address), true))
return true;
}
ASSERT(size);
if (!size)
return false;
LinearAddress first_address((dword)address);
LinearAddress last_address = first_address.offset(size - 1);
if (first_address.page_base() != last_address.page_base()) {
if (!MM.validate_user_write(*this, last_address))
return false;
}
return MM.validate_user_write(*this, last_address);
}
pid_t Process::sys$getsid(pid_t pid)
{
if (pid == 0)
return m_sid;
InterruptDisabler disabler;
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
if (m_sid != process->m_sid)
return -EPERM;
return process->m_sid;
}
pid_t Process::sys$setsid()
{
InterruptDisabler disabler;
bool found_process_with_same_pgid_as_my_pid = false;
Process::for_each_in_pgrp(pid(), [&] (auto&) {
found_process_with_same_pgid_as_my_pid = true;
return false;
});
if (found_process_with_same_pgid_as_my_pid)
return -EPERM;
m_sid = m_pid;
m_pgid = m_pid;
return m_sid;
}
pid_t Process::sys$getpgid(pid_t pid)
{
if (pid == 0)
return m_pgid;
InterruptDisabler disabler; // FIXME: Use a ProcessHandle
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
return process->m_pgid;
}
pid_t Process::sys$getpgrp()
{
return m_pgid;
}
static pid_t get_sid_from_pgid(pid_t pgid)
{
InterruptDisabler disabler;
auto* group_leader = Process::from_pid(pgid);
if (!group_leader)
return -1;
return group_leader->sid();
}
int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid)
{
InterruptDisabler disabler; // FIXME: Use a ProcessHandle
pid_t pid = specified_pid ? specified_pid : m_pid;
if (specified_pgid < 0)
return -EINVAL;
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid;
pid_t current_sid = get_sid_from_pgid(process->m_pgid);
pid_t new_sid = get_sid_from_pgid(new_pgid);
if (current_sid != new_sid) {
// Can't move a process between sessions.
return -EPERM;
}
// FIXME: There are more EPERM conditions to check for here..
process->m_pgid = new_pgid;
return 0;
}
int Process::sys$ioctl(int fd, unsigned request, unsigned arg)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (!descriptor->is_character_device())
return -ENOTTY;
return descriptor->character_device()->ioctl(*this, request, arg);
}
int Process::sys$getdtablesize()
{
return m_max_open_file_descriptors;
}
int Process::sys$dup(int old_fd)
{
auto* descriptor = file_descriptor(old_fd);
if (!descriptor)
return -EBADF;
if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
return -EMFILE;
int new_fd = 0;
for (; new_fd < (int)m_max_open_file_descriptors; ++new_fd) {
if (!m_fds[new_fd])
break;
}
m_fds[new_fd].set(descriptor);
return new_fd;
}
int Process::sys$dup2(int old_fd, int new_fd)
{
auto* descriptor = file_descriptor(old_fd);
if (!descriptor)
return -EBADF;
if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
return -EMFILE;
m_fds[new_fd].set(descriptor);
return new_fd;
}
int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set)
{
if (old_set) {
if (!validate_read_typed(old_set))
return -EFAULT;
*old_set = m_signal_mask;
}
if (set) {
if (!validate_read_typed(set))
return -EFAULT;
switch (how) {
case SIG_BLOCK:
m_signal_mask &= ~(*set);
break;
case SIG_UNBLOCK:
m_signal_mask |= *set;
break;
case SIG_SETMASK:
m_signal_mask = *set;
break;
default:
return -EINVAL;
}
}
return 0;
}
int Process::sys$sigpending(sigset_t* set)
{
if (!validate_read_typed(set))
return -EFAULT;
*set = m_pending_signals;
return 0;
}
void Process::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
}
int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act)
{
if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP)
return -EINVAL;
if (!validate_read_typed(act))
return -EFAULT;
InterruptDisabler disabler; // FIXME: This should use a narrower lock.
auto& action = m_signal_action_data[signum];
if (old_act) {
if (!validate_write_typed(old_act))
return -EFAULT;
old_act->sa_flags = action.flags;
old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get();
old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
}
action.restorer = LinearAddress((dword)act->sa_restorer);
action.flags = act->sa_flags;
action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
return 0;
}
int Process::sys$getgroups(int count, gid_t* gids)
{
if (count < 0)
return -EINVAL;
ASSERT(m_gids.size() < MAX_PROCESS_GIDS);
if (!count)
return m_gids.size();
if (count != (int)m_gids.size())
return -EINVAL;
if (!validate_write_typed(gids, m_gids.size()))
return -EFAULT;
size_t i = 0;
for (auto gid : m_gids)
gids[i++] = gid;
return 0;
}
int Process::sys$setgroups(size_t count, const gid_t* gids)
{
if (!is_root())
return -EPERM;
if (count >= MAX_PROCESS_GIDS)
return -EINVAL;
if (!validate_read(gids, count))
return -EFAULT;
m_gids.clear();
m_gids.set(m_gid);
for (size_t i = 0; i < count; ++i)
m_gids.set(gids[i]);
return 0;
}
int Process::sys$mkdir(const char* pathname, mode_t mode)
{
if (!validate_read_str(pathname))
return -EFAULT;
size_t pathname_length = strlen(pathname);
if (pathname_length == 0)
return -EINVAL;
if (pathname_length >= 255)
return -ENAMETOOLONG;
int error;
if (!VFS::the().mkdir(String(pathname, pathname_length), mode, *cwd_inode(), error))
return error;
return 0;
}
clock_t Process::sys$times(tms* times)
{
if (!validate_write_typed(times))
return -EFAULT;
times->tms_utime = m_ticks_in_user;
times->tms_stime = m_ticks_in_kernel;
times->tms_cutime = m_ticks_in_user_for_dead_children;
times->tms_cstime = m_ticks_in_kernel_for_dead_children;
return 0;
}
int Process::sys$select(const Syscall::SC_select_params* params)
{
if (!validate_read_typed(params))
return -EFAULT;
if (params->writefds && !validate_read_typed(params->writefds))
return -EFAULT;
if (params->readfds && !validate_read_typed(params->readfds))
return -EFAULT;
if (params->exceptfds && !validate_read_typed(params->exceptfds))
return -EFAULT;
if (params->timeout && !validate_read_typed(params->timeout))
return -EFAULT;
int nfds = params->nfds;
fd_set* writefds = params->writefds;
fd_set* readfds = params->readfds;
fd_set* exceptfds = params->exceptfds;
auto* timeout = params->timeout;
// FIXME: Implement exceptfds support.
ASSERT(!exceptfds);
if (timeout) {
m_select_timeout = *timeout;
m_select_has_timeout = true;
} else {
m_select_has_timeout = false;
}
if (nfds < 0)
return -EINVAL;
// FIXME: Return -EINTR if a signal is caught.
// FIXME: Return -EINVAL if timeout is invalid.
auto transfer_fds = [this, nfds] (fd_set* set, auto& vector) -> int {
if (!set)
return 0;
vector.clear_with_capacity();
auto bitmap = Bitmap::wrap((byte*)set, FD_SETSIZE);
for (int i = 0; i < nfds; ++i) {
if (bitmap.get(i)) {
if (!file_descriptor(i))
return -EBADF;
vector.append(i);
}
}
return 0;
};
int error = 0;
error = transfer_fds(writefds, m_select_write_fds);
if (error)
return error;
error = transfer_fds(readfds, m_select_read_fds);
if (error)
return error;
#ifdef DEBUG_IO
dbgprintf("%s<%u> selecting on (read:%u, write:%u), wakeup_req:%u, timeout=%p\n", name().characters(), pid(), m_select_read_fds.size(), m_select_write_fds.size(), m_wakeup_requested, timeout);
#endif
if (!m_wakeup_requested && (!timeout || (timeout->tv_sec || timeout->tv_usec))) {
block(BlockedSelect);
Scheduler::yield();
}
m_wakeup_requested = false;
int markedfds = 0;
if (readfds) {
memset(readfds, 0, sizeof(fd_set));
auto bitmap = Bitmap::wrap((byte*)readfds, FD_SETSIZE);
for (int fd : m_select_read_fds) {
auto* descriptor = file_descriptor(fd);
if (!descriptor)
continue;
if (descriptor->can_read(*this)) {
bitmap.set(fd, true);
++markedfds;
}
}
}
if (writefds) {
memset(writefds, 0, sizeof(fd_set));
auto bitmap = Bitmap::wrap((byte*)writefds, FD_SETSIZE);
for (int fd : m_select_write_fds) {
auto* descriptor = file_descriptor(fd);
if (!descriptor)
continue;
if (descriptor->can_write(*this)) {
bitmap.set(fd, true);
++markedfds;
}
}
}
return markedfds;
}
int Process::sys$poll(pollfd* fds, int nfds, int timeout)
{
if (!validate_read_typed(fds))
return -EFAULT;
m_select_write_fds.clear_with_capacity();
m_select_read_fds.clear_with_capacity();
for (int i = 0; i < nfds; ++i) {
if (fds[i].events & POLLIN)
m_select_read_fds.append(fds[i].fd);
if (fds[i].events & POLLOUT)
m_select_write_fds.append(fds[i].fd);
}
if (!m_wakeup_requested && timeout < 0) {
block(BlockedSelect);
Scheduler::yield();
}
m_wakeup_requested = false;
int fds_with_revents = 0;
for (int i = 0; i < nfds; ++i) {
auto* descriptor = file_descriptor(fds[i].fd);
if (!descriptor) {
fds[i].revents = POLLNVAL;
continue;
}
fds[i].revents = 0;
if (fds[i].events & POLLIN && descriptor->can_read(*this))
fds[i].revents |= POLLIN;
if (fds[i].events & POLLOUT && descriptor->can_write(*this))
fds[i].revents |= POLLOUT;
if (fds[i].revents)
++fds_with_revents;
}
return fds_with_revents;
}
Inode* Process::cwd_inode()
{
// FIXME: This is retarded factoring.
if (!m_cwd)
m_cwd = VFS::the().root_inode();
return m_cwd.ptr();
}
int Process::sys$unlink(const char* pathname)
{
if (!validate_read_str(pathname))
return -EFAULT;
int error;
if (!VFS::the().unlink(String(pathname), *cwd_inode(), error))
return error;
return 0;
}
int Process::sys$rmdir(const char* pathname)
{
if (!validate_read_str(pathname))
return -EFAULT;
int error;
if (!VFS::the().rmdir(String(pathname), *cwd_inode(), error))
return error;
return 0;
}
int Process::sys$read_tsc(dword* lsw, dword* msw)
{
if (!validate_write_typed(lsw))
return -EFAULT;
if (!validate_write_typed(msw))
return -EFAULT;
read_tsc(*lsw, *msw);
return 0;
}
int Process::sys$chmod(const char* pathname, mode_t mode)
{
if (!validate_read_str(pathname))
return -EFAULT;
int error;
if (!VFS::the().chmod(String(pathname), mode, *cwd_inode(), error))
return error;
return 0;
}
void Process::die()
{
// This is pretty hairy wrt interrupts. Once we set_state(Dead), we never get scheduled again.
// For this reason, we mark ourselves as Dying, which prevents the scheduler from dispatching signals in this process.
set_state(Dying);
InterruptFlagSaver saver;
// STI so we can take locks.
sti();
destroy_all_windows();
m_fds.clear();
m_tty = nullptr;
// CLI for Process::from_pid(). This should go away eventually.
cli();
if (auto* parent_process = Process::from_pid(m_ppid)) {
parent_process->send_signal(SIGCHLD, this);
}
// Good night.
set_state(Dead);
}
size_t Process::amount_virtual() const
{
size_t amount = 0;
for (auto& region : m_regions) {
amount += region->size();
}
return amount;
}
size_t Process::amount_in_bitmaps() const
{
size_t amount = 0;
for (auto& region : m_regions) {
if (region->is_bitmap())
amount += region->size();
}
return amount;
}
size_t Process::amount_resident() const
{
// FIXME: This will double count if multiple regions use the same physical page.
size_t amount = 0;
for (auto& region : m_regions) {
amount += region->amount_resident();
}
return amount;
}
size_t Process::amount_shared() const
{
// FIXME: This will double count if multiple regions use the same physical page.
// FIXME: It doesn't work at the moment, since it relies on PhysicalPage retain counts,
// and each PhysicalPage is only retained by its VMObject. This needs to be refactored
// so that every Region contributes +1 retain to each of its PhysicalPages.
size_t amount = 0;
for (auto& region : m_regions) {
amount += region->amount_shared();
}
return amount;
}