serenity/Kernel/Arch/i386/CPU.h
Andreas Kling d46071c08f Kernel: Assert on page fault during IRQ
We're not equipped to deal with page faults during an IRQ handler,
so add an assertion so we can immediately tell what's wrong.

This is why profiling sometimes hangs the system -- walking the stack
of the profiled thread causes a page fault and things fall apart.
2020-02-21 15:49:34 +01:00

598 lines
14 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Badge.h>
#include <AK/Noncopyable.h>
#include <LibBareMetal/Memory/PhysicalAddress.h>
#include <LibBareMetal/Memory/VirtualAddress.h>
#define PAGE_SIZE 4096
#define PAGE_MASK ((uintptr_t)0xfffff000u)
namespace Kernel {
class MemoryManager;
class PageDirectory;
class PageTableEntry;
struct [[gnu::packed]] TSS32
{
u16 backlink, __blh;
u32 esp0;
u16 ss0, __ss0h;
u32 esp1;
u16 ss1, __ss1h;
u32 esp2;
u16 ss2, __ss2h;
u32 cr3, eip, eflags;
u32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
u16 es, __esh;
u16 cs, __csh;
u16 ss, __ssh;
u16 ds, __dsh;
u16 fs, __fsh;
u16 gs, __gsh;
u16 ldt, __ldth;
u16 trace, iomapbase;
};
union [[gnu::packed]] Descriptor
{
struct {
u16 limit_lo;
u16 base_lo;
u8 base_hi;
u8 type : 4;
u8 descriptor_type : 1;
u8 dpl : 2;
u8 segment_present : 1;
u8 limit_hi : 4;
u8 : 1;
u8 zero : 1;
u8 operation_size : 1;
u8 granularity : 1;
u8 base_hi2;
};
struct {
u32 low;
u32 high;
};
enum Type {
Invalid = 0,
AvailableTSS_16bit = 0x1,
LDT = 0x2,
BusyTSS_16bit = 0x3,
CallGate_16bit = 0x4,
TaskGate = 0x5,
InterruptGate_16bit = 0x6,
TrapGate_16bit = 0x7,
AvailableTSS_32bit = 0x9,
BusyTSS_32bit = 0xb,
CallGate_32bit = 0xc,
InterruptGate_32bit = 0xe,
TrapGate_32bit = 0xf,
};
void set_base(void* b)
{
base_lo = (u32)(b)&0xffff;
base_hi = ((u32)(b) >> 16) & 0xff;
base_hi2 = ((u32)(b) >> 24) & 0xff;
}
void set_limit(u32 l)
{
limit_lo = (u32)l & 0xffff;
limit_hi = ((u32)l >> 16) & 0xf;
}
};
class PageDirectoryEntry {
public:
PageTableEntry* page_table_base() { return reinterpret_cast<PageTableEntry*>(m_raw & 0xfffff000u); }
void set_page_table_base(u32 value)
{
m_raw &= 0x8000000000000fffULL;
m_raw |= value & 0xfffff000;
}
void clear() { m_raw = 0; }
u64 raw() const { return m_raw; }
void copy_from(Badge<PageDirectory>, const PageDirectoryEntry& other) { m_raw = other.m_raw; }
enum Flags {
Present = 1 << 0,
ReadWrite = 1 << 1,
UserSupervisor = 1 << 2,
WriteThrough = 1 << 3,
CacheDisabled = 1 << 4,
Huge = 1 << 7,
Global = 1 << 8,
NoExecute = 0x8000000000000000ULL,
};
bool is_present() const { return raw() & Present; }
void set_present(bool b) { set_bit(Present, b); }
bool is_user_allowed() const { return raw() & UserSupervisor; }
void set_user_allowed(bool b) { set_bit(UserSupervisor, b); }
bool is_huge() const { return raw() & Huge; }
void set_huge(bool b) { set_bit(Huge, b); }
bool is_writable() const { return raw() & ReadWrite; }
void set_writable(bool b) { set_bit(ReadWrite, b); }
bool is_write_through() const { return raw() & WriteThrough; }
void set_write_through(bool b) { set_bit(WriteThrough, b); }
bool is_cache_disabled() const { return raw() & CacheDisabled; }
void set_cache_disabled(bool b) { set_bit(CacheDisabled, b); }
bool is_global() const { return raw() & Global; }
void set_global(bool b) { set_bit(Global, b); }
bool is_execute_disabled() const { return raw() & NoExecute; }
void set_execute_disabled(bool b) { set_bit(NoExecute, b); }
void set_bit(u64 bit, bool value)
{
if (value)
m_raw |= bit;
else
m_raw &= ~bit;
}
private:
u64 m_raw;
};
class PageTableEntry {
public:
void* physical_page_base() { return reinterpret_cast<void*>(m_raw & 0xfffff000u); }
void set_physical_page_base(u32 value)
{
m_raw &= 0x8000000000000fffULL;
m_raw |= value & 0xfffff000;
}
u64 raw() const { return (u32)m_raw; }
enum Flags {
Present = 1 << 0,
ReadWrite = 1 << 1,
UserSupervisor = 1 << 2,
WriteThrough = 1 << 3,
CacheDisabled = 1 << 4,
Global = 1 << 8,
NoExecute = 0x8000000000000000ULL,
};
bool is_present() const { return raw() & Present; }
void set_present(bool b) { set_bit(Present, b); }
bool is_user_allowed() const { return raw() & UserSupervisor; }
void set_user_allowed(bool b) { set_bit(UserSupervisor, b); }
bool is_writable() const { return raw() & ReadWrite; }
void set_writable(bool b) { set_bit(ReadWrite, b); }
bool is_write_through() const { return raw() & WriteThrough; }
void set_write_through(bool b) { set_bit(WriteThrough, b); }
bool is_cache_disabled() const { return raw() & CacheDisabled; }
void set_cache_disabled(bool b) { set_bit(CacheDisabled, b); }
bool is_global() const { return raw() & Global; }
void set_global(bool b) { set_bit(Global, b); }
bool is_execute_disabled() const { return raw() & NoExecute; }
void set_execute_disabled(bool b) { set_bit(NoExecute, b); }
void clear() { m_raw = 0; }
void set_bit(u64 bit, bool value)
{
if (value)
m_raw |= bit;
else
m_raw &= ~bit;
}
private:
u64 m_raw;
};
static_assert(sizeof(PageDirectoryEntry) == 8);
static_assert(sizeof(PageTableEntry) == 8);
class PageDirectoryPointerTable {
public:
PageDirectoryEntry* directory(size_t index)
{
return (PageDirectoryEntry*)(raw[index] & ~0xfffu);
}
u64 raw[4];
};
class IRQHandler;
struct RegisterState;
void gdt_init();
void idt_init();
void sse_init();
void register_interrupt_handler(u8 number, void (*f)());
void register_user_callable_interrupt_handler(u8 number, void (*f)());
void register_irq_handler(u8 number, IRQHandler&);
void unregister_irq_handler(u8 number, IRQHandler&);
void flush_idt();
void flush_gdt();
void load_task_register(u16 selector);
u16 gdt_alloc_entry();
void gdt_free_entry(u16);
Descriptor& get_gdt_entry(u16 selector);
void write_gdt_entry(u16 selector, Descriptor&);
void handle_crash(RegisterState&, const char* description, int signal);
[[noreturn]] static inline void hang()
{
asm volatile("cli; hlt");
for (;;) {
}
}
#define LSW(x) ((u32)(x)&0xFFFF)
#define MSW(x) (((u32)(x) >> 16) & 0xFFFF)
#define LSB(x) ((x)&0xFF)
#define MSB(x) (((x) >> 8) & 0xFF)
#define cli() asm volatile("cli" :: \
: "memory")
#define sti() asm volatile("sti" :: \
: "memory")
#define memory_barrier() asm volatile("" :: \
: "memory")
inline u32 cpu_flags()
{
u32 flags;
asm volatile(
"pushf\n"
"pop %0\n"
: "=rm"(flags)::"memory");
return flags;
}
inline u32 read_fs_u32(u32 offset)
{
u32 val;
asm volatile(
"movl %%fs:%a[off], %k[val]"
: [ val ] "=r"(val)
: [ off ] "ir"(offset));
return val;
}
inline void write_fs_u32(u32 offset, u32 val)
{
asm volatile(
"movl %k[val], %%fs:%a[off]" ::[off] "ir"(offset), [ val ] "ir"(val)
: "memory");
}
inline bool are_interrupts_enabled()
{
return cpu_flags() & 0x200;
}
class InterruptFlagSaver {
public:
InterruptFlagSaver()
{
m_flags = cpu_flags();
}
~InterruptFlagSaver()
{
if (m_flags & 0x200)
sti();
else
cli();
}
private:
u32 m_flags;
};
inline bool cli_and_save_interrupt_flag()
{
u32 flags = cpu_flags();
cli();
return flags & 0x200;
}
inline void restore_interrupt_flag(bool flag)
{
if (flag)
sti();
else
cli();
}
class InterruptDisabler {
public:
InterruptDisabler()
{
m_flags = cpu_flags();
cli();
}
~InterruptDisabler()
{
if (m_flags & 0x200)
sti();
}
private:
u32 m_flags;
};
/* Map IRQ0-15 @ ISR 0x50-0x5F */
#define IRQ_VECTOR_BASE 0x50
struct PageFaultFlags {
enum Flags {
NotPresent = 0x00,
ProtectionViolation = 0x01,
Read = 0x00,
Write = 0x02,
UserMode = 0x04,
SupervisorMode = 0x00,
ReservedBitViolation = 0x08,
InstructionFetch = 0x10,
};
};
class PageFault {
public:
PageFault(u16 code, VirtualAddress vaddr)
: m_code(code)
, m_vaddr(vaddr)
{
}
enum class Type {
PageNotPresent = PageFaultFlags::NotPresent,
ProtectionViolation = PageFaultFlags::ProtectionViolation,
};
enum class Access {
Read = PageFaultFlags::Read,
Write = PageFaultFlags::Write,
};
VirtualAddress vaddr() const { return m_vaddr; }
u16 code() const { return m_code; }
Type type() const { return (Type)(m_code & 1); }
Access access() const { return (Access)(m_code & 2); }
bool is_not_present() const { return (m_code & 1) == PageFaultFlags::NotPresent; }
bool is_protection_violation() const { return (m_code & 1) == PageFaultFlags::ProtectionViolation; }
bool is_read() const { return (m_code & 2) == PageFaultFlags::Read; }
bool is_write() const { return (m_code & 2) == PageFaultFlags::Write; }
bool is_user() const { return (m_code & 4) == PageFaultFlags::UserMode; }
bool is_supervisor() const { return (m_code & 4) == PageFaultFlags::SupervisorMode; }
bool is_instruction_fetch() const { return (m_code & 8) == PageFaultFlags::InstructionFetch; }
private:
u16 m_code;
VirtualAddress m_vaddr;
};
struct [[gnu::packed]] RegisterState
{
u32 ss;
u32 gs;
u32 fs;
u32 es;
u32 ds;
u32 edi;
u32 esi;
u32 ebp;
u32 esp;
u32 ebx;
u32 edx;
u32 ecx;
u32 eax;
u16 exception_code;
u16 isr_number;
u32 eip;
u32 cs;
u32 eflags;
u32 userspace_esp;
u32 userspace_ss;
};
struct [[gnu::aligned(16)]] FPUState
{
u8 buffer[512];
};
inline constexpr uintptr_t page_base_of(uintptr_t address)
{
return address & PAGE_MASK;
}
inline uintptr_t page_base_of(const void* address)
{
return page_base_of((uintptr_t)address);
}
inline constexpr uintptr_t offset_in_page(uintptr_t address)
{
return address & (~PAGE_MASK);
}
inline uintptr_t offset_in_page(const void* address)
{
return offset_in_page((uintptr_t)address);
}
u32 read_cr3();
void write_cr3(u32);
class CPUID {
public:
CPUID(u32 function) { asm volatile("cpuid"
: "=a"(m_eax), "=b"(m_ebx), "=c"(m_ecx), "=d"(m_edx)
: "a"(function), "c"(0)); }
u32 eax() const { return m_eax; }
u32 ebx() const { return m_ebx; }
u32 ecx() const { return m_ecx; }
u32 edx() const { return m_edx; }
private:
u32 m_eax { 0xffffffff };
u32 m_ebx { 0xffffffff };
u32 m_ecx { 0xffffffff };
u32 m_edx { 0xffffffff };
};
inline void read_tsc(u32& lsw, u32& msw)
{
asm volatile("rdtsc"
: "=d"(msw), "=a"(lsw));
}
inline u64 read_tsc()
{
u32 lsw;
u32 msw;
read_tsc(lsw, msw);
return ((u64)msw << 32) | lsw;
}
struct Stopwatch {
union SplitQword {
struct {
uint32_t lsw;
uint32_t msw;
};
uint64_t qw { 0 };
};
public:
Stopwatch(const char* name)
: m_name(name)
{
read_tsc(m_start.lsw, m_start.msw);
}
~Stopwatch()
{
SplitQword end;
read_tsc(end.lsw, end.msw);
uint64_t diff = end.qw - m_start.qw;
dbgprintf("Stopwatch(%s): %Q ticks\n", m_name, diff);
}
private:
const char* m_name { nullptr };
SplitQword m_start;
};
class MSR {
uint32_t m_msr;
public:
static bool have()
{
CPUID id(1);
return (id.edx() & (1 << 5)) != 0;
}
MSR(const MSR&) = delete;
MSR& operator=(const MSR&) = delete;
MSR(uint32_t msr)
: m_msr(msr)
{
}
void get(u32& low, u32& high)
{
asm volatile("rdmsr"
: "=a"(low), "=d"(high)
: "c"(m_msr));
}
void set(u32 low, u32 high)
{
asm volatile("wrmsr" ::"a"(low), "d"(high), "c"(m_msr));
}
};
void cpu_setup();
extern bool g_cpu_supports_nx;
extern bool g_cpu_supports_pae;
extern bool g_cpu_supports_pge;
extern bool g_cpu_supports_rdrand;
extern bool g_cpu_supports_smap;
extern bool g_cpu_supports_smep;
extern bool g_cpu_supports_sse;
extern bool g_cpu_supports_tsc;
extern bool g_cpu_supports_umip;
void stac();
void clac();
class SmapDisabler {
public:
SmapDisabler()
{
m_flags = cpu_flags();
stac();
}
~SmapDisabler()
{
if (!(m_flags & 0x40000))
clac();
}
private:
u32 m_flags;
};
extern u32 g_in_irq;
}