serenity/Kernel/Net/TCPSocket.cpp
kleines Filmröllchen 12e534c8c6 Kernel: Implement Nagle’s Algorithm
This is an initial implementation, about as basic as intended by the
RFC, and not configurable from userspace at the moment. It should reduce
the amount of low-sized packets sent, reducing overhead and thereby
network traffic.
2023-08-28 00:28:15 +02:00

684 lines
25 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/Generic/RandomDevice.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/Locking/MutexProtected.h>
#include <Kernel/Net/EthernetFrameHeader.h>
#include <Kernel/Net/IPv4.h>
#include <Kernel/Net/NetworkAdapter.h>
#include <Kernel/Net/NetworkingManagement.h>
#include <Kernel/Net/Routing.h>
#include <Kernel/Net/TCP.h>
#include <Kernel/Net/TCPSocket.h>
#include <Kernel/Security/Random.h>
#include <Kernel/Tasks/Process.h>
#include <Kernel/Time/TimeManagement.h>
namespace Kernel {
void TCPSocket::for_each(Function<void(TCPSocket const&)> callback)
{
sockets_by_tuple().for_each_shared([&](auto const& it) {
callback(*it.value);
});
}
ErrorOr<void> TCPSocket::try_for_each(Function<ErrorOr<void>(TCPSocket const&)> callback)
{
return sockets_by_tuple().with_shared([&](auto const& sockets) -> ErrorOr<void> {
for (auto& it : sockets)
TRY(callback(*it.value));
return {};
});
}
bool TCPSocket::unref() const
{
bool did_hit_zero = sockets_by_tuple().with_exclusive([&](auto& table) {
if (deref_base())
return false;
table.remove(tuple());
const_cast<TCPSocket&>(*this).revoke_weak_ptrs();
return true;
});
if (did_hit_zero) {
const_cast<TCPSocket&>(*this).will_be_destroyed();
delete this;
}
return did_hit_zero;
}
void TCPSocket::set_state(State new_state)
{
dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket({}) state moving from {} to {}", this, to_string(m_state), to_string(new_state));
auto was_disconnected = protocol_is_disconnected();
auto previous_role = m_role;
m_state = new_state;
if (new_state == State::Established && m_direction == Direction::Outgoing) {
set_role(Role::Connected);
clear_so_error();
}
if (new_state == State::TimeWait) {
// Once we hit TimeWait, we are only holding the socket in case there
// are packets on the way which we wouldn't want a new socket to get hit
// with, so there's no point in keeping the receive buffer around.
drop_receive_buffer();
}
if (new_state == State::Closed) {
closing_sockets().with_exclusive([&](auto& table) {
table.remove(tuple());
});
if (m_originator)
release_to_originator();
}
if (previous_role != m_role || was_disconnected != protocol_is_disconnected())
evaluate_block_conditions();
}
static Singleton<MutexProtected<HashMap<IPv4SocketTuple, RefPtr<TCPSocket>>>> s_socket_closing;
MutexProtected<HashMap<IPv4SocketTuple, RefPtr<TCPSocket>>>& TCPSocket::closing_sockets()
{
return *s_socket_closing;
}
static Singleton<MutexProtected<HashMap<IPv4SocketTuple, TCPSocket*>>> s_socket_tuples;
MutexProtected<HashMap<IPv4SocketTuple, TCPSocket*>>& TCPSocket::sockets_by_tuple()
{
return *s_socket_tuples;
}
RefPtr<TCPSocket> TCPSocket::from_tuple(IPv4SocketTuple const& tuple)
{
return sockets_by_tuple().with_shared([&](auto const& table) -> RefPtr<TCPSocket> {
auto exact_match = table.get(tuple);
if (exact_match.has_value())
return { *exact_match.value() };
auto address_tuple = IPv4SocketTuple(tuple.local_address(), tuple.local_port(), IPv4Address(), 0);
auto address_match = table.get(address_tuple);
if (address_match.has_value())
return { *address_match.value() };
auto wildcard_tuple = IPv4SocketTuple(IPv4Address(), tuple.local_port(), IPv4Address(), 0);
auto wildcard_match = table.get(wildcard_tuple);
if (wildcard_match.has_value())
return { *wildcard_match.value() };
return {};
});
}
ErrorOr<NonnullRefPtr<TCPSocket>> TCPSocket::try_create_client(IPv4Address const& new_local_address, u16 new_local_port, IPv4Address const& new_peer_address, u16 new_peer_port)
{
auto tuple = IPv4SocketTuple(new_local_address, new_local_port, new_peer_address, new_peer_port);
return sockets_by_tuple().with_exclusive([&](auto& table) -> ErrorOr<NonnullRefPtr<TCPSocket>> {
if (table.contains(tuple))
return EEXIST;
auto receive_buffer = TRY(try_create_receive_buffer());
auto client = TRY(TCPSocket::try_create(protocol(), move(receive_buffer)));
client->set_setup_state(SetupState::InProgress);
client->set_local_address(new_local_address);
client->set_local_port(new_local_port);
client->set_peer_address(new_peer_address);
client->set_peer_port(new_peer_port);
client->set_bound(true);
client->set_direction(Direction::Incoming);
client->set_originator(*this);
m_pending_release_for_accept.set(tuple, client);
table.set(tuple, client);
return { move(client) };
});
}
void TCPSocket::release_to_originator()
{
VERIFY(!!m_originator);
m_originator.strong_ref()->release_for_accept(*this);
m_originator.clear();
}
void TCPSocket::release_for_accept(NonnullRefPtr<TCPSocket> socket)
{
VERIFY(m_pending_release_for_accept.contains(socket->tuple()));
m_pending_release_for_accept.remove(socket->tuple());
// FIXME: Should we observe this error somehow?
[[maybe_unused]] auto rc = queue_connection_from(move(socket));
}
TCPSocket::TCPSocket(int protocol, NonnullOwnPtr<DoubleBuffer> receive_buffer, NonnullOwnPtr<KBuffer> scratch_buffer)
: IPv4Socket(SOCK_STREAM, protocol, move(receive_buffer), move(scratch_buffer))
, m_last_ack_sent_time(TimeManagement::the().monotonic_time())
, m_last_retransmit_time(TimeManagement::the().monotonic_time())
{
}
TCPSocket::~TCPSocket()
{
dequeue_for_retransmit();
dbgln_if(TCP_SOCKET_DEBUG, "~TCPSocket in state {}", to_string(state()));
}
ErrorOr<NonnullRefPtr<TCPSocket>> TCPSocket::try_create(int protocol, NonnullOwnPtr<DoubleBuffer> receive_buffer)
{
// Note: Scratch buffer is only used for SOCK_STREAM sockets.
auto scratch_buffer = TRY(KBuffer::try_create_with_size("TCPSocket: Scratch buffer"sv, 65536));
return adopt_nonnull_ref_or_enomem(new (nothrow) TCPSocket(protocol, move(receive_buffer), move(scratch_buffer)));
}
ErrorOr<size_t> TCPSocket::protocol_size(ReadonlyBytes raw_ipv4_packet)
{
auto& ipv4_packet = *reinterpret_cast<IPv4Packet const*>(raw_ipv4_packet.data());
auto& tcp_packet = *static_cast<TCPPacket const*>(ipv4_packet.payload());
return raw_ipv4_packet.size() - sizeof(IPv4Packet) - tcp_packet.header_size();
}
ErrorOr<size_t> TCPSocket::protocol_receive(ReadonlyBytes raw_ipv4_packet, UserOrKernelBuffer& buffer, size_t buffer_size, [[maybe_unused]] int flags)
{
auto& ipv4_packet = *reinterpret_cast<IPv4Packet const*>(raw_ipv4_packet.data());
auto& tcp_packet = *static_cast<TCPPacket const*>(ipv4_packet.payload());
size_t payload_size = raw_ipv4_packet.size() - sizeof(IPv4Packet) - tcp_packet.header_size();
dbgln_if(TCP_SOCKET_DEBUG, "payload_size {}, will it fit in {}?", payload_size, buffer_size);
VERIFY(buffer_size >= payload_size);
SOCKET_TRY(buffer.write(tcp_packet.payload(), payload_size));
return payload_size;
}
ErrorOr<size_t> TCPSocket::protocol_send(UserOrKernelBuffer const& data, size_t data_length)
{
auto adapter = bound_interface().with([](auto& bound_device) -> RefPtr<NetworkAdapter> { return bound_device; });
RoutingDecision routing_decision = route_to(peer_address(), local_address(), adapter);
if (routing_decision.is_zero())
return set_so_error(EHOSTUNREACH);
size_t mss = routing_decision.adapter->mtu() - sizeof(IPv4Packet) - sizeof(TCPPacket);
// RFC 896 (Nagles algorithm): https://www.ietf.org/rfc/rfc0896
// "The solution is to inhibit the sending of new TCP segments when
// new outgoing data arrives from the user if any previously
// transmitted data on the connection remains unacknowledged. This
// inhibition is to be unconditional; no timers, tests for size of
// data received, or other conditions are required."
// FIXME: Make this configurable via TCP_NODELAY.
auto has_unacked_data = m_unacked_packets.with_shared([&](auto const& packets) { return packets.size > 0; });
if (has_unacked_data && data_length < mss)
return 0;
data_length = min(data_length, mss);
TRY(send_tcp_packet(TCPFlags::PSH | TCPFlags::ACK, &data, data_length, &routing_decision));
return data_length;
}
ErrorOr<void> TCPSocket::send_ack(bool allow_duplicate)
{
if (!allow_duplicate && m_last_ack_number_sent == m_ack_number)
return {};
return send_tcp_packet(TCPFlags::ACK);
}
ErrorOr<void> TCPSocket::send_tcp_packet(u16 flags, UserOrKernelBuffer const* payload, size_t payload_size, RoutingDecision* user_routing_decision)
{
auto adapter = bound_interface().with([](auto& bound_device) -> RefPtr<NetworkAdapter> { return bound_device; });
RoutingDecision routing_decision = user_routing_decision ? *user_routing_decision : route_to(peer_address(), local_address(), adapter);
if (routing_decision.is_zero())
return set_so_error(EHOSTUNREACH);
auto ipv4_payload_offset = routing_decision.adapter->ipv4_payload_offset();
bool const has_mss_option = flags == TCPFlags::SYN;
const size_t options_size = has_mss_option ? sizeof(TCPOptionMSS) : 0;
const size_t tcp_header_size = sizeof(TCPPacket) + options_size;
const size_t buffer_size = ipv4_payload_offset + tcp_header_size + payload_size;
auto packet = routing_decision.adapter->acquire_packet_buffer(buffer_size);
if (!packet)
return set_so_error(ENOMEM);
routing_decision.adapter->fill_in_ipv4_header(*packet, local_address(),
routing_decision.next_hop, peer_address(), IPv4Protocol::TCP,
buffer_size - ipv4_payload_offset, type_of_service(), ttl());
memset(packet->buffer->data() + ipv4_payload_offset, 0, sizeof(TCPPacket));
auto& tcp_packet = *(TCPPacket*)(packet->buffer->data() + ipv4_payload_offset);
VERIFY(local_port());
tcp_packet.set_source_port(local_port());
tcp_packet.set_destination_port(peer_port());
tcp_packet.set_window_size(NumericLimits<u16>::max());
tcp_packet.set_sequence_number(m_sequence_number);
tcp_packet.set_data_offset(tcp_header_size / sizeof(u32));
tcp_packet.set_flags(flags);
if (payload) {
if (auto result = payload->read(tcp_packet.payload(), payload_size); result.is_error()) {
routing_decision.adapter->release_packet_buffer(*packet);
return set_so_error(result.release_error());
}
}
if (flags & TCPFlags::ACK) {
m_last_ack_number_sent = m_ack_number;
m_last_ack_sent_time = TimeManagement::the().monotonic_time();
tcp_packet.set_ack_number(m_ack_number);
}
if (flags & TCPFlags::SYN) {
++m_sequence_number;
} else {
m_sequence_number += payload_size;
}
if (has_mss_option) {
u16 mss = routing_decision.adapter->mtu() - sizeof(IPv4Packet) - sizeof(TCPPacket);
TCPOptionMSS mss_option { mss };
VERIFY(packet->buffer->size() >= ipv4_payload_offset + sizeof(TCPPacket) + sizeof(mss_option));
memcpy(packet->buffer->data() + ipv4_payload_offset + sizeof(TCPPacket), &mss_option, sizeof(mss_option));
}
tcp_packet.set_checksum(compute_tcp_checksum(local_address(), peer_address(), tcp_packet, payload_size));
bool expect_ack { tcp_packet.has_syn() || payload_size > 0 };
if (expect_ack) {
bool append_failed { false };
m_unacked_packets.with_exclusive([&](auto& unacked_packets) {
auto result = unacked_packets.packets.try_append({ m_sequence_number, packet, ipv4_payload_offset, *routing_decision.adapter });
if (result.is_error()) {
dbgln("TCPSocket: Dropped outbound packet because try_append() failed");
append_failed = true;
return;
}
unacked_packets.size += payload_size;
enqueue_for_retransmit();
});
if (append_failed)
return set_so_error(ENOMEM);
}
m_packets_out++;
m_bytes_out += buffer_size;
routing_decision.adapter->send_packet(packet->bytes());
if (!expect_ack)
routing_decision.adapter->release_packet_buffer(*packet);
return {};
}
void TCPSocket::receive_tcp_packet(TCPPacket const& packet, u16 size)
{
if (packet.has_ack()) {
u32 ack_number = packet.ack_number();
dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket: receive_tcp_packet: {}", ack_number);
int removed = 0;
m_unacked_packets.with_exclusive([&](auto& unacked_packets) {
while (!unacked_packets.packets.is_empty()) {
auto& packet = unacked_packets.packets.first();
dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket: iterate: {}", packet.ack_number);
if (packet.ack_number <= ack_number) {
auto old_adapter = packet.adapter.strong_ref();
if (old_adapter)
old_adapter->release_packet_buffer(*packet.buffer);
TCPPacket& tcp_packet = *(TCPPacket*)(packet.buffer->buffer->data() + packet.ipv4_payload_offset);
if (m_send_window_size != tcp_packet.window_size()) {
m_send_window_size = tcp_packet.window_size();
}
auto payload_size = packet.buffer->buffer->data() + packet.buffer->buffer->size() - (u8*)tcp_packet.payload();
unacked_packets.size -= payload_size;
evaluate_block_conditions();
unacked_packets.packets.take_first();
removed++;
} else {
break;
}
}
if (unacked_packets.packets.is_empty()) {
m_retransmit_attempts = 0;
dequeue_for_retransmit();
}
dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket: receive_tcp_packet acknowledged {} packets", removed);
});
}
m_packets_in++;
m_bytes_in += packet.header_size() + size;
}
bool TCPSocket::should_delay_next_ack() const
{
// FIXME: We don't know the MSS here so make a reasonable guess.
const size_t mss = 1500;
// RFC 1122 says we should send an ACK for every two full-sized segments.
if (m_ack_number >= m_last_ack_number_sent + 2 * mss)
return false;
// RFC 1122 says we should not delay ACKs for more than 500 milliseconds.
if (TimeManagement::the().monotonic_time(TimePrecision::Precise) >= m_last_ack_sent_time + Duration::from_milliseconds(500))
return false;
return true;
}
NetworkOrdered<u16> TCPSocket::compute_tcp_checksum(IPv4Address const& source, IPv4Address const& destination, TCPPacket const& packet, u16 payload_size)
{
union PseudoHeader {
struct [[gnu::packed]] {
IPv4Address source;
IPv4Address destination;
u8 zero;
u8 protocol;
NetworkOrdered<u16> payload_size;
} header;
u16 raw[6];
};
static_assert(sizeof(PseudoHeader) == 12);
Checked<u16> packet_size = packet.header_size();
packet_size += payload_size;
VERIFY(!packet_size.has_overflow());
PseudoHeader pseudo_header { .header = { source, destination, 0, (u8)IPv4Protocol::TCP, packet_size.value() } };
u32 checksum = 0;
auto* raw_pseudo_header = pseudo_header.raw;
for (size_t i = 0; i < sizeof(pseudo_header) / sizeof(u16); ++i) {
checksum += AK::convert_between_host_and_network_endian(raw_pseudo_header[i]);
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
auto* raw_packet = bit_cast<u16*>(&packet);
for (size_t i = 0; i < packet.header_size() / sizeof(u16); ++i) {
checksum += AK::convert_between_host_and_network_endian(raw_packet[i]);
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
VERIFY(packet.data_offset() * 4 == packet.header_size());
auto* raw_payload = bit_cast<u16*>(packet.payload());
for (size_t i = 0; i < payload_size / sizeof(u16); ++i) {
checksum += AK::convert_between_host_and_network_endian(raw_payload[i]);
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
if (payload_size & 1) {
u16 expanded_byte = ((u8 const*)packet.payload())[payload_size - 1] << 8;
checksum += expanded_byte;
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
return ~(checksum & 0xffff);
}
ErrorOr<void> TCPSocket::protocol_bind()
{
dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket::protocol_bind(), local_port() is {}", local_port());
// Check that we do have the address we're trying to bind to.
TRY(m_adapter.with([this](auto& adapter) -> ErrorOr<void> {
if (has_specific_local_address() && !adapter) {
adapter = NetworkingManagement::the().from_ipv4_address(local_address());
if (!adapter)
return set_so_error(EADDRNOTAVAIL);
}
return {};
}));
if (local_port() == 0) {
// Allocate an unused ephemeral port.
constexpr u16 first_ephemeral_port = 32768;
constexpr u16 last_ephemeral_port = 60999;
constexpr u16 ephemeral_port_range_size = last_ephemeral_port - first_ephemeral_port;
u16 first_scan_port = first_ephemeral_port + get_good_random<u16>() % ephemeral_port_range_size;
return sockets_by_tuple().with_exclusive([&](auto& table) -> ErrorOr<void> {
u16 port = first_scan_port;
while (true) {
IPv4SocketTuple proposed_tuple(local_address(), port, peer_address(), peer_port());
auto it = table.find(proposed_tuple);
if (it == table.end()) {
set_local_port(port);
table.set(proposed_tuple, this);
dbgln_if(TCP_SOCKET_DEBUG, "...allocated port {}, tuple {}", port, proposed_tuple.to_string());
return {};
}
++port;
if (port > last_ephemeral_port)
port = first_ephemeral_port;
if (port == first_scan_port)
break;
}
return set_so_error(EADDRINUSE);
});
} else {
// Verify that the user-supplied port is not already used by someone else.
bool ok = sockets_by_tuple().with_exclusive([&](auto& table) -> bool {
if (table.contains(tuple()))
return false;
table.set(tuple(), this);
return true;
});
if (!ok)
return set_so_error(EADDRINUSE);
return {};
}
}
ErrorOr<void> TCPSocket::protocol_listen()
{
set_direction(Direction::Passive);
set_state(State::Listen);
set_setup_state(SetupState::Completed);
return {};
}
ErrorOr<void> TCPSocket::protocol_connect(OpenFileDescription& description)
{
MutexLocker locker(mutex());
auto routing_decision = route_to(peer_address(), local_address());
if (routing_decision.is_zero())
return set_so_error(EHOSTUNREACH);
if (!has_specific_local_address())
set_local_address(routing_decision.adapter->ipv4_address());
TRY(ensure_bound());
m_sequence_number = get_good_random<u32>();
m_ack_number = 0;
set_setup_state(SetupState::InProgress);
TRY(send_tcp_packet(TCPFlags::SYN));
m_state = State::SynSent;
set_role(Role::Connecting);
m_direction = Direction::Outgoing;
evaluate_block_conditions();
if (description.is_blocking()) {
locker.unlock();
auto unblock_flags = Thread::FileBlocker::BlockFlags::None;
if (Thread::current()->block<Thread::ConnectBlocker>({}, description, unblock_flags).was_interrupted())
return set_so_error(EINTR);
locker.lock();
VERIFY(setup_state() == SetupState::Completed);
if (has_error()) { // TODO: check unblock_flags
set_role(Role::None);
if (error() == TCPSocket::Error::RetransmitTimeout)
return set_so_error(ETIMEDOUT);
else
return set_so_error(ECONNREFUSED);
}
return {};
}
return set_so_error(EINPROGRESS);
}
bool TCPSocket::protocol_is_disconnected() const
{
switch (m_state) {
case State::Closed:
case State::CloseWait:
case State::LastAck:
case State::FinWait1:
case State::FinWait2:
case State::Closing:
case State::TimeWait:
return true;
default:
return false;
}
}
void TCPSocket::shut_down_for_writing()
{
if (state() == State::Established) {
dbgln_if(TCP_SOCKET_DEBUG, " Sending FIN from Established and moving into FinWait1");
(void)send_tcp_packet(TCPFlags::FIN | TCPFlags::ACK);
set_state(State::FinWait1);
} else {
dbgln(" Shutting down TCPSocket for writing but not moving to FinWait1 since state is {}", to_string(state()));
}
}
ErrorOr<void> TCPSocket::close()
{
MutexLocker locker(mutex());
auto result = IPv4Socket::close();
if (state() == State::CloseWait) {
dbgln_if(TCP_SOCKET_DEBUG, " Sending FIN from CloseWait and moving into LastAck");
[[maybe_unused]] auto rc = send_tcp_packet(TCPFlags::FIN | TCPFlags::ACK);
set_state(State::LastAck);
}
if (state() != State::Closed && state() != State::Listen)
closing_sockets().with_exclusive([&](auto& table) {
table.set(tuple(), *this);
});
return result;
}
static Singleton<MutexProtected<TCPSocket::RetransmitList>> s_sockets_for_retransmit;
MutexProtected<TCPSocket::RetransmitList>& TCPSocket::sockets_for_retransmit()
{
return *s_sockets_for_retransmit;
}
void TCPSocket::enqueue_for_retransmit()
{
sockets_for_retransmit().with_exclusive([&](auto& list) {
list.append(*this);
});
}
void TCPSocket::dequeue_for_retransmit()
{
sockets_for_retransmit().with_exclusive([&](auto& list) {
list.remove(*this);
});
}
void TCPSocket::retransmit_packets()
{
auto now = TimeManagement::the().monotonic_time();
// RFC6298 says we should have at least one second between retransmits. According to
// RFC1122 we must do exponential backoff - even for SYN packets.
i64 retransmit_interval = 1;
for (decltype(m_retransmit_attempts) i = 0; i < m_retransmit_attempts; i++)
retransmit_interval *= 2;
if (m_last_retransmit_time > now - Duration::from_seconds(retransmit_interval))
return;
dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket({}) handling retransmit", this);
m_last_retransmit_time = now;
++m_retransmit_attempts;
if (m_retransmit_attempts > maximum_retransmits) {
set_state(TCPSocket::State::Closed);
set_error(TCPSocket::Error::RetransmitTimeout);
set_setup_state(Socket::SetupState::Completed);
return;
}
auto adapter = bound_interface().with([](auto& bound_device) -> RefPtr<NetworkAdapter> { return bound_device; });
auto routing_decision = route_to(peer_address(), local_address(), adapter);
if (routing_decision.is_zero())
return;
m_unacked_packets.with_exclusive([&](auto& unacked_packets) {
for (auto& packet : unacked_packets.packets) {
packet.tx_counter++;
if constexpr (TCP_SOCKET_DEBUG) {
auto& tcp_packet = *(const TCPPacket*)(packet.buffer->buffer->data() + packet.ipv4_payload_offset);
dbgln("Sending TCP packet from {}:{} to {}:{} with ({}{}{}{}) seq_no={}, ack_no={}, tx_counter={}",
local_address(), local_port(),
peer_address(), peer_port(),
(tcp_packet.has_syn() ? "SYN " : ""),
(tcp_packet.has_ack() ? "ACK " : ""),
(tcp_packet.has_fin() ? "FIN " : ""),
(tcp_packet.has_rst() ? "RST " : ""),
tcp_packet.sequence_number(),
tcp_packet.ack_number(),
packet.tx_counter);
}
size_t ipv4_payload_offset = routing_decision.adapter->ipv4_payload_offset();
if (ipv4_payload_offset != packet.ipv4_payload_offset) {
// FIXME: Add support for this. This can happen if after a route change
// we ended up on another adapter which doesn't have the same layer 2 type
// like the previous adapter.
VERIFY_NOT_REACHED();
}
auto packet_buffer = packet.buffer->bytes();
routing_decision.adapter->fill_in_ipv4_header(*packet.buffer,
local_address(), routing_decision.next_hop, peer_address(),
IPv4Protocol::TCP, packet_buffer.size() - ipv4_payload_offset, type_of_service(), ttl());
routing_decision.adapter->send_packet(packet_buffer);
m_packets_out++;
m_bytes_out += packet_buffer.size();
}
});
}
bool TCPSocket::can_write(OpenFileDescription const& file_description, u64 size) const
{
if (!IPv4Socket::can_write(file_description, size))
return false;
if (m_state == State::SynSent || m_state == State::SynReceived)
return false;
if (!file_description.is_blocking())
return true;
return m_unacked_packets.with_shared([&](auto& unacked_packets) {
return unacked_packets.size + size <= m_send_window_size;
});
}
}