1
0
mirror of https://github.com/SerenityOS/serenity synced 2024-07-09 11:00:46 +00:00
serenity/AK/HashTable.h
Timothy Flynn 4f5353cbb8 AK: Rename double_hash to rehash_for_collision
The name is currently quite confusing as it indicates it hashes doubles.
2023-01-21 10:36:14 +01:00

750 lines
24 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Error.h>
#include <AK/Forward.h>
#include <AK/HashFunctions.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
namespace AK {
enum class HashSetResult {
InsertedNewEntry,
ReplacedExistingEntry,
KeptExistingEntry
};
enum class HashSetExistingEntryBehavior {
Keep,
Replace
};
// Upper nibble determines state class:
// - 0: unused bucket
// - 1: used bucket
// - F: end bucket
// Lower nibble determines state within a class.
enum class BucketState : u8 {
Free = 0x00,
Used = 0x10,
Deleted = 0x01,
Rehashed = 0x12,
End = 0xFF,
};
// Note that because there's the end state, used and free are not 100% opposites!
constexpr bool is_used_bucket(BucketState state)
{
return (static_cast<u8>(state) & 0xf0) == 0x10;
}
constexpr bool is_free_bucket(BucketState state)
{
return (static_cast<u8>(state) & 0xf0) == 0x00;
}
template<typename HashTableType, typename T, typename BucketType>
class HashTableIterator {
friend HashTableType;
public:
bool operator==(HashTableIterator const& other) const { return m_bucket == other.m_bucket; }
bool operator!=(HashTableIterator const& other) const { return m_bucket != other.m_bucket; }
T& operator*() { return *m_bucket->slot(); }
T* operator->() { return m_bucket->slot(); }
void operator++() { skip_to_next(); }
private:
void skip_to_next()
{
if (!m_bucket)
return;
do {
++m_bucket;
if (m_bucket->state == BucketState::Used)
return;
} while (m_bucket->state != BucketState::End);
if (m_bucket->state == BucketState::End)
m_bucket = nullptr;
}
explicit HashTableIterator(BucketType* bucket)
: m_bucket(bucket)
{
}
BucketType* m_bucket { nullptr };
};
template<typename OrderedHashTableType, typename T, typename BucketType>
class OrderedHashTableIterator {
friend OrderedHashTableType;
public:
bool operator==(OrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
bool operator!=(OrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
T& operator*() { return *m_bucket->slot(); }
T* operator->() { return m_bucket->slot(); }
void operator++() { m_bucket = m_bucket->next; }
void operator--() { m_bucket = m_bucket->previous; }
private:
explicit OrderedHashTableIterator(BucketType* bucket)
: m_bucket(bucket)
{
}
BucketType* m_bucket { nullptr };
};
template<typename T, typename TraitsForT, bool IsOrdered>
class HashTable {
static constexpr size_t load_factor_in_percent = 60;
struct Bucket {
BucketState state;
alignas(T) u8 storage[sizeof(T)];
T* slot() { return reinterpret_cast<T*>(storage); }
T const* slot() const { return reinterpret_cast<T const*>(storage); }
};
struct OrderedBucket {
OrderedBucket* previous;
OrderedBucket* next;
BucketState state;
alignas(T) u8 storage[sizeof(T)];
T* slot() { return reinterpret_cast<T*>(storage); }
T const* slot() const { return reinterpret_cast<T const*>(storage); }
};
using BucketType = Conditional<IsOrdered, OrderedBucket, Bucket>;
struct CollectionData {
};
struct OrderedCollectionData {
BucketType* head { nullptr };
BucketType* tail { nullptr };
};
using CollectionDataType = Conditional<IsOrdered, OrderedCollectionData, CollectionData>;
public:
HashTable() = default;
explicit HashTable(size_t capacity) { rehash(capacity); }
~HashTable()
{
if (!m_buckets)
return;
for (size_t i = 0; i < m_capacity; ++i) {
if (is_used_bucket(m_buckets[i].state))
m_buckets[i].slot()->~T();
}
kfree_sized(m_buckets, size_in_bytes(m_capacity));
}
HashTable(HashTable const& other)
{
rehash(other.capacity());
for (auto& it : other)
set(it);
}
HashTable& operator=(HashTable const& other)
{
HashTable temporary(other);
swap(*this, temporary);
return *this;
}
HashTable(HashTable&& other) noexcept
: m_buckets(other.m_buckets)
, m_collection_data(other.m_collection_data)
, m_size(other.m_size)
, m_capacity(other.m_capacity)
, m_deleted_count(other.m_deleted_count)
{
other.m_size = 0;
other.m_capacity = 0;
other.m_deleted_count = 0;
other.m_buckets = nullptr;
if constexpr (IsOrdered)
other.m_collection_data = { nullptr, nullptr };
}
HashTable& operator=(HashTable&& other) noexcept
{
HashTable temporary { move(other) };
swap(*this, temporary);
return *this;
}
friend void swap(HashTable& a, HashTable& b) noexcept
{
swap(a.m_buckets, b.m_buckets);
swap(a.m_size, b.m_size);
swap(a.m_capacity, b.m_capacity);
swap(a.m_deleted_count, b.m_deleted_count);
if constexpr (IsOrdered)
swap(a.m_collection_data, b.m_collection_data);
}
[[nodiscard]] bool is_empty() const { return m_size == 0; }
[[nodiscard]] size_t size() const { return m_size; }
[[nodiscard]] size_t capacity() const { return m_capacity; }
template<typename U, size_t N>
ErrorOr<void> try_set_from(U (&from_array)[N])
{
for (size_t i = 0; i < N; ++i)
TRY(try_set(from_array[i]));
return {};
}
template<typename U, size_t N>
void set_from(U (&from_array)[N])
{
MUST(try_set_from(from_array));
}
void ensure_capacity(size_t capacity)
{
VERIFY(capacity >= size());
rehash(capacity * 2);
}
ErrorOr<void> try_ensure_capacity(size_t capacity)
{
VERIFY(capacity >= size());
return try_rehash(capacity * 2);
}
[[nodiscard]] bool contains(T const& value) const
{
return find(value) != end();
}
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] bool contains(K const& value) const
{
return find(value) != end();
}
using Iterator = Conditional<IsOrdered,
OrderedHashTableIterator<HashTable, T, BucketType>,
HashTableIterator<HashTable, T, BucketType>>;
[[nodiscard]] Iterator begin()
{
if constexpr (IsOrdered)
return Iterator(m_collection_data.head);
for (size_t i = 0; i < m_capacity; ++i) {
if (is_used_bucket(m_buckets[i].state))
return Iterator(&m_buckets[i]);
}
return end();
}
[[nodiscard]] Iterator end()
{
return Iterator(nullptr);
}
using ConstIterator = Conditional<IsOrdered,
OrderedHashTableIterator<const HashTable, const T, BucketType const>,
HashTableIterator<const HashTable, const T, BucketType const>>;
[[nodiscard]] ConstIterator begin() const
{
if constexpr (IsOrdered)
return ConstIterator(m_collection_data.head);
for (size_t i = 0; i < m_capacity; ++i) {
if (is_used_bucket(m_buckets[i].state))
return ConstIterator(&m_buckets[i]);
}
return end();
}
[[nodiscard]] ConstIterator end() const
{
return ConstIterator(nullptr);
}
void clear()
{
*this = HashTable();
}
void clear_with_capacity()
{
if (m_capacity == 0)
return;
if constexpr (!IsTriviallyDestructible<T>) {
for (auto* bucket : *this)
bucket->~T();
}
__builtin_memset(m_buckets, 0, size_in_bytes(capacity()));
m_size = 0;
m_deleted_count = 0;
if constexpr (IsOrdered)
m_collection_data = { nullptr, nullptr };
else
m_buckets[m_capacity].state = BucketState::End;
}
template<typename U = T>
ErrorOr<HashSetResult> try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
{
auto* bucket = TRY(try_lookup_for_writing(value));
if (is_used_bucket(bucket->state)) {
if (existing_entry_behavior == HashSetExistingEntryBehavior::Keep)
return HashSetResult::KeptExistingEntry;
(*bucket->slot()) = forward<U>(value);
return HashSetResult::ReplacedExistingEntry;
}
new (bucket->slot()) T(forward<U>(value));
if (bucket->state == BucketState::Deleted)
--m_deleted_count;
bucket->state = BucketState::Used;
if constexpr (IsOrdered) {
if (!m_collection_data.head) [[unlikely]] {
m_collection_data.head = bucket;
} else {
bucket->previous = m_collection_data.tail;
m_collection_data.tail->next = bucket;
}
m_collection_data.tail = bucket;
}
++m_size;
return HashSetResult::InsertedNewEntry;
}
template<typename U = T>
HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behaviour = HashSetExistingEntryBehavior::Replace)
{
return MUST(try_set(forward<U>(value), existing_entry_behaviour));
}
template<typename TUnaryPredicate>
[[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate)
{
return Iterator(lookup_with_hash(hash, move(predicate)));
}
[[nodiscard]] Iterator find(T const& value)
{
return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
}
template<typename TUnaryPredicate>
[[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const
{
return ConstIterator(lookup_with_hash(hash, move(predicate)));
}
[[nodiscard]] ConstIterator find(T const& value) const
{
return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
}
// FIXME: Support for predicates, while guaranteeing that the predicate call
// does not call a non trivial constructor each time invoked
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value)
{
return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
}
template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate)
{
return find(Traits<K>::hash(value), move(predicate));
}
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value) const
{
return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
}
template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const
{
return find(Traits<K>::hash(value), move(predicate));
}
bool remove(T const& value)
{
auto it = find(value);
if (it != end()) {
remove(it);
return true;
}
return false;
}
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) bool remove(K const& value)
{
auto it = find(value);
if (it != end()) {
remove(it);
return true;
}
return false;
}
void remove(Iterator iterator)
{
VERIFY(iterator.m_bucket);
auto& bucket = *iterator.m_bucket;
VERIFY(is_used_bucket(bucket.state));
delete_bucket(bucket);
--m_size;
++m_deleted_count;
rehash_in_place_if_needed();
}
template<typename TUnaryPredicate>
bool remove_all_matching(TUnaryPredicate const& predicate)
{
size_t removed_count = 0;
for (size_t i = 0; i < m_capacity; ++i) {
auto& bucket = m_buckets[i];
if (is_used_bucket(bucket.state) && predicate(*bucket.slot())) {
delete_bucket(bucket);
++removed_count;
}
}
if (removed_count) {
m_deleted_count += removed_count;
m_size -= removed_count;
}
rehash_in_place_if_needed();
return removed_count;
}
T pop()
{
VERIFY(!is_empty());
T element;
if constexpr (IsOrdered) {
element = *m_collection_data.tail->slot();
} else {
for (size_t i = 0; i < m_capacity; ++i) {
if (is_used_bucket(m_buckets[i].state)) {
element = *m_buckets[i].slot();
break;
}
}
}
remove(element);
return element;
}
private:
void insert_during_rehash(T&& value)
{
auto& bucket = lookup_for_writing(value);
new (bucket.slot()) T(move(value));
bucket.state = BucketState::Used;
if constexpr (IsOrdered) {
if (!m_collection_data.head) [[unlikely]] {
m_collection_data.head = &bucket;
} else {
bucket.previous = m_collection_data.tail;
m_collection_data.tail->next = &bucket;
}
m_collection_data.tail = &bucket;
}
}
[[nodiscard]] static constexpr size_t size_in_bytes(size_t capacity)
{
if constexpr (IsOrdered) {
return sizeof(BucketType) * capacity;
} else {
return sizeof(BucketType) * (capacity + 1);
}
}
ErrorOr<void> try_rehash(size_t new_capacity)
{
if (new_capacity == m_capacity && new_capacity >= 4) {
rehash_in_place();
return {};
}
new_capacity = max(new_capacity, static_cast<size_t>(4));
new_capacity = kmalloc_good_size(new_capacity * sizeof(BucketType)) / sizeof(BucketType);
auto* old_buckets = m_buckets;
auto old_capacity = m_capacity;
Iterator old_iter = begin();
auto* new_buckets = kcalloc(1, size_in_bytes(new_capacity));
if (!new_buckets)
return Error::from_errno(ENOMEM);
m_buckets = (BucketType*)new_buckets;
m_capacity = new_capacity;
m_deleted_count = 0;
if constexpr (IsOrdered)
m_collection_data = { nullptr, nullptr };
else
m_buckets[m_capacity].state = BucketState::End;
if (!old_buckets)
return {};
for (auto it = move(old_iter); it != end(); ++it) {
insert_during_rehash(move(*it));
it->~T();
}
kfree_sized(old_buckets, size_in_bytes(old_capacity));
return {};
}
void rehash(size_t new_capacity)
{
MUST(try_rehash(new_capacity));
}
void rehash_in_place()
{
// FIXME: This implementation takes two loops over the entire bucket array, but avoids re-allocation.
// Please benchmark your new implementation before you replace this.
// The reason is that because of collisions, we use the special "rehashed" bucket state to mark already-rehashed used buckets.
// Because we of course want to write into old used buckets, but already rehashed data shall not be touched.
// FIXME: Find a way to reduce the cognitive complexity of this function.
for (size_t i = 0; i < m_capacity; ++i) {
auto& bucket = m_buckets[i];
// FIXME: Bail out when we have handled every filled bucket.
if (bucket.state == BucketState::Rehashed || bucket.state == BucketState::End || bucket.state == BucketState::Free)
continue;
if (bucket.state == BucketState::Deleted) {
bucket.state = BucketState::Free;
continue;
}
auto const new_hash = TraitsForT::hash(*bucket.slot());
if (new_hash % m_capacity == i) {
bucket.state = BucketState::Rehashed;
continue;
}
auto target_hash = new_hash;
auto const to_move_hash = i;
BucketType* target_bucket = &m_buckets[target_hash % m_capacity];
BucketType* bucket_to_move = &m_buckets[i];
// Try to move the bucket to move into its correct spot.
// During the procedure, we might re-hash or actually change the bucket to move.
while (!is_free_bucket(bucket_to_move->state)) {
// If we're targeting ourselves, there's nothing to do.
if (to_move_hash == target_hash % m_capacity) {
bucket_to_move->state = BucketState::Rehashed;
break;
}
if (is_free_bucket(target_bucket->state)) {
// We can just overwrite the target bucket and bail out.
new (target_bucket->slot()) T(move(*bucket_to_move->slot()));
target_bucket->state = BucketState::Rehashed;
bucket_to_move->state = BucketState::Free;
if constexpr (IsOrdered) {
swap(bucket_to_move->previous, target_bucket->previous);
swap(bucket_to_move->next, target_bucket->next);
if (target_bucket->previous)
target_bucket->previous->next = target_bucket;
else
m_collection_data.head = target_bucket;
if (target_bucket->next)
target_bucket->next->previous = target_bucket;
else
m_collection_data.tail = target_bucket;
}
} else if (target_bucket->state == BucketState::Rehashed) {
// If the target bucket is already re-hashed, we do normal probing.
target_hash = rehash_for_collision(target_hash);
target_bucket = &m_buckets[target_hash % m_capacity];
} else {
VERIFY(target_bucket->state != BucketState::End);
// The target bucket is a used bucket that hasn't been re-hashed.
// Swap the data into the target; now the target's data resides in the bucket to move again.
// (That's of course what we want, how neat!)
swap(*bucket_to_move->slot(), *target_bucket->slot());
bucket_to_move->state = target_bucket->state;
target_bucket->state = BucketState::Rehashed;
if constexpr (IsOrdered) {
// Update state for the target bucket, we'll do the bucket to move later.
swap(bucket_to_move->previous, target_bucket->previous);
swap(bucket_to_move->next, target_bucket->next);
if (target_bucket->previous)
target_bucket->previous->next = target_bucket;
else
m_collection_data.head = target_bucket;
if (target_bucket->next)
target_bucket->next->previous = target_bucket;
else
m_collection_data.tail = target_bucket;
}
target_hash = TraitsForT::hash(*bucket_to_move->slot());
target_bucket = &m_buckets[target_hash % m_capacity];
// The data is already in the correct location: Adjust the pointers
if (target_hash % m_capacity == to_move_hash) {
bucket_to_move->state = BucketState::Rehashed;
if constexpr (IsOrdered) {
// Update state for the bucket to move as it's not actually moved anymore.
if (bucket_to_move->previous)
bucket_to_move->previous->next = bucket_to_move;
else
m_collection_data.head = bucket_to_move;
if (bucket_to_move->next)
bucket_to_move->next->previous = bucket_to_move;
else
m_collection_data.tail = bucket_to_move;
}
break;
}
}
}
// After this, the bucket_to_move either contains data that rehashes to itself, or it contains nothing as we were able to move the last thing.
if (bucket_to_move->state == BucketState::Deleted)
bucket_to_move->state = BucketState::Free;
}
for (size_t i = 0; i < m_capacity; ++i) {
if (m_buckets[i].state == BucketState::Rehashed)
m_buckets[i].state = BucketState::Used;
}
m_deleted_count = 0;
}
void rehash_in_place_if_needed()
{
// This signals a "thrashed" hash table with many deleted slots.
if (m_deleted_count >= m_size && should_grow())
rehash_in_place();
}
template<typename TUnaryPredicate>
[[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const
{
if (is_empty())
return nullptr;
for (;;) {
auto& bucket = m_buckets[hash % m_capacity];
if (is_used_bucket(bucket.state) && predicate(*bucket.slot()))
return &bucket;
if (bucket.state != BucketState::Used && bucket.state != BucketState::Deleted)
return nullptr;
hash = rehash_for_collision(hash);
}
}
ErrorOr<BucketType*> try_lookup_for_writing(T const& value)
{
// FIXME: Maybe overrun the "allowed" load factor to avoid OOM
// If we are allowed to do that, separate that logic from
// the normal lookup_for_writing
if (should_grow())
TRY(try_rehash(capacity() * 2));
auto hash = TraitsForT::hash(value);
BucketType* first_empty_bucket = nullptr;
for (;;) {
auto& bucket = m_buckets[hash % m_capacity];
if (is_used_bucket(bucket.state) && TraitsForT::equals(*bucket.slot(), value))
return &bucket;
if (!is_used_bucket(bucket.state)) {
if (!first_empty_bucket)
first_empty_bucket = &bucket;
if (bucket.state != BucketState::Deleted)
return const_cast<BucketType*>(first_empty_bucket);
}
hash = rehash_for_collision(hash);
}
}
[[nodiscard]] BucketType& lookup_for_writing(T const& value)
{
return *MUST(try_lookup_for_writing(value));
}
[[nodiscard]] size_t used_bucket_count() const { return m_size + m_deleted_count; }
[[nodiscard]] bool should_grow() const { return ((used_bucket_count() + 1) * 100) >= (m_capacity * load_factor_in_percent); }
void delete_bucket(auto& bucket)
{
bucket.slot()->~T();
bucket.state = BucketState::Deleted;
if constexpr (IsOrdered) {
if (bucket.previous)
bucket.previous->next = bucket.next;
else
m_collection_data.head = bucket.next;
if (bucket.next)
bucket.next->previous = bucket.previous;
else
m_collection_data.tail = bucket.previous;
bucket.previous = nullptr;
bucket.next = nullptr;
}
}
BucketType* m_buckets { nullptr };
[[no_unique_address]] CollectionDataType m_collection_data;
size_t m_size { 0 };
size_t m_capacity { 0 };
size_t m_deleted_count { 0 };
};
}
#if USING_AK_GLOBALLY
using AK::HashSetResult;
using AK::HashTable;
using AK::OrderedHashTable;
#endif