serenity/Kernel/Heap/SlabAllocator.cpp
Nico Weber 430b265cd4 AK: Rename KB, MB, GB to KiB, MiB, GiB
The SI prefixes "k", "M", "G" mean "10^3", "10^6", "10^9".
The IEC prefixes "Ki", "Mi", "Gi" mean "2^10", "2^20", "2^30".

Let's use the correct name, at least in code.

Only changes the name of the constants, no other behavior change.
2020-08-16 16:33:28 +02:00

171 lines
5.5 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/SpinLock.h>
#include <Kernel/VM/Region.h>
#define SANITIZE_SLABS
namespace Kernel {
template<size_t templated_slab_size>
class SlabAllocator {
public:
SlabAllocator() {}
void init(size_t size)
{
m_base = kmalloc_eternal(size);
m_end = (u8*)m_base + size;
FreeSlab* slabs = (FreeSlab*)m_base;
size_t slab_count = size / templated_slab_size;
for (size_t i = 1; i < slab_count; ++i) {
slabs[i].next = &slabs[i - 1];
}
slabs[0].next = nullptr;
m_freelist = &slabs[slab_count - 1];
m_num_allocated.store(0, AK::MemoryOrder::memory_order_release);
m_num_free.store(slab_count, AK::MemoryOrder::memory_order_release);
}
constexpr size_t slab_size() const { return templated_slab_size; }
void* alloc()
{
ScopedSpinLock lock(m_lock);
if (!m_freelist)
return kmalloc(slab_size());
ASSERT(m_freelist);
void* ptr = m_freelist;
m_freelist = m_freelist->next;
m_num_allocated.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
m_num_free.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
#ifdef SANITIZE_SLABS
memset(ptr, SLAB_ALLOC_SCRUB_BYTE, slab_size());
#endif
return ptr;
}
void dealloc(void* ptr)
{
ScopedSpinLock lock(m_lock);
ASSERT(ptr);
if (ptr < m_base || ptr >= m_end) {
kfree(ptr);
return;
}
((FreeSlab*)ptr)->next = m_freelist;
#ifdef SANITIZE_SLABS
if (slab_size() > sizeof(FreeSlab*))
memset(((FreeSlab*)ptr)->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
#endif
m_freelist = (FreeSlab*)ptr;
m_num_allocated.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
m_num_free.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
size_t num_allocated() const { return m_num_allocated.load(AK::MemoryOrder::memory_order_consume); }
size_t num_free() const { return m_num_free.load(AK::MemoryOrder::memory_order_consume); }
private:
struct FreeSlab {
FreeSlab* next { nullptr };
char padding[templated_slab_size - sizeof(FreeSlab*)];
};
FreeSlab* m_freelist { nullptr };
Atomic<size_t> m_num_allocated;
Atomic<size_t> m_num_free;
void* m_base { nullptr };
void* m_end { nullptr };
SpinLock<u32> m_lock;
static_assert(sizeof(FreeSlab) == templated_slab_size);
};
static SlabAllocator<16> s_slab_allocator_16;
static SlabAllocator<32> s_slab_allocator_32;
static SlabAllocator<64> s_slab_allocator_64;
static SlabAllocator<128> s_slab_allocator_128;
static_assert(sizeof(Region) <= s_slab_allocator_64.slab_size());
template<typename Callback>
void for_each_allocator(Callback callback)
{
callback(s_slab_allocator_16);
callback(s_slab_allocator_32);
callback(s_slab_allocator_64);
callback(s_slab_allocator_128);
}
void slab_alloc_init()
{
s_slab_allocator_16.init(128 * KiB);
s_slab_allocator_32.init(128 * KiB);
s_slab_allocator_64.init(512 * KiB);
s_slab_allocator_128.init(512 * KiB);
}
void* slab_alloc(size_t slab_size)
{
if (slab_size <= 16)
return s_slab_allocator_16.alloc();
if (slab_size <= 32)
return s_slab_allocator_32.alloc();
if (slab_size <= 64)
return s_slab_allocator_64.alloc();
if (slab_size <= 128)
return s_slab_allocator_128.alloc();
ASSERT_NOT_REACHED();
}
void slab_dealloc(void* ptr, size_t slab_size)
{
if (slab_size <= 16)
return s_slab_allocator_16.dealloc(ptr);
if (slab_size <= 32)
return s_slab_allocator_32.dealloc(ptr);
if (slab_size <= 64)
return s_slab_allocator_64.dealloc(ptr);
if (slab_size <= 128)
return s_slab_allocator_128.dealloc(ptr);
ASSERT_NOT_REACHED();
}
void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
{
for_each_allocator([&](auto& allocator) {
callback(allocator.slab_size(), allocator.num_allocated(), allocator.num_free());
});
}
}