serenity/AK/Buffered.h
kleines Filmröllchen d5dce448ea AK: Bypass Buffered's buffer for large reads
Before, if we couldn't read enough data out of the buffer, we would re-
fill the buffer and recursively call read(), which in turn reads data
from the buffer into the resliced target span. This incurs very
intensive superflous memmove's when large chunks of data are read from
a buffered stream.

This commit changes the behavior so that when we exhaust the buffer, we
first read any necessary additional data directly into the target, then
fill up the buffer again. Effectively, this results in drastically
reduced overhead from Buffered when reading large contiguous chunks.
Of course, Buffered is designed to speed up data access patterns with
small frequent reads, but it's nice to be able to combine both access
patterns on one stream without penalties either way.

The final performance gain is about an additional 80% of abench decoding
speed.
2021-12-17 13:13:00 -08:00

199 lines
5.4 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Noncopyable.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/Stream.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
namespace AK {
// FIXME: Implement Buffered<T> for DuplexStream.
template<typename StreamType, size_t Size = 4096, typename = void>
class Buffered;
template<typename StreamType, size_t Size>
class Buffered<StreamType, Size, typename EnableIf<IsBaseOf<InputStream, StreamType>>::Type> final : public InputStream {
AK_MAKE_NONCOPYABLE(Buffered);
public:
template<typename... Parameters>
explicit Buffered(Parameters&&... parameters)
: m_stream(forward<Parameters>(parameters)...)
{
}
Buffered(Buffered&& other)
: m_stream(move(other.m_stream))
{
other.buffer().copy_to(buffer());
m_buffered = exchange(other.m_buffered, 0);
}
bool has_recoverable_error() const override { return m_stream.has_recoverable_error(); }
bool has_fatal_error() const override { return m_stream.has_fatal_error(); }
bool has_any_error() const override { return m_stream.has_any_error(); }
bool handle_recoverable_error() override { return m_stream.handle_recoverable_error(); }
bool handle_fatal_error() override { return m_stream.handle_fatal_error(); }
bool handle_any_error() override { return m_stream.handle_any_error(); }
void set_recoverable_error() const override { return m_stream.set_recoverable_error(); }
void set_fatal_error() const override { return m_stream.set_fatal_error(); }
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
auto nread = buffer().trim(m_buffered).copy_trimmed_to(bytes);
m_buffered -= nread;
if (m_buffered > 0)
buffer().slice(nread, m_buffered).copy_to(buffer());
if (nread < bytes.size()) {
nread += m_stream.read(bytes.slice(nread));
m_buffered = m_stream.read(buffer());
}
return nread;
}
bool read_or_error(Bytes bytes) override
{
if (read(bytes) < bytes.size()) {
set_fatal_error();
return false;
}
return true;
}
bool unreliable_eof() const override { return m_buffered == 0 && m_stream.unreliable_eof(); }
bool eof() const
{
if (m_buffered > 0)
return false;
m_buffered = m_stream.read(buffer());
return m_buffered == 0;
}
bool discard_or_error(size_t count) override
{
size_t ndiscarded = 0;
while (ndiscarded < count) {
u8 dummy[Size];
if (!read_or_error({ dummy, min(Size, count - ndiscarded) }))
return false;
ndiscarded += min(Size, count - ndiscarded);
}
return true;
}
size_t buffered() const { return m_buffered; }
// Reading from the stream returned here will most definitely brick the buffering behavior of Buffered.
StreamType& underlying_stream() { return m_stream; }
private:
Bytes buffer() const { return { m_buffer, Size }; }
mutable StreamType m_stream;
mutable u8 m_buffer[Size];
mutable size_t m_buffered { 0 };
};
template<typename StreamType, size_t Size>
class Buffered<StreamType, Size, typename EnableIf<IsBaseOf<OutputStream, StreamType>>::Type> final : public OutputStream {
AK_MAKE_NONCOPYABLE(Buffered);
public:
template<typename... Parameters>
explicit Buffered(Parameters&&... parameters)
: m_stream(forward<Parameters>(parameters)...)
{
}
Buffered(Buffered&& other)
: m_stream(move(other.m_stream))
{
other.buffer().copy_to(buffer());
m_buffered = exchange(other.m_buffered, 0);
}
~Buffered()
{
if (m_buffered > 0)
flush();
}
bool has_recoverable_error() const override { return m_stream.has_recoverable_error(); }
bool has_fatal_error() const override { return m_stream.has_fatal_error(); }
bool has_any_error() const override { return m_stream.has_any_error(); }
bool handle_recoverable_error() override { return m_stream.handle_recoverable_error(); }
bool handle_fatal_error() override { return m_stream.handle_fatal_error(); }
bool handle_any_error() override { return m_stream.handle_any_error(); }
void set_recoverable_error() const override { return m_stream.set_recoverable_error(); }
void set_fatal_error() const override { return m_stream.set_fatal_error(); }
size_t write(ReadonlyBytes bytes) override
{
if (has_any_error())
return 0;
auto nwritten = bytes.copy_trimmed_to(buffer().slice(m_buffered));
m_buffered += nwritten;
if (m_buffered == Size) {
flush();
if (bytes.size() - nwritten >= Size)
nwritten += m_stream.write(bytes.slice(nwritten));
nwritten += write(bytes.slice(nwritten));
}
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
write(bytes);
return true;
}
void flush()
{
m_stream.write_or_error({ m_buffer, m_buffered });
m_buffered = 0;
}
private:
Bytes buffer() { return { m_buffer, Size }; }
StreamType m_stream;
u8 m_buffer[Size];
size_t m_buffered { 0 };
};
}
using AK::Buffered;