1
0
mirror of https://github.com/SerenityOS/serenity synced 2024-07-09 13:30:45 +00:00
serenity/AK/Span.h
Andrew Kaster bbdf766fb0 AK: Add helpers to convert arbitrary Spans to {Readonly}Bytes
The streams and other common APIs require byte spans to operate on
arbitrary data. This is less than helpful when wanting to serialize
spans of other data types, such as from an Array or Vector of u32s.
2023-11-24 08:41:38 +01:00

349 lines
8.7 KiB
C++

/*
* Copyright (c) 2020-2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/Assertions.h>
#include <AK/Iterator.h>
#include <AK/TypedTransfer.h>
#include <AK/Types.h>
namespace AK {
namespace Detail {
template<typename T>
class Span {
public:
ALWAYS_INLINE constexpr Span() = default;
ALWAYS_INLINE constexpr Span(T* values, size_t size)
: m_values(values)
, m_size(size)
{
}
template<size_t size>
ALWAYS_INLINE constexpr Span(T (&values)[size])
: m_values(values)
, m_size(size)
{
}
template<size_t size>
ALWAYS_INLINE constexpr Span(Array<T, size>& array)
: m_values(array.data())
, m_size(size)
{
}
template<size_t size>
requires(IsConst<T>)
ALWAYS_INLINE constexpr Span(Array<T, size> const& array)
: m_values(array.data())
, m_size(size)
{
}
protected:
T* m_values { nullptr };
size_t m_size { 0 };
};
template<>
class Span<u8> {
public:
ALWAYS_INLINE constexpr Span() = default;
ALWAYS_INLINE constexpr Span(u8* values, size_t size)
: m_values(values)
, m_size(size)
{
}
ALWAYS_INLINE Span(void* values, size_t size)
: m_values(reinterpret_cast<u8*>(values))
, m_size(size)
{
}
template<size_t size>
ALWAYS_INLINE constexpr Span(u8 (&values)[size])
: m_values(values)
, m_size(size)
{
}
protected:
u8* m_values { nullptr };
size_t m_size { 0 };
};
template<>
class Span<u8 const> {
public:
ALWAYS_INLINE constexpr Span() = default;
ALWAYS_INLINE constexpr Span(u8 const* values, size_t size)
: m_values(values)
, m_size(size)
{
}
ALWAYS_INLINE Span(void const* values, size_t size)
: m_values(reinterpret_cast<u8 const*>(values))
, m_size(size)
{
}
ALWAYS_INLINE Span(char const* values, size_t size)
: m_values(reinterpret_cast<u8 const*>(values))
, m_size(size)
{
}
template<size_t size>
ALWAYS_INLINE constexpr Span(u8 const (&values)[size])
: m_values(values)
, m_size(size)
{
}
protected:
u8 const* m_values { nullptr };
size_t m_size { 0 };
};
}
template<typename T>
class Span : public Detail::Span<T> {
public:
using Detail::Span<T>::Span;
constexpr Span() = default;
[[nodiscard]] ALWAYS_INLINE constexpr T const* data() const { return this->m_values; }
[[nodiscard]] ALWAYS_INLINE constexpr T* data() { return this->m_values; }
[[nodiscard]] ALWAYS_INLINE constexpr T const* offset_pointer(size_t offset) const { return this->m_values + offset; }
[[nodiscard]] ALWAYS_INLINE constexpr T* offset_pointer(size_t offset) { return this->m_values + offset; }
using ConstIterator = SimpleIterator<Span const, T const>;
using Iterator = SimpleIterator<Span, T>;
constexpr ConstIterator begin() const { return ConstIterator::begin(*this); }
constexpr Iterator begin() { return Iterator::begin(*this); }
constexpr ConstIterator end() const { return ConstIterator::end(*this); }
constexpr Iterator end() { return Iterator::end(*this); }
[[nodiscard]] ALWAYS_INLINE constexpr size_t size() const { return this->m_size; }
[[nodiscard]] ALWAYS_INLINE constexpr bool is_null() const { return this->m_values == nullptr; }
[[nodiscard]] ALWAYS_INLINE constexpr bool is_empty() const { return this->m_size == 0; }
[[nodiscard]] ALWAYS_INLINE constexpr Span slice(size_t start, size_t length) const
{
VERIFY(start + length <= size());
return { this->m_values + start, length };
}
[[nodiscard]] ALWAYS_INLINE constexpr Span slice(size_t start) const
{
VERIFY(start <= size());
return { this->m_values + start, size() - start };
}
[[nodiscard]] ALWAYS_INLINE constexpr Span slice_from_end(size_t count) const
{
VERIFY(count <= size());
return { this->m_values + size() - count, count };
}
[[nodiscard]] ALWAYS_INLINE constexpr Span trim(size_t length) const
{
return { this->m_values, min(size(), length) };
}
[[nodiscard]] Span align_to(size_t alignment) const
{
auto* start = reinterpret_cast<T*>(align_up_to((FlatPtr)data(), alignment));
auto* end = reinterpret_cast<T*>(align_down_to((FlatPtr)(data() + size()), alignment));
if (end < start)
return {};
size_t length = end - start;
return { start, length };
}
[[nodiscard]] ALWAYS_INLINE constexpr T* offset(size_t start) const
{
VERIFY(start < this->m_size);
return this->m_values + start;
}
ALWAYS_INLINE constexpr void overwrite(size_t offset, void const* data, size_t data_size)
{
// make sure we're not told to write past the end
VERIFY(offset + data_size <= size());
__builtin_memmove(this->data() + offset, data, data_size);
}
ALWAYS_INLINE constexpr size_t copy_to(Span<RemoveConst<T>> other) const
{
VERIFY(other.size() >= size());
return TypedTransfer<RemoveConst<T>>::copy(other.data(), data(), size());
}
ALWAYS_INLINE constexpr size_t copy_trimmed_to(Span<RemoveConst<T>> other) const
{
auto const count = min(size(), other.size());
return TypedTransfer<RemoveConst<T>>::copy(other.data(), data(), count);
}
ALWAYS_INLINE constexpr size_t fill(T const& value)
{
for (size_t idx = 0; idx < size(); ++idx)
data()[idx] = value;
return size();
}
[[nodiscard]] bool constexpr contains_slow(T const& value) const
{
for (size_t i = 0; i < size(); ++i) {
if (at(i) == value)
return true;
}
return false;
}
[[nodiscard]] bool constexpr starts_with(ReadonlySpan<T> other) const
{
if (size() < other.size())
return false;
return TypedTransfer<T>::compare(data(), other.data(), other.size());
}
[[nodiscard]] size_t constexpr matching_prefix_length(ReadonlySpan<T> other) const
{
auto maximum_length = min(size(), other.size());
for (size_t i = 0; i < maximum_length; i++) {
if (data()[i] != other.data()[i])
return i;
}
return maximum_length;
}
[[nodiscard]] ALWAYS_INLINE constexpr T const& at(size_t index) const
{
VERIFY(index < this->m_size);
return this->m_values[index];
}
[[nodiscard]] ALWAYS_INLINE constexpr T& at(size_t index)
{
VERIFY(index < this->m_size);
return this->m_values[index];
}
[[nodiscard]] ALWAYS_INLINE constexpr T const& first() const
{
return this->at(0);
}
[[nodiscard]] ALWAYS_INLINE constexpr T& first()
{
return this->at(0);
}
[[nodiscard]] ALWAYS_INLINE constexpr T const& last() const
{
return this->at(this->size() - 1);
}
[[nodiscard]] ALWAYS_INLINE constexpr T& last()
{
return this->at(this->size() - 1);
}
[[nodiscard]] ALWAYS_INLINE constexpr T const& operator[](size_t index) const
{
return at(index);
}
void reverse()
{
for (size_t i = 0; i < size() / 2; ++i)
AK::swap(at(i), at(size() - i - 1));
}
[[nodiscard]] ALWAYS_INLINE constexpr T& operator[](size_t index)
{
return at(index);
}
constexpr bool operator==(Span const& other) const
{
if (size() != other.size())
return false;
return TypedTransfer<T>::compare(data(), other.data(), size());
}
ALWAYS_INLINE constexpr operator ReadonlySpan<T>() const
{
return { data(), size() };
}
};
template<typename T>
struct Traits<Span<T>> : public DefaultTraits<Span<T>> {
static unsigned hash(Span<T> const& span)
{
unsigned hash = 0;
for (auto const& value : span) {
auto value_hash = Traits<T>::hash(value);
hash = pair_int_hash(hash, value_hash);
}
return hash;
}
constexpr static bool is_trivial() { return true; }
};
template<typename T>
using ReadonlySpan = Span<T const>;
using ReadonlyBytes = ReadonlySpan<u8>;
using Bytes = Span<u8>;
template<typename T>
requires(IsTrivial<T>)
ReadonlyBytes to_readonly_bytes(Span<T> span)
{
return ReadonlyBytes { static_cast<void*>(span.data()), span.size() * sizeof(T) };
}
template<typename T>
requires(IsTrivial<T> && !IsConst<T>)
Bytes to_bytes(Span<T> span)
{
return Bytes { static_cast<void*>(span.data()), span.size() * sizeof(T) };
}
}
#if USING_AK_GLOBALLY
using AK::Bytes;
using AK::ReadonlyBytes;
using AK::ReadonlySpan;
using AK::Span;
using AK::to_bytes;
using AK::to_readonly_bytes;
#endif