serenity/AK/BitStream.h
kleines Filmröllchen 9d4c50ca60 AK: Add big endian bit reading to InputBitStream
The existing InputBitStream methods only read in little endian, as this
is what the rest of the system requires. Two new methods allow the input
bitstream to read bits in big endian as well, while using the existing
state infrastructure.

Note that it can lead to issues if little endian and big endian reads
are used out of order without aligning to a byte boundary first.
2021-06-25 20:48:14 +04:30

243 lines
6 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Optional.h>
#include <AK/Stream.h>
namespace AK {
class InputBitStream final : public InputStream {
public:
explicit InputBitStream(InputStream& stream)
: m_stream(stream)
{
}
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
size_t nread = 0;
if (bytes.size() >= 1) {
if (m_next_byte.has_value()) {
bytes[0] = m_next_byte.value();
m_next_byte.clear();
++nread;
}
}
return nread + m_stream.read(bytes.slice(nread));
}
bool read_or_error(Bytes bytes) override
{
if (read(bytes) != bytes.size()) {
set_fatal_error();
return false;
}
return true;
}
bool unreliable_eof() const override { return !m_next_byte.has_value() && m_stream.unreliable_eof(); }
bool discard_or_error(size_t count) override
{
if (count >= 1) {
if (m_next_byte.has_value()) {
m_next_byte.clear();
--count;
}
}
return m_stream.discard_or_error(count);
}
u64 read_bits(size_t count)
{
u64 result = 0;
size_t nread = 0;
while (nread < count) {
if (m_stream.has_any_error()) {
set_fatal_error();
return 0;
}
if (m_next_byte.has_value()) {
const auto bit = (m_next_byte.value() >> m_bit_offset) & 1;
result |= bit << nread;
++nread;
if (m_bit_offset++ == 7)
m_next_byte.clear();
} else {
m_stream >> m_next_byte;
m_bit_offset = 0;
}
}
return result;
}
u64 read_bits_big_endian(size_t count)
{
u64 result = 0;
size_t nread = 0;
while (nread < count) {
if (m_stream.has_any_error()) {
set_fatal_error();
return 0;
}
if (m_next_byte.has_value()) {
// read an entire byte
if (((count - nread) >= 8) && m_bit_offset == 0) {
// shift existing bytes over
result <<= 8;
result |= m_next_byte.value();
nread += 8;
m_next_byte.clear();
} else {
const auto bit = (m_next_byte.value() >> (7 - m_bit_offset)) & 1;
result <<= 1;
result |= bit;
++nread;
if (m_bit_offset++ == 7)
m_next_byte.clear();
}
} else {
m_stream >> m_next_byte;
m_bit_offset = 0;
}
}
return result;
}
bool read_bit() { return static_cast<bool>(read_bits(1)); }
bool read_bit_big_endian() { return static_cast<bool>(read_bits_big_endian(1)); }
void align_to_byte_boundary()
{
if (m_next_byte.has_value())
m_next_byte.clear();
}
bool handle_any_error() override
{
bool handled_errors = m_stream.handle_any_error();
return Stream::handle_any_error() || handled_errors;
}
private:
Optional<u8> m_next_byte;
size_t m_bit_offset { 0 };
InputStream& m_stream;
};
class OutputBitStream final : public OutputStream {
public:
explicit OutputBitStream(OutputStream& stream)
: m_stream(stream)
{
}
// WARNING: write aligns to the next byte boundary before writing, if unaligned writes are needed this should be rewritten
size_t write(ReadonlyBytes bytes) override
{
if (has_any_error())
return 0;
align_to_byte_boundary();
if (has_fatal_error()) // if align_to_byte_boundary failed
return 0;
return m_stream.write(bytes);
}
bool write_or_error(ReadonlyBytes bytes) override
{
if (write(bytes) < bytes.size()) {
set_fatal_error();
return false;
}
return true;
}
void write_bits(u32 bits, size_t count)
{
VERIFY(count <= 32);
if (count == 32 && !m_next_byte.has_value()) { // fast path for aligned 32 bit writes
m_stream << bits;
return;
}
size_t n_written = 0;
while (n_written < count) {
if (m_stream.has_any_error()) {
set_fatal_error();
return;
}
if (m_next_byte.has_value()) {
m_next_byte.value() |= ((bits >> n_written) & 1) << m_bit_offset;
++n_written;
if (m_bit_offset++ == 7) {
m_stream << m_next_byte.value();
m_next_byte.clear();
}
} else if (count - n_written >= 16) { // fast path for aligned 16 bit writes
m_stream << (u16)((bits >> n_written) & 0xFFFF);
n_written += 16;
} else if (count - n_written >= 8) { // fast path for aligned 8 bit writes
m_stream << (u8)((bits >> n_written) & 0xFF);
n_written += 8;
} else {
m_bit_offset = 0;
m_next_byte = 0;
}
}
}
void write_bit(bool bit)
{
write_bits(bit, 1);
}
void align_to_byte_boundary()
{
if (m_next_byte.has_value()) {
if (!m_stream.write_or_error(ReadonlyBytes { &m_next_byte.value(), 1 })) {
set_fatal_error();
}
m_next_byte.clear();
}
}
size_t bit_offset() const
{
return m_bit_offset;
}
private:
Optional<u8> m_next_byte;
size_t m_bit_offset { 0 };
OutputStream& m_stream;
};
}
using AK::InputBitStream;
using AK::OutputBitStream;