serenity/Kernel/Bus/VirtIO/Queue.cpp
2022-04-01 21:24:45 +01:00

205 lines
6.8 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Atomic.h>
#include <Kernel/Bus/VirtIO/Queue.h>
namespace Kernel::VirtIO {
ErrorOr<NonnullOwnPtr<Queue>> Queue::try_create(u16 queue_size, u16 notify_offset)
{
size_t size_of_descriptors = sizeof(QueueDescriptor) * queue_size;
size_t size_of_driver = sizeof(QueueDriver) + queue_size * sizeof(u16);
size_t size_of_device = sizeof(QueueDevice) + queue_size * sizeof(QueueDeviceItem);
auto queue_region_size = TRY(Memory::page_round_up(size_of_descriptors + size_of_driver + size_of_device));
OwnPtr<Memory::Region> queue_region;
if (queue_region_size <= PAGE_SIZE)
queue_region = TRY(MM.allocate_kernel_region(queue_region_size, "VirtIO Queue"sv, Memory::Region::Access::ReadWrite));
else
queue_region = TRY(MM.allocate_contiguous_kernel_region(queue_region_size, "VirtIO Queue"sv, Memory::Region::Access::ReadWrite));
return adopt_nonnull_own_or_enomem(new (nothrow) Queue(queue_region.release_nonnull(), queue_size, notify_offset));
}
Queue::Queue(NonnullOwnPtr<Memory::Region> queue_region, u16 queue_size, u16 notify_offset)
: m_queue_size(queue_size)
, m_notify_offset(notify_offset)
, m_free_buffers(queue_size)
, m_queue_region(move(queue_region))
{
size_t size_of_descriptors = sizeof(QueueDescriptor) * queue_size;
size_t size_of_driver = sizeof(QueueDriver) + queue_size * sizeof(u16);
// TODO: ensure alignment!!!
u8* ptr = m_queue_region->vaddr().as_ptr();
memset(ptr, 0, m_queue_region->size());
m_descriptors = reinterpret_cast<QueueDescriptor*>(ptr);
m_driver = reinterpret_cast<QueueDriver*>(ptr + size_of_descriptors);
m_device = reinterpret_cast<QueueDevice*>(ptr + size_of_descriptors + size_of_driver);
for (auto i = 0; i + 1 < queue_size; i++)
m_descriptors[i].next = i + 1; // link all the descriptors in a line
enable_interrupts();
}
Queue::~Queue() = default;
void Queue::enable_interrupts()
{
SpinlockLocker lock(m_lock);
m_driver->flags = 0;
}
void Queue::disable_interrupts()
{
SpinlockLocker lock(m_lock);
m_driver->flags = 1;
}
bool Queue::new_data_available() const
{
auto const index = AK::atomic_load(&m_device->index, AK::MemoryOrder::memory_order_relaxed);
auto const used_tail = AK::atomic_load(&m_used_tail, AK::MemoryOrder::memory_order_relaxed);
return index != used_tail;
}
QueueChain Queue::pop_used_buffer_chain(size_t& used)
{
VERIFY(m_lock.is_locked());
if (!new_data_available()) {
used = 0;
return QueueChain(*this);
}
full_memory_barrier();
// Determine used length
used = m_device->rings[m_used_tail % m_queue_size].length;
// Determine start, end and number of nodes in chain
auto descriptor_index = m_device->rings[m_used_tail % m_queue_size].index;
size_t length_of_chain = 1;
auto last_index = descriptor_index;
while (m_descriptors[last_index].flags & VIRTQ_DESC_F_NEXT) {
++length_of_chain;
last_index = m_descriptors[last_index].next;
}
// We are now done with this buffer chain
m_used_tail++;
return QueueChain(*this, descriptor_index, last_index, length_of_chain);
}
void Queue::discard_used_buffers()
{
VERIFY(m_lock.is_locked());
size_t used;
for (auto buffer = pop_used_buffer_chain(used); !buffer.is_empty(); buffer = pop_used_buffer_chain(used)) {
buffer.release_buffer_slots_to_queue();
}
}
void Queue::reclaim_buffer_chain(u16 chain_start_index, u16 chain_end_index, size_t length_of_chain)
{
VERIFY(m_lock.is_locked());
m_descriptors[chain_end_index].next = m_free_head;
m_free_head = chain_start_index;
m_free_buffers += length_of_chain;
}
bool Queue::has_free_slots() const
{
auto const free_buffers = AK::atomic_load(&m_free_buffers, AK::MemoryOrder::memory_order_relaxed);
return free_buffers > 0;
}
Optional<u16> Queue::take_free_slot()
{
VERIFY(m_lock.is_locked());
if (has_free_slots()) {
auto descriptor_index = m_free_head;
m_free_head = m_descriptors[descriptor_index].next;
--m_free_buffers;
return descriptor_index;
}
return {};
}
bool Queue::should_notify() const
{
VERIFY(m_lock.is_locked());
auto device_flags = m_device->flags;
return !(device_flags & VIRTQ_USED_F_NO_NOTIFY);
}
bool QueueChain::add_buffer_to_chain(PhysicalAddress buffer_start, size_t buffer_length, BufferType buffer_type)
{
VERIFY(m_queue.lock().is_locked());
// Ensure that no readable pages will be inserted after a writable one, as required by the VirtIO spec
VERIFY(buffer_type == BufferType::DeviceWritable || !m_chain_has_writable_pages);
m_chain_has_writable_pages |= (buffer_type == BufferType::DeviceWritable);
// Take a free slot from the queue
auto descriptor_index = m_queue.take_free_slot();
if (!descriptor_index.has_value())
return false;
if (!m_start_of_chain_index.has_value()) {
// Set start of chain if it hasn't been set
m_start_of_chain_index = descriptor_index.value();
} else {
// Link from previous element in QueueChain
m_queue.m_descriptors[m_end_of_chain_index.value()].flags |= VIRTQ_DESC_F_NEXT;
m_queue.m_descriptors[m_end_of_chain_index.value()].next = descriptor_index.value();
}
// Update end of chain
m_end_of_chain_index = descriptor_index.value();
++m_chain_length;
// Populate buffer info
VERIFY(buffer_length <= NumericLimits<size_t>::max());
m_queue.m_descriptors[descriptor_index.value()].address = static_cast<u64>(buffer_start.get());
m_queue.m_descriptors[descriptor_index.value()].flags = static_cast<u16>(buffer_type);
m_queue.m_descriptors[descriptor_index.value()].length = static_cast<u32>(buffer_length);
return true;
}
void QueueChain::submit_to_queue()
{
VERIFY(m_queue.lock().is_locked());
VERIFY(m_start_of_chain_index.has_value());
auto next_index = m_queue.m_driver_index_shadow % m_queue.m_queue_size;
m_queue.m_driver->rings[next_index] = m_start_of_chain_index.value();
m_queue.m_driver_index_shadow++;
full_memory_barrier();
m_queue.m_driver->index = m_queue.m_driver_index_shadow;
// Reset internal chain state
m_start_of_chain_index = m_end_of_chain_index = {};
m_chain_has_writable_pages = false;
m_chain_length = 0;
}
void QueueChain::release_buffer_slots_to_queue()
{
VERIFY(m_queue.lock().is_locked());
if (m_start_of_chain_index.has_value()) {
// Add the currently stored chain back to the queue's free pool
m_queue.reclaim_buffer_chain(m_start_of_chain_index.value(), m_end_of_chain_index.value(), m_chain_length);
// Reset internal chain state
m_start_of_chain_index = m_end_of_chain_index = {};
m_chain_has_writable_pages = false;
m_chain_length = 0;
}
}
}