1
0
mirror of https://github.com/SerenityOS/serenity synced 2024-07-05 19:34:52 +00:00
serenity/AK/Bitmap.h
2020-02-25 15:11:15 +01:00

236 lines
6.5 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Noncopyable.h>
#include <AK/Optional.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
namespace AK {
class Bitmap {
AK_MAKE_NONCOPYABLE(Bitmap)
public:
// NOTE: A wrapping Bitmap won't try to free the wrapped data.
static Bitmap wrap(u8* data, size_t size)
{
return Bitmap(data, size);
}
static Bitmap create(size_t size, bool default_value = 0)
{
return Bitmap(size, default_value);
}
static Bitmap create()
{
return Bitmap();
}
Bitmap(Bitmap&& other)
{
m_owned = exchange(other.m_owned, false);
m_data = exchange(other.m_data, nullptr);
m_size = exchange(other.m_size, 0);
}
Bitmap& operator=(Bitmap&& other)
{
if (this != &other) {
if (m_owned)
kfree(m_data);
m_owned = exchange(other.m_owned, false);
m_data = exchange(other.m_data, nullptr);
m_size = exchange(other.m_size, 0);
}
return *this;
}
~Bitmap()
{
if (m_owned)
kfree(m_data);
m_data = nullptr;
}
size_t size() const { return m_size; }
bool get(size_t index) const
{
ASSERT(index < m_size);
return 0 != (m_data[index / 8] & (1u << (index % 8)));
}
void set(size_t index, bool value) const
{
ASSERT(index < m_size);
if (value)
m_data[index / 8] |= static_cast<u8>((1u << (index % 8)));
else
m_data[index / 8] &= static_cast<u8>(~(1u << (index % 8)));
}
u8* data() { return m_data; }
const u8* data() const { return m_data; }
void grow(size_t size, bool default_value)
{
ASSERT(size > m_size);
auto previous_size_bytes = size_in_bytes();
auto previous_size = m_size;
auto previous_data = m_data;
m_size = size;
m_data = reinterpret_cast<u8*>(kmalloc(size_in_bytes()));
fill(default_value);
if (previous_data != nullptr) {
memcpy(m_data, previous_data, previous_size_bytes);
if ((previous_size % 8) != 0) {
if (default_value)
m_data[previous_size_bytes - 1] |= (0xff >> (previous_size % 8));
else
m_data[previous_size_bytes - 1] &= ~(0xff >> (previous_size % 8));
}
kfree(previous_data);
}
}
void fill(bool value)
{
memset(m_data, value ? 0xff : 0x00, size_in_bytes());
}
Optional<size_t> find_first_set() const
{
size_t i = 0;
while (i < m_size / 8 && m_data[i] == 0x00)
i++;
size_t j = 0;
for (j = i * 8; j < m_size; j++) {
if (get(j))
return j;
}
return {};
}
Optional<size_t> find_first_unset() const
{
size_t i = 0;
while (i < m_size / 8 && m_data[i] == 0xff)
i++;
size_t j = 0;
for (j = i * 8; j < m_size; j++)
if (!get(j))
return j;
return -1;
}
Optional<size_t> find_longest_range_of_unset_bits(size_t max_length, size_t& found_range_size) const
{
auto first_index = find_first_unset();
if (!first_index.has_value())
return {};
size_t free_region_start = first_index;
size_t free_region_size = 1;
size_t max_region_start = free_region_start;
size_t max_region_size = free_region_size;
// Let's try and find the best fit possible
for (size_t j = first_index + 1; j < m_size && free_region_size < max_length; j++) {
if (!get(j)) {
if (free_region_size == 0)
free_region_start = j;
free_region_size++;
} else {
if (max_region_size < free_region_size) {
max_region_size = free_region_size;
max_region_start = free_region_start;
}
free_region_start = 0;
free_region_size = 0;
}
}
if (max_region_size < free_region_size) {
max_region_size = free_region_size;
max_region_start = free_region_start;
}
found_range_size = max_region_size;
if (max_region_size > 1)
return max_region_start;
// if the max free region size is one, then return the earliest one found
return first_index;
}
explicit Bitmap()
: m_size(0)
, m_owned(true)
{
m_data = nullptr;
}
explicit Bitmap(size_t size, bool default_value)
: m_size(size)
, m_owned(true)
{
ASSERT(m_size != 0);
m_data = reinterpret_cast<u8*>(kmalloc(size_in_bytes()));
fill(default_value);
}
Bitmap(u8* data, size_t size)
: m_data(data)
, m_size(size)
, m_owned(false)
{
}
private:
size_t size_in_bytes() const { return ceil_div(m_size, 8); }
u8* m_data { nullptr };
size_t m_size { 0 };
bool m_owned { false };
};
}
using AK::Bitmap;