serenity/AK/Time.h
Andrew Kaster 83ad5bfba0 AK: Remove global free function comparison operators for timespec
No code was using these, so let's just delete them. They pollute the
lookup for every single comparison operator in the project.
2023-01-07 14:51:04 +01:00

379 lines
13 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/Assertions.h>
#include <AK/Platform.h>
#include <AK/Types.h>
// Kernel and Userspace pull in the definitions from different places.
// Avoid trying to figure out which one.
struct timeval;
struct timespec;
#if defined(AK_OS_WINDOWS)
# include <time.h>
#endif
namespace AK {
// Concept to detect types which look like timespec without requiring the type.
template<typename T>
concept TimeSpecType = requires(T t) {
t.tv_sec;
t.tv_nsec;
};
constexpr bool is_leap_year(int year)
{
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// Month and day start at 1. Month must be >= 1 and <= 12.
// The return value is 0-indexed, that is 0 is Sunday, 1 is Monday, etc.
// Day may be negative or larger than the number of days
// in the given month.
unsigned day_of_week(int year, unsigned month, int day);
// Month and day start at 1. Month must be >= 1 and <= 12.
// The return value is 0-indexed, that is Jan 1 is day 0.
// Day may be negative or larger than the number of days
// in the given month. If day is negative enough, the result
// can be negative.
constexpr int day_of_year(int year, unsigned month, int day)
{
VERIFY(month >= 1 && month <= 12);
constexpr Array seek_table = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
int day_of_year = seek_table[month - 1] + day - 1;
if (is_leap_year(year) && month >= 3)
day_of_year++;
return day_of_year;
}
// Month starts at 1. Month must be >= 1 and <= 12.
int days_in_month(int year, unsigned month);
constexpr int days_in_year(int year)
{
return 365 + (is_leap_year(year) ? 1 : 0);
}
namespace Detail {
// Integer division rounding towards negative infinity.
// TODO: This feels like there should be an easier way to do this.
template<int divisor>
constexpr i64 floor_div_by(i64 dividend)
{
static_assert(divisor > 1);
int is_negative = dividend < 0;
return (dividend + is_negative) / divisor - is_negative;
}
// Counts how many integers n are in the interval [begin, end) with n % positive_mod == 0.
// NOTE: "end" is not considered to be part of the range, hence "[begin, end)".
template<int positive_mod>
constexpr i64 mod_zeros_in_range(i64 begin, i64 end)
{
return floor_div_by<positive_mod>(end - 1) - floor_div_by<positive_mod>(begin - 1);
}
}
constexpr i64 years_to_days_since_epoch(int year)
{
int begin_year, end_year, leap_sign;
if (year < 1970) {
begin_year = year;
end_year = 1970;
leap_sign = -1;
} else {
begin_year = 1970;
end_year = year;
leap_sign = +1;
}
i64 year_i64 = year;
// This duplicates the logic of 'is_leap_year', with the advantage of not needing any loops.
// Given that the definition of leap years is not expected to change, this should be a good trade-off.
i64 days = 365 * (year_i64 - 1970);
i64 extra_leap_days = 0;
extra_leap_days += Detail::mod_zeros_in_range<4>(begin_year, end_year);
extra_leap_days -= Detail::mod_zeros_in_range<100>(begin_year, end_year);
extra_leap_days += Detail::mod_zeros_in_range<400>(begin_year, end_year);
return days + extra_leap_days * leap_sign;
}
constexpr i64 days_since_epoch(int year, int month, int day)
{
return years_to_days_since_epoch(year) + day_of_year(year, month, day);
}
constexpr i64 seconds_since_epoch_to_year(i64 seconds)
{
constexpr double seconds_per_year = 60.0 * 60.0 * 24.0 * 365.2425;
// NOTE: We are not using floor() from <math.h> to avoid LibC / DynamicLoader dependency issues.
auto round_down = [](double value) -> i64 {
auto as_i64 = static_cast<i64>(value);
if ((value == as_i64) || (as_i64 >= 0))
return as_i64;
return as_i64 - 1;
};
auto years_since_epoch = static_cast<double>(seconds) / seconds_per_year;
return 1970 + round_down(years_since_epoch);
}
/*
* Represents a time amount in a "safe" way.
* Minimum: 0 seconds, 0 nanoseconds
* Maximum: 2**63-1 seconds, 999'999'999 nanoseconds
* If any operation (e.g. 'from_timeval' or operator-) would over- or underflow, the closest legal value is returned instead.
* Inputs (e.g. to 'from_timespec') are allowed to be in non-normal form (e.g. "1 second, 2'012'345'678 nanoseconds" or "1 second, -2 microseconds").
* Outputs (e.g. from 'to_timeval') are always in normal form.
*/
class Time {
public:
Time() = default;
Time(Time const&) = default;
Time& operator=(Time const&) = default;
Time(Time&& other)
: m_seconds(exchange(other.m_seconds, 0))
, m_nanoseconds(exchange(other.m_nanoseconds, 0))
{
}
Time& operator=(Time&& other)
{
if (this != &other) {
m_seconds = exchange(other.m_seconds, 0);
m_nanoseconds = exchange(other.m_nanoseconds, 0);
}
return *this;
}
private:
// This must be part of the header in order to make the various 'from_*' functions constexpr.
// However, sane_mod can only deal with a limited range of values for 'denominator', so this can't be made public.
ALWAYS_INLINE static constexpr i64 sane_mod(i64& numerator, i64 denominator)
{
VERIFY(2 <= denominator && denominator <= 1'000'000'000);
// '%' in C/C++ does not work in the obvious way:
// For example, -9 % 7 is -2, not +5.
// However, we want a representation like "(-2)*7 + (+5)".
i64 dividend = numerator / denominator;
numerator %= denominator;
if (numerator < 0) {
// Does not overflow: different signs.
numerator += denominator;
// Does not underflow: denominator >= 2.
dividend -= 1;
}
return dividend;
}
ALWAYS_INLINE static constexpr i32 sane_mod(i32& numerator, i32 denominator)
{
i64 numerator_64 = numerator;
i64 dividend = sane_mod(numerator_64, denominator);
// Does not underflow: numerator can only become smaller.
numerator = static_cast<i32>(numerator_64);
// Does not overflow: Will be smaller than original value of 'numerator'.
return static_cast<i32>(dividend);
}
public:
[[nodiscard]] constexpr static Time from_timestamp(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond)
{
constexpr auto milliseconds_per_day = 86'400'000;
constexpr auto milliseconds_per_hour = 3'600'000;
constexpr auto milliseconds_per_minute = 60'000;
constexpr auto milliseconds_per_second = 1'000;
i64 milliseconds_since_epoch = days_since_epoch(year, month, day);
milliseconds_since_epoch *= milliseconds_per_day;
milliseconds_since_epoch += hour * milliseconds_per_hour;
milliseconds_since_epoch += minute * milliseconds_per_minute;
milliseconds_since_epoch += second * milliseconds_per_second;
milliseconds_since_epoch += millisecond;
return from_milliseconds(milliseconds_since_epoch);
}
[[nodiscard]] constexpr static Time from_seconds(i64 seconds) { return Time(seconds, 0); }
[[nodiscard]] constexpr static Time from_nanoseconds(i64 nanoseconds)
{
i64 seconds = sane_mod(nanoseconds, 1'000'000'000);
return Time(seconds, nanoseconds);
}
[[nodiscard]] constexpr static Time from_microseconds(i64 microseconds)
{
i64 seconds = sane_mod(microseconds, 1'000'000);
return Time(seconds, microseconds * 1'000);
}
[[nodiscard]] constexpr static Time from_milliseconds(i64 milliseconds)
{
i64 seconds = sane_mod(milliseconds, 1'000);
return Time(seconds, milliseconds * 1'000'000);
}
[[nodiscard]] static Time from_ticks(clock_t, time_t);
[[nodiscard]] static Time from_timespec(const struct timespec&);
[[nodiscard]] static Time from_timeval(const struct timeval&);
// We don't pull in <stdint.h> for the pretty min/max definitions because this file is also included in the Kernel
[[nodiscard]] constexpr static Time min() { return Time(-__INT64_MAX__ - 1LL, 0); };
[[nodiscard]] constexpr static Time zero() { return Time(0, 0); };
[[nodiscard]] constexpr static Time max() { return Time(__INT64_MAX__, 999'999'999); };
#ifndef KERNEL
[[nodiscard]] static Time now_realtime();
[[nodiscard]] static Time now_realtime_coarse();
[[nodiscard]] static Time now_monotonic();
[[nodiscard]] static Time now_monotonic_coarse();
#endif
// Truncates towards zero (2.8s to 2s, -2.8s to -2s).
[[nodiscard]] i64 to_truncated_seconds() const;
[[nodiscard]] i64 to_truncated_milliseconds() const;
[[nodiscard]] i64 to_truncated_microseconds() const;
// Rounds away from zero (2.3s to 3s, -2.3s to -3s).
[[nodiscard]] i64 to_seconds() const;
[[nodiscard]] i64 to_milliseconds() const;
[[nodiscard]] i64 to_microseconds() const;
[[nodiscard]] i64 to_nanoseconds() const;
[[nodiscard]] timespec to_timespec() const;
// Rounds towards -inf (it was the easiest to implement).
[[nodiscard]] timeval to_timeval() const;
[[nodiscard]] bool is_zero() const { return (m_seconds == 0) && (m_nanoseconds == 0); }
[[nodiscard]] bool is_negative() const { return m_seconds < 0; }
bool operator==(Time const& other) const { return this->m_seconds == other.m_seconds && this->m_nanoseconds == other.m_nanoseconds; }
Time operator+(Time const& other) const;
Time& operator+=(Time const& other);
Time operator-(Time const& other) const;
Time& operator-=(Time const& other);
bool operator<(Time const& other) const;
bool operator<=(Time const& other) const;
bool operator>(Time const& other) const;
bool operator>=(Time const& other) const;
private:
constexpr explicit Time(i64 seconds, u32 nanoseconds)
: m_seconds(seconds)
, m_nanoseconds(nanoseconds)
{
}
[[nodiscard]] static Time from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds);
i64 m_seconds { 0 };
u32 m_nanoseconds { 0 }; // Always less than 1'000'000'000
};
template<typename TimevalType>
inline void timeval_sub(TimevalType const& a, TimevalType const& b, TimevalType& result)
{
result.tv_sec = a.tv_sec - b.tv_sec;
result.tv_usec = a.tv_usec - b.tv_usec;
if (result.tv_usec < 0) {
--result.tv_sec;
result.tv_usec += 1'000'000;
}
}
template<typename TimevalType>
inline void timeval_add(TimevalType const& a, TimevalType const& b, TimevalType& result)
{
result.tv_sec = a.tv_sec + b.tv_sec;
result.tv_usec = a.tv_usec + b.tv_usec;
if (result.tv_usec >= 1'000'000) {
++result.tv_sec;
result.tv_usec -= 1'000'000;
}
}
template<typename TimespecType>
inline void timespec_sub(TimespecType const& a, TimespecType const& b, TimespecType& result)
{
result.tv_sec = a.tv_sec - b.tv_sec;
result.tv_nsec = a.tv_nsec - b.tv_nsec;
if (result.tv_nsec < 0) {
--result.tv_sec;
result.tv_nsec += 1'000'000'000;
}
}
template<typename TimespecType>
inline void timespec_add(TimespecType const& a, TimespecType const& b, TimespecType& result)
{
result.tv_sec = a.tv_sec + b.tv_sec;
result.tv_nsec = a.tv_nsec + b.tv_nsec;
if (result.tv_nsec >= 1000'000'000) {
++result.tv_sec;
result.tv_nsec -= 1000'000'000;
}
}
template<typename TimespecType, typename TimevalType>
inline void timespec_add_timeval(TimespecType const& a, TimevalType const& b, TimespecType& result)
{
result.tv_sec = a.tv_sec + b.tv_sec;
result.tv_nsec = a.tv_nsec + b.tv_usec * 1000;
if (result.tv_nsec >= 1000'000'000) {
++result.tv_sec;
result.tv_nsec -= 1000'000'000;
}
}
template<typename TimevalType, typename TimespecType>
inline void timeval_to_timespec(TimevalType const& tv, TimespecType& ts)
{
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
}
template<typename TimespecType, typename TimevalType>
inline void timespec_to_timeval(TimespecType const& ts, TimevalType& tv)
{
tv.tv_sec = ts.tv_sec;
tv.tv_usec = ts.tv_nsec / 1000;
}
// To use these, add a ``using namespace AK::TimeLiterals`` at block or file scope
namespace TimeLiterals {
constexpr Time operator""_ns(unsigned long long nanoseconds) { return Time::from_nanoseconds(static_cast<i64>(nanoseconds)); }
constexpr Time operator""_us(unsigned long long microseconds) { return Time::from_microseconds(static_cast<i64>(microseconds)); }
constexpr Time operator""_ms(unsigned long long milliseconds) { return Time::from_milliseconds(static_cast<i64>(milliseconds)); }
constexpr Time operator""_sec(unsigned long long seconds) { return Time::from_seconds(static_cast<i64>(seconds)); }
}
}
#if USING_AK_GLOBALLY
using AK::day_of_week;
using AK::day_of_year;
using AK::days_in_month;
using AK::days_in_year;
using AK::days_since_epoch;
using AK::is_leap_year;
using AK::seconds_since_epoch_to_year;
using AK::Time;
using AK::timespec_add;
using AK::timespec_add_timeval;
using AK::timespec_sub;
using AK::timespec_to_timeval;
using AK::timeval_add;
using AK::timeval_sub;
using AK::timeval_to_timespec;
using AK::years_to_days_since_epoch;
#endif