serenity/AK/String.h
Lucas CHOLLET fde26c53f0 AK: Remove the API to explicitly construct short strings
Now that ""_string is infallible, the only benefit of explicitly
constructing a short string is the ability to do it at compile-time. But
we never do that, so let's simplify the API and remove this
implementation detail from it.
2023-08-08 07:37:21 +02:00

271 lines
10 KiB
C++

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2023, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/CharacterTypes.h>
#include <AK/Concepts.h>
#include <AK/Format.h>
#include <AK/Forward.h>
#include <AK/Optional.h>
#include <AK/RefCounted.h>
#include <AK/Span.h>
#include <AK/StringBuilder.h>
#include <AK/StringUtils.h>
#include <AK/StringView.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#include <AK/UnicodeUtils.h>
#include <AK/Utf8View.h>
#include <AK/Vector.h>
namespace AK {
namespace Detail {
class StringData;
}
// FIXME: Remove this when OpenBSD Clang fully supports consteval.
// And once oss-fuzz updates to clang >15.
// And once Android ships an NDK with clang >14
#if defined(AK_OS_OPENBSD) || defined(OSS_FUZZ) || defined(AK_OS_ANDROID)
# define AK_SHORT_STRING_CONSTEVAL constexpr
#else
# define AK_SHORT_STRING_CONSTEVAL consteval
#endif
// String is a strongly owned sequence of Unicode code points encoded as UTF-8.
// The data may or may not be heap-allocated, and may or may not be reference counted.
// There is no guarantee that the underlying bytes are null-terminated.
class String {
public:
// NOTE: For short strings, we avoid heap allocations by storing them in the data pointer slot.
static constexpr size_t MAX_SHORT_STRING_BYTE_COUNT = sizeof(Detail::StringData*) - 1;
String(String const&);
String(String&&);
String& operator=(String&&);
String& operator=(String const&);
constexpr ~String()
{
if (!is_constant_evaluated())
destroy_string();
}
// Creates an empty (zero-length) String.
constexpr String()
: String(ShortString { SHORT_STRING_FLAG, {} })
{
}
// Creates a new String from a sequence of UTF-8 encoded code points.
static ErrorOr<String> from_utf8(StringView);
template<typename T>
requires(IsOneOf<RemoveCVReference<T>, DeprecatedString, DeprecatedFlyString>)
static ErrorOr<String> from_utf8(T&&) = delete;
// Creates a new String by reading byte_count bytes from a UTF-8 encoded Stream.
static ErrorOr<String> from_stream(Stream&, size_t byte_count);
// Creates a new String from a single code point.
static constexpr String from_code_point(u32 code_point)
{
VERIFY(is_unicode(code_point));
ShortString short_string;
size_t i = 0;
auto length = UnicodeUtils::code_point_to_utf8(code_point, [&](auto byte) {
short_string.storage[i++] = static_cast<u8>(byte);
});
short_string.byte_count_and_short_string_flag = (length << 1) | SHORT_STRING_FLAG;
return String { short_string };
}
// Creates a new String with a single code point repeated N times.
static ErrorOr<String> repeated(u32 code_point, size_t count);
// Creates a new String by case-transforming this String. Using these methods require linking LibUnicode into your application.
ErrorOr<String> to_lowercase(Optional<StringView> const& locale = {}) const;
ErrorOr<String> to_uppercase(Optional<StringView> const& locale = {}) const;
ErrorOr<String> to_titlecase(Optional<StringView> const& locale = {}) const;
ErrorOr<String> to_casefold() const;
// Compare this String against another string with caseless matching. Using this method requires linking LibUnicode into your application.
[[nodiscard]] bool equals_ignoring_case(String const&) const;
[[nodiscard]] bool starts_with(u32 code_point) const;
[[nodiscard]] bool starts_with_bytes(StringView) const;
[[nodiscard]] bool ends_with(u32 code_point) const;
[[nodiscard]] bool ends_with_bytes(StringView) const;
// Creates a substring with a deep copy of the specified data window.
ErrorOr<String> substring_from_byte_offset(size_t start, size_t byte_count) const;
ErrorOr<String> substring_from_byte_offset(size_t start) const;
// Creates a substring that strongly references the origin superstring instead of making a deep copy of the data.
ErrorOr<String> substring_from_byte_offset_with_shared_superstring(size_t start, size_t byte_count) const;
ErrorOr<String> substring_from_byte_offset_with_shared_superstring(size_t start) const;
// Returns an iterable view over the Unicode code points.
[[nodiscard]] Utf8View code_points() const;
// Returns the underlying UTF-8 encoded bytes.
// NOTE: There is no guarantee about null-termination.
[[nodiscard]] ReadonlyBytes bytes() const;
// Returns true if the String is zero-length.
[[nodiscard]] bool is_empty() const;
// Returns a StringView covering the full length of the string. Note that iterating this will go byte-at-a-time, not code-point-at-a-time.
[[nodiscard]] StringView bytes_as_string_view() const;
[[nodiscard]] size_t count(StringView needle) const { return StringUtils::count(bytes_as_string_view(), needle); }
ErrorOr<String> replace(StringView needle, StringView replacement, ReplaceMode replace_mode) const;
ErrorOr<String> reverse() const;
ErrorOr<String> trim(Utf8View const& code_points_to_trim, TrimMode mode = TrimMode::Both) const;
ErrorOr<String> trim(StringView code_points_to_trim, TrimMode mode = TrimMode::Both) const;
ErrorOr<String> trim_ascii_whitespace(TrimMode mode = TrimMode::Both) const;
ErrorOr<Vector<String>> split_limit(u32 separator, size_t limit, SplitBehavior = SplitBehavior::Nothing) const;
ErrorOr<Vector<String>> split(u32 separator, SplitBehavior = SplitBehavior::Nothing) const;
Optional<size_t> find_byte_offset(u32 code_point, size_t from_byte_offset = 0) const;
Optional<size_t> find_byte_offset(StringView substring, size_t from_byte_offset = 0) const;
[[nodiscard]] bool operator==(String const&) const;
[[nodiscard]] bool operator!=(String const& other) const { return !(*this == other); }
[[nodiscard]] bool operator==(FlyString const&) const;
[[nodiscard]] bool operator!=(FlyString const& other) const { return !(*this == other); }
[[nodiscard]] bool operator==(StringView) const;
[[nodiscard]] bool operator!=(StringView other) const { return !(*this == other); }
[[nodiscard]] bool operator==(char const* cstring) const;
[[nodiscard]] bool operator!=(char const* cstring) const { return !(*this == cstring); }
// NOTE: UTF-8 is defined in a way that lexicographic ordering of code points is equivalent to lexicographic ordering of bytes.
[[nodiscard]] int operator<=>(String const& other) const { return this->bytes_as_string_view().compare(other.bytes_as_string_view()); }
template<typename... Ts>
[[nodiscard]] ALWAYS_INLINE constexpr bool is_one_of(Ts&&... strings) const
{
return (this->operator==(forward<Ts>(strings)) || ...);
}
[[nodiscard]] bool contains(StringView, CaseSensitivity = CaseSensitivity::CaseSensitive) const;
[[nodiscard]] bool contains(u32, CaseSensitivity = CaseSensitivity::CaseSensitive) const;
[[nodiscard]] u32 hash() const;
template<Arithmetic T>
static ErrorOr<String> number(T value)
{
return formatted("{}", value);
}
template<Arithmetic T>
Optional<T> to_number(TrimWhitespace trim_whitespace = TrimWhitespace::Yes) const
{
if constexpr (IsSigned<T>)
return StringUtils::convert_to_int<T>(bytes_as_string_view(), trim_whitespace);
else
return StringUtils::convert_to_uint<T>(bytes_as_string_view(), trim_whitespace);
}
static ErrorOr<String> vformatted(StringView fmtstr, TypeErasedFormatParams&);
template<typename... Parameters>
static ErrorOr<String> formatted(CheckedFormatString<Parameters...>&& fmtstr, Parameters const&... parameters)
{
VariadicFormatParams<AllowDebugOnlyFormatters::No, Parameters...> variadic_format_parameters { parameters... };
return vformatted(fmtstr.view(), variadic_format_parameters);
}
template<class SeparatorType, class CollectionType>
static ErrorOr<String> join(SeparatorType const& separator, CollectionType const& collection, StringView fmtstr = "{}"sv)
{
StringBuilder builder;
TRY(builder.try_join(separator, collection, fmtstr));
return builder.to_string();
}
// NOTE: This is primarily interesting to unit tests.
[[nodiscard]] bool is_short_string() const;
[[nodiscard]] static String fly_string_data_to_string(Badge<FlyString>, uintptr_t const&);
[[nodiscard]] static StringView fly_string_data_to_string_view(Badge<FlyString>, uintptr_t const&);
[[nodiscard]] static u32 fly_string_data_to_hash(Badge<FlyString>, uintptr_t const&);
[[nodiscard]] uintptr_t to_fly_string_data(Badge<FlyString>) const;
static void ref_fly_string_data(Badge<FlyString>, uintptr_t);
static void unref_fly_string_data(Badge<FlyString>, uintptr_t);
void did_create_fly_string(Badge<FlyString>) const;
// FIXME: Remove these once all code has been ported to String
[[nodiscard]] DeprecatedString to_deprecated_string() const;
static ErrorOr<String> from_deprecated_string(DeprecatedString const&);
template<typename T>
requires(IsSame<RemoveCVReference<T>, StringView>)
static ErrorOr<String> from_deprecated_string(T&&) = delete;
private:
// NOTE: If the least significant bit of the pointer is set, this is a short string.
static constexpr uintptr_t SHORT_STRING_FLAG = 1;
static constexpr bool has_short_string_bit(uintptr_t data)
{
return (data & SHORT_STRING_FLAG) != 0;
}
struct ShortString {
ReadonlyBytes bytes() const;
size_t byte_count() const;
// NOTE: This is the byte count shifted left 1 step and or'ed with a 1 (the SHORT_STRING_FLAG)
u8 byte_count_and_short_string_flag { 0 };
u8 storage[MAX_SHORT_STRING_BYTE_COUNT] = { 0 };
};
explicit String(NonnullRefPtr<Detail::StringData const>);
explicit constexpr String(ShortString short_string)
: m_short_string(short_string)
{
}
void destroy_string();
union {
ShortString m_short_string;
Detail::StringData const* m_data { nullptr };
};
};
template<>
struct Traits<String> : public GenericTraits<String> {
static unsigned hash(String const&);
};
template<>
struct Formatter<String> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder&, String const&);
};
}
[[nodiscard]] ALWAYS_INLINE AK::String operator""_string(char const* cstring, size_t length)
{
return AK::String::from_utf8(AK::StringView(cstring, length)).release_value();
}