serenity/Kernel/FileSystem/FileBackedFileSystem.cpp
Liav A 6b59311d4b Kernel: Change Ext2FS to be backed by a file instead of a block device
This ensures that we can mount image files as virtual disks without the
need of implementing gross hacks like loopback devices :)
2020-04-02 12:03:08 +02:00

279 lines
10 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/StringView.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Devices/BlockDevice.h>
#include <Kernel/FileSystem/FileBackedFileSystem.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/KBuffer.h>
#include <Kernel/Process.h>
//#define FBFS_DEBUG
namespace Kernel {
struct CacheEntry {
time_t timestamp { 0 };
u32 block_index { 0 };
u8* data { nullptr };
bool has_data { false };
bool is_dirty { false };
};
class DiskCache {
public:
explicit DiskCache(FileBackedFS& fs)
: m_fs(fs)
, m_cached_block_data(KBuffer::create_with_size(m_entry_count * m_fs.block_size()))
, m_entries(KBuffer::create_with_size(m_entry_count * sizeof(CacheEntry)))
{
for (size_t i = 0; i < m_entry_count; ++i) {
entries()[i].data = m_cached_block_data.data() + i * m_fs.block_size();
}
}
~DiskCache() {}
bool is_dirty() const { return m_dirty; }
void set_dirty(bool b) { m_dirty = b; }
CacheEntry& get(u32 block_index) const
{
auto now = kgettimeofday().tv_sec;
CacheEntry* oldest_clean_entry = nullptr;
for (size_t i = 0; i < m_entry_count; ++i) {
auto& entry = const_cast<CacheEntry&>(entries()[i]);
if (entry.block_index == block_index) {
entry.timestamp = now;
return entry;
}
if (!entry.is_dirty) {
if (!oldest_clean_entry)
oldest_clean_entry = &entry;
else if (entry.timestamp < oldest_clean_entry->timestamp)
oldest_clean_entry = &entry;
}
}
if (!oldest_clean_entry) {
// Not a single clean entry! Flush writes and try again.
// NOTE: We want to make sure we only call FileBackedFS flush here,
// not some FileBackedFS subclass flush!
m_fs.flush_writes_impl();
return get(block_index);
}
// Replace the oldest clean entry.
auto& new_entry = *oldest_clean_entry;
new_entry.timestamp = now;
new_entry.block_index = block_index;
new_entry.has_data = false;
new_entry.is_dirty = false;
return new_entry;
}
const CacheEntry* entries() const { return (const CacheEntry*)m_entries.data(); }
CacheEntry* entries() { return (CacheEntry*)m_entries.data(); }
template<typename Callback>
void for_each_entry(Callback callback)
{
for (size_t i = 0; i < m_entry_count; ++i)
callback(entries()[i]);
}
private:
FileBackedFS& m_fs;
size_t m_entry_count { 10000 };
KBuffer m_cached_block_data;
KBuffer m_entries;
bool m_dirty { false };
};
FileBackedFS::FileBackedFS(FileDescription& file_description)
: m_file_description(file_description)
{
ASSERT(m_file_description->file().is_seekable());
}
FileBackedFS::~FileBackedFS()
{
}
bool FileBackedFS::write_block(unsigned index, const u8* data, FileDescription* description, bool use_logical_block_size)
{
ASSERT(m_logical_block_size);
#ifdef FBFS_DEBUG
klog() << "FileBackedFileSystem::write_block " << index << ", size=" << data.size();
#endif
bool allow_cache = !description || !description->is_direct();
/* We need to distinguish between "virtual disk reads" and "file system
reads". Previously, when we read the ext2 superblock for example, we called
device().read_raw() to fetch the superblock. Now we can't use that call
anymore because we are not backed by a BlockDevice, so the block size
(sector size) for reading the superblock is still 512 bytes like when we
used device().read_raw(), but we need to implement such functionality in the
FileBackedFileSystem layer instead. */
auto effective_block_size = use_logical_block_size ? m_logical_block_size : block_size();
if (!allow_cache) {
flush_specific_block_if_needed(index);
u32 base_offset = static_cast<u32>(index) * static_cast<u32>(effective_block_size);
m_file_description->seek(base_offset, SEEK_SET);
auto nwritten = m_file_description->write(data, effective_block_size);
ASSERT((size_t)nwritten == effective_block_size);
return true;
}
auto& entry = cache().get(index);
memcpy(entry.data, data, effective_block_size);
entry.is_dirty = true;
entry.has_data = true;
cache().set_dirty(true);
return true;
}
bool FileBackedFS::write_blocks(unsigned index, unsigned count, const u8* data, FileDescription* description, bool use_logical_block_size)
{
ASSERT(m_logical_block_size);
#ifdef FBFS_DEBUG
klog() << "FileBackedFileSystem::write_blocks " << index << " x" << count;
#endif
for (unsigned i = 0; i < count; ++i)
write_block(index + i, data + i * block_size(), description, use_logical_block_size);
return true;
}
bool FileBackedFS::read_block(unsigned index, u8* buffer, FileDescription* description, bool use_logical_block_size, bool cache_disabled) const
{
ASSERT(m_logical_block_size);
#ifdef FBFS_DEBUG
klog() << "FileBackedFileSystem::read_block " << index;
#endif
bool allow_cache = !description || !description->is_direct();
/* We need to distinguish between "virtual disk reads" and "file system
reads". Previously, when we read the ext2 superblock for example, we called
device().read_raw() to fetch the superblock. Now we can't use that call
anymore because we are not backed by a BlockDevice, so the block size
(sector size) for reading the superblock is still 512 bytes like when we
used device().read_raw(), but we need to implement such functionality in the
FileBackedFileSystem layer instead. */
auto effective_block_size = use_logical_block_size ? m_logical_block_size : block_size();
if (!allow_cache || cache_disabled) {
if (!cache_disabled)
const_cast<FileBackedFS*>(this)->flush_specific_block_if_needed(index);
u32 base_offset = static_cast<u32>(index) * static_cast<u32>(effective_block_size);
const_cast<FileDescription&>(*m_file_description).seek(base_offset, SEEK_SET);
auto nread = const_cast<FileDescription&>(*m_file_description).read(buffer, effective_block_size);
ASSERT((size_t)nread == effective_block_size);
return true;
}
auto& entry = cache().get(index);
if (!entry.has_data) {
u32 base_offset = static_cast<u32>(index) * static_cast<u32>(effective_block_size);
const_cast<FileDescription&>(*m_file_description).seek(base_offset, SEEK_SET);
auto nread = const_cast<FileDescription&>(*m_file_description).read(entry.data, effective_block_size);
entry.has_data = true;
ASSERT((size_t)nread == effective_block_size);
}
memcpy(buffer, entry.data, effective_block_size);
return true;
}
bool FileBackedFS::read_blocks(unsigned index, unsigned count, u8* buffer, FileDescription* description, bool use_logical_block_size, bool cache_disabled) const
{
ASSERT(m_logical_block_size);
if (!count)
return false;
if (count == 1)
return read_block(index, buffer, description, use_logical_block_size, cache_disabled);
u8* out = buffer;
for (unsigned i = 0; i < count; ++i) {
if (!read_block(index + i, out, description, use_logical_block_size, cache_disabled))
return false;
out += block_size();
}
return true;
}
void FileBackedFS::flush_specific_block_if_needed(unsigned index)
{
LOCKER(m_lock);
if (!cache().is_dirty())
return;
cache().for_each_entry([&](CacheEntry& entry) {
if (entry.is_dirty && entry.block_index == index) {
u32 base_offset = static_cast<u32>(entry.block_index) * static_cast<u32>(block_size());
m_file_description->seek(base_offset, SEEK_SET);
m_file_description->write(entry.data, block_size());
entry.is_dirty = false;
}
});
}
void FileBackedFS::flush_writes_impl()
{
LOCKER(m_lock);
if (!cache().is_dirty())
return;
u32 count = 0;
cache().for_each_entry([&](CacheEntry& entry) {
if (!entry.is_dirty)
return;
u32 base_offset = static_cast<u32>(entry.block_index) * static_cast<u32>(block_size());
m_file_description->seek(base_offset, SEEK_SET);
m_file_description->write(entry.data, block_size());
++count;
entry.is_dirty = false;
});
cache().set_dirty(false);
dbg() << class_name() << ": Flushed " << count << " blocks to disk";
}
void FileBackedFS::flush_writes()
{
flush_writes_impl();
}
DiskCache& FileBackedFS::cache() const
{
if (!m_cache)
m_cache = make<DiskCache>(const_cast<FileBackedFS&>(*this));
return *m_cache;
}
}