serenity/AK/Singleton.h
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

134 lines
3.7 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Atomic.h>
#include <AK/Noncopyable.h>
#ifdef KERNEL
# include <Kernel/Arch/i386/CPU.h>
#endif
#ifndef __serenity__
# include <new>
#endif
namespace AK {
template<typename T>
struct SingletonInstanceCreator {
static T* create()
{
return new T();
}
};
template<typename T, T* (*InitFunction)() = SingletonInstanceCreator<T>::create>
class Singleton {
AK_MAKE_NONCOPYABLE(Singleton);
AK_MAKE_NONMOVABLE(Singleton);
public:
Singleton() = default;
template<bool allow_create = true>
static T* get(T*& obj_var)
{
T* obj = AK::atomic_load(&obj_var, AK::memory_order_acquire);
if (FlatPtr(obj) <= 0x1) {
// If this is the first time, see if we get to initialize it
#ifdef KERNEL
Kernel::ScopedCritical critical;
#endif
if constexpr (allow_create) {
if (obj == nullptr && AK::atomic_compare_exchange_strong(&obj_var, obj, (T*)0x1, AK::memory_order_acq_rel)) {
// We're the first one
obj = InitFunction();
AK::atomic_store(&obj_var, obj, AK::memory_order_release);
return obj;
}
}
// Someone else was faster, wait until they're done
while (obj == (T*)0x1) {
#ifdef KERNEL
Kernel::Processor::wait_check();
#else
// TODO: yield
#endif
obj = AK::atomic_load(&obj_var, AK::memory_order_acquire);
}
if constexpr (allow_create) {
// We should always return an instance if we allow creating one
VERIFY(obj != nullptr);
}
VERIFY(obj != (T*)0x1);
}
return obj;
}
T* ptr() const
{
return get(m_obj);
}
T* operator->() const
{
return ptr();
}
T& operator*() const
{
return *ptr();
}
operator T*() const
{
return ptr();
}
operator T&() const
{
return *ptr();
}
bool is_initialized() const
{
T* obj = AK::atomic_load(&m_obj, AK::memory_order_consume);
return FlatPtr(obj) > 0x1;
}
void ensure_instance()
{
ptr();
}
private:
mutable T* m_obj { nullptr }; // atomic
};
}