serenity/AK/RefPtr.h
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

499 lines
15 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Atomic.h>
#include <AK/LogStream.h>
#include <AK/NonnullRefPtr.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#ifdef KERNEL
# include <Kernel/Arch/i386/CPU.h>
#endif
namespace AK {
template<typename T>
class OwnPtr;
template<typename T>
struct RefPtrTraits {
ALWAYS_INLINE static T* as_ptr(FlatPtr bits)
{
return (T*)(bits & ~(FlatPtr)1);
}
ALWAYS_INLINE static FlatPtr as_bits(T* ptr)
{
VERIFY(!((FlatPtr)ptr & 1));
return (FlatPtr)ptr;
}
template<typename U, typename PtrTraits>
ALWAYS_INLINE static FlatPtr convert_from(FlatPtr bits)
{
if (PtrTraits::is_null(bits))
return default_null_value;
return as_bits(PtrTraits::as_ptr(bits));
}
ALWAYS_INLINE static bool is_null(FlatPtr bits)
{
return !(bits & ~(FlatPtr)1);
}
ALWAYS_INLINE static FlatPtr exchange(Atomic<FlatPtr>& atomic_var, FlatPtr new_value)
{
// Only exchange when lock is not held
VERIFY(!(new_value & 1));
FlatPtr expected = atomic_var.load(AK::MemoryOrder::memory_order_relaxed);
for (;;) {
expected &= ~(FlatPtr)1; // only if lock bit is not set
if (atomic_var.compare_exchange_strong(expected, new_value, AK::MemoryOrder::memory_order_acq_rel))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
return expected;
}
ALWAYS_INLINE static bool exchange_if_null(Atomic<FlatPtr>& atomic_var, FlatPtr new_value)
{
// Only exchange when lock is not held
VERIFY(!(new_value & 1));
for (;;) {
FlatPtr expected = default_null_value; // only if lock bit is not set
if (atomic_var.compare_exchange_strong(expected, new_value, AK::MemoryOrder::memory_order_acq_rel))
break;
if (!is_null(expected))
return false;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
return true;
}
ALWAYS_INLINE static FlatPtr lock(Atomic<FlatPtr>& atomic_var)
{
// This sets the lock bit atomically, preventing further modifications.
// This is important when e.g. copying a RefPtr where the source
// might be released and freed too quickly. This allows us
// to temporarily lock the pointer so we can add a reference, then
// unlock it
FlatPtr bits;
for (;;) {
bits = atomic_var.fetch_or(1, AK::MemoryOrder::memory_order_acq_rel);
if (!(bits & 1))
break;
#ifdef KERNEL
Kernel::Processor::wait_check();
#endif
}
VERIFY(!(bits & 1));
return bits;
}
ALWAYS_INLINE static void unlock(Atomic<FlatPtr>& atomic_var, FlatPtr new_value)
{
VERIFY(!(new_value & 1));
atomic_var.store(new_value, AK::MemoryOrder::memory_order_release);
}
static constexpr FlatPtr default_null_value = 0;
using NullType = std::nullptr_t;
};
template<typename T, typename PtrTraits>
class RefPtr {
template<typename U, typename P>
friend class RefPtr;
template<typename U>
friend class WeakPtr;
public:
enum AdoptTag {
Adopt
};
RefPtr() = default;
RefPtr(const T* ptr)
: m_bits(PtrTraits::as_bits(const_cast<T*>(ptr)))
{
ref_if_not_null(const_cast<T*>(ptr));
}
RefPtr(const T& object)
: m_bits(PtrTraits::as_bits(const_cast<T*>(&object)))
{
T* ptr = const_cast<T*>(&object);
VERIFY(ptr);
VERIFY(!is_null());
ptr->ref();
}
RefPtr(AdoptTag, T& object)
: m_bits(PtrTraits::as_bits(&object))
{
VERIFY(!is_null());
}
RefPtr(RefPtr&& other)
: m_bits(other.leak_ref_raw())
{
}
ALWAYS_INLINE RefPtr(const NonnullRefPtr<T>& other)
: m_bits(PtrTraits::as_bits(const_cast<T*>(other.add_ref())))
{
}
template<typename U>
ALWAYS_INLINE RefPtr(const NonnullRefPtr<U>& other)
: m_bits(PtrTraits::as_bits(const_cast<U*>(other.add_ref())))
{
}
template<typename U>
ALWAYS_INLINE RefPtr(NonnullRefPtr<U>&& other)
: m_bits(PtrTraits::as_bits(&other.leak_ref()))
{
VERIFY(!is_null());
}
template<typename U, typename P = RefPtrTraits<U>>
RefPtr(RefPtr<U, P>&& other)
: m_bits(PtrTraits::template convert_from<U, P>(other.leak_ref_raw()))
{
}
RefPtr(const RefPtr& other)
: m_bits(other.add_ref_raw())
{
}
template<typename U, typename P = RefPtrTraits<U>>
RefPtr(const RefPtr<U, P>& other)
: m_bits(other.add_ref_raw())
{
}
ALWAYS_INLINE ~RefPtr()
{
clear();
#ifdef SANITIZE_PTRS
if constexpr (sizeof(T*) == 8)
m_bits.store(0xe0e0e0e0e0e0e0e0, AK::MemoryOrder::memory_order_relaxed);
else
m_bits.store(0xe0e0e0e0, AK::MemoryOrder::memory_order_relaxed);
#endif
}
template<typename U>
RefPtr(const OwnPtr<U>&) = delete;
template<typename U>
RefPtr& operator=(const OwnPtr<U>&) = delete;
void swap(RefPtr& other)
{
if (this == &other)
return;
// NOTE: swap is not atomic!
FlatPtr other_bits = PtrTraits::exchange(other.m_bits, PtrTraits::default_null_value);
FlatPtr bits = PtrTraits::exchange(m_bits, other_bits);
PtrTraits::exchange(other.m_bits, bits);
}
template<typename U, typename P = RefPtrTraits<U>>
void swap(RefPtr<U, P>& other)
{
// NOTE: swap is not atomic!
FlatPtr other_bits = P::exchange(other.m_bits, P::default_null_value);
FlatPtr bits = PtrTraits::exchange(m_bits, PtrTraits::template convert_from<U, P>(other_bits));
P::exchange(other.m_bits, P::template convert_from<U, P>(bits));
}
ALWAYS_INLINE RefPtr& operator=(RefPtr&& other)
{
if (this != &other)
assign_raw(other.leak_ref_raw());
return *this;
}
template<typename U, typename P = RefPtrTraits<U>>
ALWAYS_INLINE RefPtr& operator=(RefPtr<U, P>&& other)
{
assign_raw(PtrTraits::template convert_from<U, P>(other.leak_ref_raw()));
return *this;
}
template<typename U>
ALWAYS_INLINE RefPtr& operator=(NonnullRefPtr<U>&& other)
{
assign_raw(PtrTraits::as_bits(&other.leak_ref()));
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const NonnullRefPtr<T>& other)
{
assign_raw(PtrTraits::as_bits(other.add_ref()));
return *this;
}
template<typename U>
ALWAYS_INLINE RefPtr& operator=(const NonnullRefPtr<U>& other)
{
assign_raw(PtrTraits::as_bits(other.add_ref()));
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const RefPtr& other)
{
if (this != &other)
assign_raw(other.add_ref_raw());
return *this;
}
template<typename U>
ALWAYS_INLINE RefPtr& operator=(const RefPtr<U>& other)
{
assign_raw(other.add_ref_raw());
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const T* ptr)
{
ref_if_not_null(const_cast<T*>(ptr));
assign_raw(PtrTraits::as_bits(const_cast<T*>(ptr)));
return *this;
}
ALWAYS_INLINE RefPtr& operator=(const T& object)
{
const_cast<T&>(object).ref();
assign_raw(PtrTraits::as_bits(const_cast<T*>(&object)));
return *this;
}
RefPtr& operator=(std::nullptr_t)
{
clear();
return *this;
}
ALWAYS_INLINE bool assign_if_null(RefPtr&& other)
{
if (this == &other)
return is_null();
return PtrTraits::exchange_if_null(m_bits, other.leak_ref_raw());
}
template<typename U, typename P = RefPtrTraits<U>>
ALWAYS_INLINE bool assign_if_null(RefPtr<U, P>&& other)
{
if (this == &other)
return is_null();
return PtrTraits::exchange_if_null(m_bits, PtrTraits::template convert_from<U, P>(other.leak_ref_raw()));
}
ALWAYS_INLINE void clear()
{
assign_raw(PtrTraits::default_null_value);
}
bool operator!() const { return PtrTraits::is_null(m_bits.load(AK::MemoryOrder::memory_order_relaxed)); }
[[nodiscard]] T* leak_ref()
{
FlatPtr bits = PtrTraits::exchange(m_bits, PtrTraits::default_null_value);
return PtrTraits::as_ptr(bits);
}
NonnullRefPtr<T> release_nonnull()
{
FlatPtr bits = PtrTraits::exchange(m_bits, PtrTraits::default_null_value);
VERIFY(!PtrTraits::is_null(bits));
return NonnullRefPtr<T>(NonnullRefPtr<T>::Adopt, *PtrTraits::as_ptr(bits));
}
ALWAYS_INLINE T* ptr() { return as_ptr(); }
ALWAYS_INLINE const T* ptr() const { return as_ptr(); }
ALWAYS_INLINE T* operator->()
{
return as_nonnull_ptr();
}
ALWAYS_INLINE const T* operator->() const
{
return as_nonnull_ptr();
}
ALWAYS_INLINE T& operator*()
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE const T& operator*() const
{
return *as_nonnull_ptr();
}
ALWAYS_INLINE operator const T*() const { return as_ptr(); }
ALWAYS_INLINE operator T*() { return as_ptr(); }
ALWAYS_INLINE operator bool() { return !is_null(); }
bool operator==(std::nullptr_t) const { return is_null(); }
bool operator!=(std::nullptr_t) const { return !is_null(); }
bool operator==(const RefPtr& other) const { return as_ptr() == other.as_ptr(); }
bool operator!=(const RefPtr& other) const { return as_ptr() != other.as_ptr(); }
bool operator==(RefPtr& other) { return as_ptr() == other.as_ptr(); }
bool operator!=(RefPtr& other) { return as_ptr() != other.as_ptr(); }
bool operator==(const T* other) const { return as_ptr() == other; }
bool operator!=(const T* other) const { return as_ptr() != other; }
bool operator==(T* other) { return as_ptr() == other; }
bool operator!=(T* other) { return as_ptr() != other; }
ALWAYS_INLINE bool is_null() const { return PtrTraits::is_null(m_bits.load(AK::MemoryOrder::memory_order_relaxed)); }
template<typename U = T, typename EnableIf<IsSame<U, T>::value && !IsNullPointer<typename PtrTraits::NullType>::value>::Type* = nullptr>
typename PtrTraits::NullType null_value() const
{
// make sure we are holding a null value
FlatPtr bits = m_bits.load(AK::MemoryOrder::memory_order_relaxed);
VERIFY(PtrTraits::is_null(bits));
return PtrTraits::to_null_value(bits);
}
template<typename U = T, typename EnableIf<IsSame<U, T>::value && !IsNullPointer<typename PtrTraits::NullType>::value>::Type* = nullptr>
void set_null_value(typename PtrTraits::NullType value)
{
// make sure that new null value would be interpreted as a null value
FlatPtr bits = PtrTraits::from_null_value(value);
VERIFY(PtrTraits::is_null(bits));
assign_raw(bits);
}
private:
template<typename F>
void do_while_locked(F f) const
{
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
FlatPtr bits = PtrTraits::lock(m_bits);
T* ptr = PtrTraits::as_ptr(bits);
f(ptr);
PtrTraits::unlock(m_bits, bits);
}
[[nodiscard]] ALWAYS_INLINE FlatPtr leak_ref_raw()
{
return PtrTraits::exchange(m_bits, PtrTraits::default_null_value);
}
[[nodiscard]] ALWAYS_INLINE FlatPtr add_ref_raw() const
{
#ifdef KERNEL
// We don't want to be pre-empted while we have the lock bit set
Kernel::ScopedCritical critical;
#endif
// This prevents a race condition between thread A and B:
// 1. Thread A copies RefPtr, e.g. through assignment or copy constructor,
// gets the pointer from source, but is pre-empted before adding
// another reference
// 2. Thread B calls clear, leak_ref, or release_nonnull on source, and
// then drops the last reference, causing the object to be deleted
// 3. Thread A finishes step #1 by attempting to add a reference to
// the object that was already deleted in step #2
FlatPtr bits = PtrTraits::lock(m_bits);
if (T* ptr = PtrTraits::as_ptr(bits))
ptr->ref();
PtrTraits::unlock(m_bits, bits);
return bits;
}
ALWAYS_INLINE void assign_raw(FlatPtr bits)
{
FlatPtr prev_bits = PtrTraits::exchange(m_bits, bits);
unref_if_not_null(PtrTraits::as_ptr(prev_bits));
}
ALWAYS_INLINE T* as_ptr() const
{
return PtrTraits::as_ptr(m_bits.load(AK::MemoryOrder::memory_order_relaxed));
}
ALWAYS_INLINE T* as_nonnull_ptr() const
{
return as_nonnull_ptr(m_bits.load(AK::MemoryOrder::memory_order_relaxed));
}
ALWAYS_INLINE T* as_nonnull_ptr(FlatPtr bits) const
{
VERIFY(!PtrTraits::is_null(bits));
return PtrTraits::as_ptr(bits);
}
mutable Atomic<FlatPtr> m_bits { PtrTraits::default_null_value };
};
template<typename T, typename PtrTraits = RefPtrTraits<T>>
inline const LogStream& operator<<(const LogStream& stream, const RefPtr<T, PtrTraits>& value)
{
return stream << value.ptr();
}
template<typename T>
struct Traits<RefPtr<T>> : public GenericTraits<RefPtr<T>> {
using PeekType = const T*;
static unsigned hash(const RefPtr<T>& p) { return ptr_hash(p.ptr()); }
static bool equals(const RefPtr<T>& a, const RefPtr<T>& b) { return a.ptr() == b.ptr(); }
};
template<typename T, typename U>
inline NonnullRefPtr<T> static_ptr_cast(const NonnullRefPtr<U>& ptr)
{
return NonnullRefPtr<T>(static_cast<const T&>(*ptr));
}
template<typename T, typename U, typename PtrTraits = RefPtrTraits<T>>
inline RefPtr<T> static_ptr_cast(const RefPtr<U>& ptr)
{
return RefPtr<T, PtrTraits>(static_cast<const T*>(ptr.ptr()));
}
template<typename T, typename PtrTraitsT, typename U, typename PtrTraitsU>
inline void swap(RefPtr<T, PtrTraitsT>& a, RefPtr<U, PtrTraitsU>& b)
{
a.swap(b);
}
}
using AK::RefPtr;
using AK::static_ptr_cast;