serenity/Kernel/Arch/i386/CPU.h
Andreas Kling 5b7f8634e3 Kernel: Set the G (global) bit for kernel page tables
Since the kernel page tables are shared between all processes, there's
no need to (implicitly) flush the TLB for them on every context switch.

Setting the G bit on kernel page tables allows the CPU to keep the
translation caches around.
2019-11-03 23:51:55 +01:00

480 lines
11 KiB
C++

#pragma once
#include <AK/Badge.h>
#include <AK/Noncopyable.h>
#include <Kernel/VM/VirtualAddress.h>
#include <Kernel/kstdio.h>
#define PAGE_SIZE 4096
#define PAGE_MASK 0xfffff000
class MemoryManager;
class PageTableEntry;
struct [[gnu::packed]] TSS32
{
u16 backlink, __blh;
u32 esp0;
u16 ss0, __ss0h;
u32 esp1;
u16 ss1, __ss1h;
u32 esp2;
u16 ss2, __ss2h;
u32 cr3, eip, eflags;
u32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
u16 es, __esh;
u16 cs, __csh;
u16 ss, __ssh;
u16 ds, __dsh;
u16 fs, __fsh;
u16 gs, __gsh;
u16 ldt, __ldth;
u16 trace, iomapbase;
};
union [[gnu::packed]] Descriptor
{
struct {
u16 limit_lo;
u16 base_lo;
u8 base_hi;
u8 type : 4;
u8 descriptor_type : 1;
u8 dpl : 2;
u8 segment_present : 1;
u8 limit_hi : 4;
u8 : 1;
u8 zero : 1;
u8 operation_size : 1;
u8 granularity : 1;
u8 base_hi2;
};
struct {
u32 low;
u32 high;
};
enum Type {
Invalid = 0,
AvailableTSS_16bit = 0x1,
LDT = 0x2,
BusyTSS_16bit = 0x3,
CallGate_16bit = 0x4,
TaskGate = 0x5,
InterruptGate_16bit = 0x6,
TrapGate_16bit = 0x7,
AvailableTSS_32bit = 0x9,
BusyTSS_32bit = 0xb,
CallGate_32bit = 0xc,
InterruptGate_32bit = 0xe,
TrapGate_32bit = 0xf,
};
void set_base(void* b)
{
base_lo = (u32)(b)&0xffff;
base_hi = ((u32)(b) >> 16) & 0xff;
base_hi2 = ((u32)(b) >> 24) & 0xff;
}
void set_limit(u32 l)
{
limit_lo = (u32)l & 0xffff;
limit_hi = ((u32)l >> 16) & 0xff;
}
};
class PageDirectoryEntry {
AK_MAKE_NONCOPYABLE(PageDirectoryEntry);
public:
PageTableEntry* page_table_base() { return reinterpret_cast<PageTableEntry*>(m_raw & 0xfffff000u); }
void set_page_table_base(u32 value)
{
m_raw &= 0xfff;
m_raw |= value & 0xfffff000;
}
u32 raw() const { return m_raw; }
void copy_from(Badge<MemoryManager>, const PageDirectoryEntry& other) { m_raw = other.m_raw; }
enum Flags {
Present = 1 << 0,
ReadWrite = 1 << 1,
UserSupervisor = 1 << 2,
WriteThrough = 1 << 3,
CacheDisabled = 1 << 4,
Global = 1 << 8,
};
bool is_present() const { return raw() & Present; }
void set_present(bool b) { set_bit(Present, b); }
bool is_user_allowed() const { return raw() & UserSupervisor; }
void set_user_allowed(bool b) { set_bit(UserSupervisor, b); }
bool is_writable() const { return raw() & ReadWrite; }
void set_writable(bool b) { set_bit(ReadWrite, b); }
bool is_write_through() const { return raw() & WriteThrough; }
void set_write_through(bool b) { set_bit(WriteThrough, b); }
bool is_cache_disabled() const { return raw() & CacheDisabled; }
void set_cache_disabled(bool b) { set_bit(CacheDisabled, b); }
bool is_global() const { return raw() & Global; }
void set_global(bool b) { set_bit(Global, b); }
void set_bit(u32 bit, bool value)
{
if (value)
m_raw |= bit;
else
m_raw &= ~bit;
}
private:
u32 m_raw;
};
class PageTableEntry {
AK_MAKE_NONCOPYABLE(PageTableEntry);
public:
void* physical_page_base() { return reinterpret_cast<void*>(m_raw & 0xfffff000u); }
void set_physical_page_base(u32 value)
{
m_raw &= 0xfff;
m_raw |= value & 0xfffff000;
}
u32 raw() const { return m_raw; }
enum Flags {
Present = 1 << 0,
ReadWrite = 1 << 1,
UserSupervisor = 1 << 2,
WriteThrough = 1 << 3,
CacheDisabled = 1 << 4,
Global = 1 << 8,
};
bool is_present() const { return raw() & Present; }
void set_present(bool b) { set_bit(Present, b); }
bool is_user_allowed() const { return raw() & UserSupervisor; }
void set_user_allowed(bool b) { set_bit(UserSupervisor, b); }
bool is_writable() const { return raw() & ReadWrite; }
void set_writable(bool b) { set_bit(ReadWrite, b); }
bool is_write_through() const { return raw() & WriteThrough; }
void set_write_through(bool b) { set_bit(WriteThrough, b); }
bool is_cache_disabled() const { return raw() & CacheDisabled; }
void set_cache_disabled(bool b) { set_bit(CacheDisabled, b); }
bool is_global() const { return raw() & Global; }
void set_global(bool b) { set_bit(Global, b); }
void set_bit(u32 bit, bool value)
{
if (value)
m_raw |= bit;
else
m_raw &= ~bit;
}
private:
u32 m_raw;
};
static_assert(sizeof(PageDirectoryEntry) == 4);
static_assert(sizeof(PageTableEntry) == 4);
class IRQHandler;
void gdt_init();
void idt_init();
void sse_init();
void register_interrupt_handler(u8 number, void (*f)());
void register_user_callable_interrupt_handler(u8 number, void (*f)());
void register_irq_handler(u8 number, IRQHandler&);
void unregister_irq_handler(u8 number, IRQHandler&);
void flush_idt();
void flush_gdt();
void load_task_register(u16 selector);
u16 gdt_alloc_entry();
void gdt_free_entry(u16);
Descriptor& get_gdt_entry(u16 selector);
void write_gdt_entry(u16 selector, Descriptor&);
[[noreturn]] static inline void hang()
{
asm volatile("cli; hlt");
for (;;) {
}
}
#define LSW(x) ((u32)(x)&0xFFFF)
#define MSW(x) (((u32)(x) >> 16) & 0xFFFF)
#define LSB(x) ((x)&0xFF)
#define MSB(x) (((x) >> 8) & 0xFF)
#define cli() asm volatile("cli" :: \
: "memory")
#define sti() asm volatile("sti" :: \
: "memory")
#define memory_barrier() asm volatile("" :: \
: "memory")
inline u32 cpu_cr3()
{
u32 cr3;
asm volatile("movl %%cr3, %%eax"
: "=a"(cr3));
return cr3;
}
inline u32 cpu_flags()
{
u32 flags;
asm volatile(
"pushf\n"
"pop %0\n"
: "=rm"(flags)::"memory");
return flags;
}
inline u32 read_fs_u32(u32 offset)
{
u32 val;
asm volatile(
"movl %%fs:%a[off], %k[val]"
: [val] "=r" (val)
: [off] "ir" (offset));
return val;
}
inline void write_fs_u32(u32 offset, u32 val)
{
asm volatile(
"movl %k[val], %%fs:%a[off]"
:: [off] "ir" (offset), [val] "ir" (val)
: "memory");
}
inline bool are_interrupts_enabled()
{
return cpu_flags() & 0x200;
}
class InterruptFlagSaver {
public:
InterruptFlagSaver()
{
m_flags = cpu_flags();
}
~InterruptFlagSaver()
{
if (m_flags & 0x200)
sti();
else
cli();
}
private:
u32 m_flags;
};
class InterruptDisabler {
public:
InterruptDisabler()
{
m_flags = cpu_flags();
cli();
}
~InterruptDisabler()
{
if (m_flags & 0x200)
sti();
}
private:
u32 m_flags;
};
/* Map IRQ0-15 @ ISR 0x50-0x5F */
#define IRQ_VECTOR_BASE 0x50
struct PageFaultFlags {
enum Flags {
NotPresent = 0x00,
ProtectionViolation = 0x01,
Read = 0x00,
Write = 0x02,
UserMode = 0x04,
SupervisorMode = 0x00,
InstructionFetch = 0x08,
};
};
class PageFault {
public:
PageFault(u16 code, VirtualAddress vaddr)
: m_code(code)
, m_vaddr(vaddr)
{
}
enum class Type {
PageNotPresent = PageFaultFlags::NotPresent,
ProtectionViolation = PageFaultFlags::ProtectionViolation,
};
enum class Access {
Read = PageFaultFlags::Read,
Write = PageFaultFlags::Write,
};
VirtualAddress vaddr() const { return m_vaddr; }
u16 code() const { return m_code; }
Type type() const { return (Type)(m_code & 1); }
Access access() const { return (Access)(m_code & 2); }
bool is_not_present() const { return (m_code & 1) == PageFaultFlags::NotPresent; }
bool is_protection_violation() const { return (m_code & 1) == PageFaultFlags::ProtectionViolation; }
bool is_read() const { return (m_code & 2) == PageFaultFlags::Read; }
bool is_write() const { return (m_code & 2) == PageFaultFlags::Write; }
bool is_user() const { return (m_code & 4) == PageFaultFlags::UserMode; }
bool is_supervisor() const { return (m_code & 4) == PageFaultFlags::SupervisorMode; }
bool is_instruction_fetch() const { return (m_code & 8) == PageFaultFlags::InstructionFetch; }
private:
u16 m_code;
VirtualAddress m_vaddr;
};
struct [[gnu::packed]] RegisterDump
{
u16 ss;
u16 gs;
u16 fs;
u16 es;
u16 ds;
u32 edi;
u32 esi;
u32 ebp;
u32 esp;
u32 ebx;
u32 edx;
u32 ecx;
u32 eax;
u16 exception_code;
u16 __exception_code_padding;
u32 eip;
u16 cs;
u16 __csPadding;
u32 eflags;
u32 esp_if_crossRing;
u16 ss_if_crossRing;
};
struct [[gnu::aligned(16)]] FPUState
{
u8 buffer[512];
};
inline constexpr u32 page_base_of(u32 address)
{
return address & 0xfffff000;
}
class CPUID {
public:
CPUID(u32 function) { asm volatile("cpuid"
: "=a"(m_eax), "=b"(m_ebx), "=c"(m_ecx), "=d"(m_edx)
: "a"(function), "c"(0)); }
u32 eax() const { return m_eax; }
u32 ebx() const { return m_ebx; }
u32 ecx() const { return m_ecx; }
u32 edx() const { return m_edx; }
private:
u32 m_eax { 0xffffffff };
u32 m_ebx { 0xffffffff };
u32 m_ecx { 0xffffffff };
u32 m_edx { 0xffffffff };
};
inline void read_tsc(u32& lsw, u32& msw)
{
asm volatile("rdtsc"
: "=d"(msw), "=a"(lsw));
}
struct Stopwatch {
union SplitQword {
struct {
uint32_t lsw;
uint32_t msw;
};
uint64_t qw { 0 };
};
public:
Stopwatch(const char* name)
: m_name(name)
{
read_tsc(m_start.lsw, m_start.msw);
}
~Stopwatch()
{
SplitQword end;
read_tsc(end.lsw, end.msw);
uint64_t diff = end.qw - m_start.qw;
dbgprintf("Stopwatch(%s): %Q ticks\n", m_name, diff);
}
private:
const char* m_name { nullptr };
SplitQword m_start;
};
class MSR {
uint32_t m_msr;
public:
static bool have()
{
CPUID id(1);
return (id.edx() & (1 << 5)) != 0;
}
MSR(const MSR&) = delete;
MSR& operator=(const MSR&) = delete;
MSR(uint32_t msr):
m_msr(msr)
{
}
void get(u32& low, u32& high)
{
asm volatile("rdmsr"
: "=a"(low), "=d"(high)
: "c"(m_msr));
}
void set(u32 low, u32 high)
{
asm volatile("wrmsr"
:: "a"(low), "d"(high), "c"(m_msr));
}
};