serenity/Userland/Libraries/LibSQL/Value.cpp
Jan de Visser 87f4c1677b LibSQL: Relax assignment rules for Null Values
It should be possible to assign a Value of any type to a Value which
currently is Null.
2021-11-10 14:47:49 +01:00

1134 lines
26 KiB
C++

/*
* Copyright (c) 2021, Jan de Visser <jan@de-visser.net>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibSQL/Serializer.h>
#include <LibSQL/Value.h>
#include <math.h>
#include <string.h>
namespace SQL {
Value::Value(SQLType sql_type)
{
setup(sql_type);
}
void Value::setup(SQLType type)
{
switch (type) {
#undef __ENUMERATE_SQL_TYPE
#define __ENUMERATE_SQL_TYPE(name, cardinal, type, impl, size) \
case SQLType::type: \
m_impl.set<type##Impl>(type##Impl()); \
break;
ENUMERATE_SQL_TYPES(__ENUMERATE_SQL_TYPE)
#undef __ENUMERATE_SQL_TYPE
default:
VERIFY_NOT_REACHED();
}
}
Value::Value(SQLType sql_type, Value const& value)
: Value(sql_type)
{
assign(value);
}
Value::Value(SQLType sql_type, String const& string)
: Value(sql_type)
{
assign(string);
}
Value::Value(SQLType sql_type, char const* string)
: Value(sql_type)
{
assign(String(string));
}
Value::Value(SQLType sql_type, int integer)
: Value(sql_type)
{
assign(integer);
}
Value::Value(SQLType sql_type, double dbl)
: Value(sql_type)
{
assign(dbl);
}
Value::Value(SQLType sql_type, bool boolean)
: Value(sql_type)
{
assign(boolean);
}
Value::Value(String const& string)
: Value(SQLType::Text)
{
assign(string);
}
Value::Value(char const* string)
: Value(SQLType::Text)
{
assign(String(string));
}
Value::Value(int integer)
: Value(SQLType::Integer)
{
assign(integer);
}
Value::Value(u32 unsigned_integer)
: Value(SQLType::Integer)
{
assign(unsigned_integer);
}
Value::Value(double dbl)
: Value(SQLType::Float)
{
assign(dbl);
}
Value::Value(bool boolean)
: Value(SQLType::Boolean)
{
assign(boolean);
}
Value Value::create_tuple(NonnullRefPtr<TupleDescriptor> const& tuple_descriptor)
{
return Value(Value::SetImplementationSingleton, TupleImpl(tuple_descriptor));
}
Value Value::create_array(SQLType element_type, Optional<size_t> const& max_size)
{
return Value(Value::SetImplementationSingleton, ArrayImpl(element_type, max_size));
}
Value const& Value::null()
{
static Value s_null(SQLType::Null);
return s_null;
}
bool Value::is_null() const
{
return m_impl.visit([&](auto& impl) { return impl.is_null(); });
}
SQLType Value::type() const
{
return m_impl.visit([&](auto& impl) { return impl.type(); });
}
String Value::type_name() const
{
return m_impl.visit([&](auto& impl) { return impl.type_name(); });
}
BaseTypeImpl Value::downcast_to_basetype() const
{
return m_impl.downcast<NullImpl, TextImpl, IntegerImpl, FloatImpl, BooleanImpl>();
}
String Value::to_string() const
{
if (is_null())
return "(null)";
return m_impl.visit([&](auto& impl) { return impl.to_string(); });
}
Optional<int> Value::to_int() const
{
if (is_null())
return {};
return m_impl.visit([&](auto& impl) { return impl.to_int(); });
}
Optional<u32> Value::to_u32() const
{
if (is_null())
return {};
auto ret = to_int();
if (ret.has_value())
return static_cast<u32>(ret.value());
return {};
}
Optional<double> Value::to_double() const
{
if (is_null())
return {};
return m_impl.visit([&](auto& impl) { return impl.to_double(); });
}
Optional<bool> Value::to_bool() const
{
if (is_null())
return {};
return m_impl.visit([&](auto& impl) { return impl.to_bool(); });
}
Optional<Vector<Value>> Value::to_vector() const
{
if (is_null())
return {};
Vector<Value> vector;
if (m_impl.visit([&](auto& impl) { return impl.to_vector(vector); }))
return vector;
else
return {};
}
Value::operator String() const
{
return to_string();
}
Value::operator int() const
{
auto i = to_int();
VERIFY(i.has_value());
return i.value();
}
Value::operator u32() const
{
auto i = to_u32();
VERIFY(i.has_value());
return i.value();
}
Value::operator double() const
{
auto d = to_double();
VERIFY(d.has_value());
return d.value();
}
Value::operator bool() const
{
auto b = to_bool();
VERIFY(b.has_value());
return b.value();
}
void Value::assign(Value const& other_value)
{
m_impl.visit([&](auto& impl) { impl.assign(other_value); });
}
void Value::assign(String const& string_value)
{
m_impl.visit([&](auto& impl) { impl.assign_string(string_value); });
}
void Value::assign(int int_value)
{
m_impl.visit([&](auto& impl) { impl.assign_int(int_value); });
}
void Value::assign(u32 unsigned_int_value)
{
m_impl.visit([&](auto& impl) { impl.assign_int(unsigned_int_value); });
}
void Value::assign(double double_value)
{
m_impl.visit([&](auto& impl) { impl.assign_double(double_value); });
}
void Value::assign(bool bool_value)
{
m_impl.visit([&](auto& impl) { impl.assign_bool(bool_value); });
}
void Value::assign(Vector<Value> const& values)
{
m_impl.visit([&](auto& impl) { impl.assign_vector(values); });
}
Value& Value::operator=(Value const& other)
{
if (this != &other) {
if (other.is_null()) {
assign(null());
} else if (is_null()) {
assign(other);
} else {
VERIFY(can_cast(other));
assign(other);
}
}
return (*this);
}
Value& Value::operator=(String const& value)
{
assign(value);
return (*this);
}
Value& Value::operator=(char const* value)
{
assign(String(value));
return (*this);
}
Value& Value::operator=(int value)
{
assign(value);
return (*this);
}
Value& Value::operator=(u32 value)
{
assign(static_cast<int>(value));
return (*this);
}
Value& Value::operator=(double value)
{
assign(value);
return (*this);
}
Value& Value::operator=(bool value)
{
assign(value);
return (*this);
}
Value& Value::operator=(Vector<Value> const& vector)
{
assign(vector);
return (*this);
}
size_t Value::length() const
{
return m_impl.visit([&](auto& impl) { return impl.length(); });
}
u32 Value::hash() const
{
return (is_null()) ? 0u : m_impl.visit([&](auto& impl) { return impl.hash(); });
}
bool Value::can_cast(Value const& other_value) const
{
if (type() == other_value.type())
return true;
return m_impl.visit([&](auto& impl) { return impl.can_cast(other_value); });
}
int Value::compare(Value const& other) const
{
if (is_null())
return -1;
if (other.is_null())
return 1;
return m_impl.visit([&](auto& impl) { return impl.compare(other); });
}
bool Value::operator==(Value const& other) const
{
return compare(other) == 0;
}
bool Value::operator==(String const& string_value) const
{
return to_string() == string_value;
}
bool Value::operator==(int int_value) const
{
auto i = to_int();
if (!i.has_value())
return false;
return i.value() == int_value;
}
bool Value::operator==(double double_value) const
{
auto d = to_double();
if (!d.has_value())
return false;
return d.value() == double_value;
}
bool Value::operator!=(Value const& other) const
{
return compare(other) != 0;
}
bool Value::operator<(Value const& other) const
{
return compare(other) < 0;
}
bool Value::operator<=(Value const& other) const
{
return compare(other) <= 0;
}
bool Value::operator>(Value const& other) const
{
return compare(other) > 0;
}
bool Value::operator>=(Value const& other) const
{
return compare(other) >= 0;
}
Value Value::add(Value const& other) const
{
if (auto double_maybe = to_double(); double_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value(double_maybe.value() + other_double_maybe.value());
if (auto int_maybe = other.to_int(); int_maybe.has_value())
return Value(double_maybe.value() + (double)int_maybe.value());
VERIFY_NOT_REACHED();
}
if (auto int_maybe = to_double(); int_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value(other_double_maybe.value() + (double)int_maybe.value());
if (auto other_int_maybe = other.to_int(); other_int_maybe.has_value())
return Value(int_maybe.value() + other_int_maybe.value());
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
Value Value::subtract(Value const& other) const
{
if (auto double_maybe = to_double(); double_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value(double_maybe.value() - other_double_maybe.value());
if (auto int_maybe = other.to_int(); int_maybe.has_value())
return Value(double_maybe.value() - (double)int_maybe.value());
VERIFY_NOT_REACHED();
}
if (auto int_maybe = to_double(); int_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value((double)int_maybe.value() - other_double_maybe.value());
if (auto other_int_maybe = other.to_int(); other_int_maybe.has_value())
return Value(int_maybe.value() - other_int_maybe.value());
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
Value Value::multiply(Value const& other) const
{
if (auto double_maybe = to_double(); double_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value(double_maybe.value() * other_double_maybe.value());
if (auto int_maybe = other.to_int(); int_maybe.has_value())
return Value(double_maybe.value() * (double)int_maybe.value());
VERIFY_NOT_REACHED();
}
if (auto int_maybe = to_double(); int_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value((double)int_maybe.value() * other_double_maybe.value());
if (auto other_int_maybe = other.to_int(); other_int_maybe.has_value())
return Value(int_maybe.value() * other_int_maybe.value());
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
Value Value::divide(Value const& other) const
{
if (auto double_maybe = to_double(); double_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value(double_maybe.value() / other_double_maybe.value());
if (auto int_maybe = other.to_int(); int_maybe.has_value())
return Value(double_maybe.value() / (double)int_maybe.value());
VERIFY_NOT_REACHED();
}
if (auto int_maybe = to_double(); int_maybe.has_value()) {
if (auto other_double_maybe = other.to_double(); other_double_maybe.has_value())
return Value((double)int_maybe.value() / other_double_maybe.value());
if (auto other_int_maybe = other.to_int(); other_int_maybe.has_value())
return Value(int_maybe.value() / other_int_maybe.value());
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
Value Value::modulo(Value const& other) const
{
auto int_maybe_1 = to_int();
auto int_maybe_2 = other.to_int();
if (!int_maybe_1.has_value() || !int_maybe_2.has_value()) {
// TODO Error handling
VERIFY_NOT_REACHED();
}
return Value(int_maybe_1.value() % int_maybe_2.value());
}
Value Value::shift_left(Value const& other) const
{
auto u32_maybe = to_u32();
auto num_bytes_maybe = other.to_int();
if (!u32_maybe.has_value() || !num_bytes_maybe.has_value()) {
// TODO Error handling
VERIFY_NOT_REACHED();
}
return Value(u32_maybe.value() << num_bytes_maybe.value());
}
Value Value::shift_right(Value const& other) const
{
auto u32_maybe = to_u32();
auto num_bytes_maybe = other.to_int();
if (!u32_maybe.has_value() || !num_bytes_maybe.has_value()) {
// TODO Error handling
VERIFY_NOT_REACHED();
}
return Value(u32_maybe.value() >> num_bytes_maybe.value());
}
Value Value::bitwise_or(Value const& other) const
{
auto u32_maybe_1 = to_u32();
auto u32_maybe_2 = other.to_u32();
if (!u32_maybe_1.has_value() || !u32_maybe_2.has_value()) {
// TODO Error handling
VERIFY_NOT_REACHED();
}
return Value(u32_maybe_1.value() | u32_maybe_2.value());
}
Value Value::bitwise_and(Value const& other) const
{
auto u32_maybe_1 = to_u32();
auto u32_maybe_2 = other.to_u32();
if (!u32_maybe_1.has_value() || !u32_maybe_2.has_value()) {
// TODO Error handling
VERIFY_NOT_REACHED();
}
return Value(u32_maybe_1.value() & u32_maybe_2.value());
}
void Value::serialize(Serializer& serializer) const
{
u8 type_flags = (u8)type();
if (is_null())
type_flags |= (u8)SQLType::Null;
serializer.serialize<u8>(type_flags);
if (!is_null())
m_impl.visit([&](auto& impl) { serializer.serialize(impl); });
}
void Value::deserialize(Serializer& serializer)
{
auto type_flags = serializer.deserialize<u8>();
bool is_null = false;
if ((type_flags & (u8)SQLType::Null) && (type_flags != (u8)SQLType::Null)) {
type_flags &= ~((u8)SQLType::Null);
is_null = true;
}
auto type = (SQLType)type_flags;
VERIFY(!is_null || (type != SQLType::Tuple && type != SQLType::Array));
setup(type);
if (!is_null) {
m_impl.visit([&](auto& impl) { impl.deserialize(serializer); });
}
}
bool NullImpl::can_cast(Value const& value)
{
return value.is_null();
}
int NullImpl::compare(Value const& other)
{
return other.type() == SQLType::Null;
}
String TextImpl::to_string() const
{
return value();
}
Optional<int> TextImpl::to_int() const
{
if (!m_value.has_value())
return {};
return value().to_int();
}
Optional<double> TextImpl::to_double() const
{
if (!m_value.has_value())
return {};
char* end_ptr;
double ret = strtod(value().characters(), &end_ptr);
if (end_ptr == value().characters()) {
return {};
}
return ret;
}
Optional<bool> TextImpl::to_bool() const
{
if (!m_value.has_value())
return {};
if (value().equals_ignoring_case("true") || value().equals_ignoring_case("t"))
return true;
if (value().equals_ignoring_case("false") || value().equals_ignoring_case("f"))
return false;
return {};
}
void TextImpl::assign(Value const& other_value)
{
if (other_value.type() == SQLType::Null) {
m_value = {};
} else {
m_value = other_value.to_string();
}
}
void TextImpl::assign_string(String const& string_value)
{
m_value = string_value;
}
void TextImpl::assign_int(int int_value)
{
m_value = String::number(int_value);
}
void TextImpl::assign_double(double double_value)
{
m_value = String::number(double_value);
}
void TextImpl::assign_bool(bool bool_value)
{
m_value = (bool_value) ? "true" : "false";
}
size_t TextImpl::length() const
{
return (is_null()) ? 0 : sizeof(u32) + value().length();
}
int TextImpl::compare(Value const& other) const
{
if (is_null())
return -1;
auto s1 = value();
auto s2 = other.to_string();
if (s1 == s2)
return 0;
return (s1 < s2) ? -1 : 1;
}
u32 TextImpl::hash() const
{
return value().hash();
}
String IntegerImpl::to_string() const
{
return String::formatted("{}", value());
}
Optional<int> IntegerImpl::to_int() const
{
return value();
}
Optional<double> IntegerImpl::to_double() const
{
return static_cast<double>(value());
}
Optional<bool> IntegerImpl::to_bool() const
{
return value() != 0;
}
void IntegerImpl::assign(Value const& other_value)
{
auto i = other_value.to_int();
if (!i.has_value())
m_value = {};
else
m_value = i.value();
}
void IntegerImpl::assign_string(String const& string_value)
{
auto i = string_value.to_int();
if (!i.has_value())
m_value = {};
else
m_value = i.value();
}
void IntegerImpl::assign_int(int int_value)
{
m_value = int_value;
}
void IntegerImpl::assign_double(double double_value)
{
m_value = static_cast<int>(round(double_value));
}
void IntegerImpl::assign_bool(bool bool_value)
{
m_value = (bool_value) ? 1 : 0;
}
bool IntegerImpl::can_cast(Value const& other_value)
{
return other_value.to_int().has_value();
}
int IntegerImpl::compare(Value const& other) const
{
auto casted = other.to_int();
if (!casted.has_value()) {
return 1;
}
return value() - casted.value();
}
u32 IntegerImpl::hash() const
{
return int_hash(value());
}
String FloatImpl::to_string() const
{
return String::formatted("{}", value());
}
Optional<int> FloatImpl::to_int() const
{
return static_cast<int>(round(value()));
}
Optional<double> FloatImpl::to_double() const
{
return value();
}
void FloatImpl::assign(Value const& other_value)
{
auto i = other_value.to_double();
if (!i.has_value())
m_value = {};
else
m_value = i.value();
}
void FloatImpl::assign_string(String const& string_value)
{
char* end_ptr;
auto dbl = strtod(string_value.characters(), &end_ptr);
if (end_ptr == string_value.characters())
m_value = {};
else
m_value = dbl;
}
void FloatImpl::assign_int(int int_value)
{
m_value = int_value;
}
void FloatImpl::assign_double(double double_value)
{
m_value = double_value;
}
bool FloatImpl::can_cast(Value const& other_value)
{
return other_value.to_double().has_value();
}
int FloatImpl::compare(Value const& other) const
{
auto casted = other.to_double();
if (!casted.has_value()) {
return 1;
}
auto diff = value() - casted.value();
return (diff < NumericLimits<double>::epsilon()) ? 0 : ((diff > 0) ? 1 : -1);
}
String BooleanImpl::to_string() const
{
return (value()) ? "true" : "false";
}
Optional<int> BooleanImpl::to_int() const
{
return (value()) ? 1 : 0;
}
Optional<double> BooleanImpl::to_double()
{
return {};
}
Optional<bool> BooleanImpl::to_bool() const
{
return value();
}
void BooleanImpl::assign(Value const& other_value)
{
auto b = other_value.to_bool();
if (!b.has_value())
m_value = {};
else
m_value = b.value();
}
void BooleanImpl::assign_string(String const& string_value)
{
return assign(Value(string_value));
}
void BooleanImpl::assign_int(int int_value)
{
m_value = (int_value != 0);
}
void BooleanImpl::assign_double(double)
{
m_value = {};
}
void BooleanImpl::assign_bool(bool bool_value)
{
m_value = bool_value;
}
bool BooleanImpl::can_cast(Value const& other_value)
{
return other_value.to_bool().has_value();
}
int BooleanImpl::compare(Value const& other) const
{
auto casted = other.to_bool();
if (!casted.has_value()) {
return 1;
}
return value() ^ casted.value(); // xor - zero if both true or both false, 1 otherwise.
}
u32 BooleanImpl::hash() const
{
return int_hash(value());
}
void ContainerValueImpl::assign_vector(Vector<Value> const& vector_values)
{
if (!validate_before_assignment(vector_values)) {
m_value = {};
return;
}
m_value = Vector<BaseTypeImpl>();
for (auto& value : vector_values) {
if (!append(value)) {
m_value = {};
return;
}
}
if (!validate_after_assignment())
m_value = {};
}
bool ContainerValueImpl::to_vector(Vector<Value>& vector) const
{
vector.clear();
for (auto& value : value()) {
vector.empend(Value(value));
}
return true;
}
Vector<String> ContainerValueImpl::to_string_vector() const
{
Vector<String> ret;
for (auto& value : value()) {
ret.append(Value(value).to_string());
}
return ret;
}
String ContainerValueImpl::to_string() const
{
StringBuilder builder;
builder.append("(");
StringBuilder joined;
joined.join(", ", to_string_vector());
builder.append(joined.string_view());
builder.append(")");
return builder.build();
}
u32 ContainerValueImpl::hash() const
{
u32 ret = 0u;
for (auto& value : value()) {
Value v(value);
// This is an extension of the pair_int_hash function from AK/HashFunctions.h:
if (!ret)
ret = v.hash();
else
ret = int_hash((ret * 209) ^ (v.hash() * 413));
}
return ret;
}
bool ContainerValueImpl::append(Value const& value)
{
if (value.type() == SQLType::Tuple || value.type() == SQLType::Array)
return false;
return append(value.downcast_to_basetype());
}
bool ContainerValueImpl::append(BaseTypeImpl const& impl)
{
if (!validate(impl))
return false;
m_value.value().empend(impl);
return true;
}
void ContainerValueImpl::serialize_values(Serializer& serializer) const
{
serializer.serialize((u32)size());
for (auto& impl : value()) {
serializer.serialize<Value>(Value(impl));
}
}
void ContainerValueImpl::deserialize_values(Serializer& serializer)
{
auto sz = serializer.deserialize<u32>();
m_value = Vector<BaseTypeImpl>();
for (auto ix = 0u; ix < sz; ix++) {
append(serializer.deserialize<Value>());
}
}
size_t ContainerValueImpl::length() const
{
size_t len = sizeof(u32);
for (auto& impl : value()) {
len += Value(impl).length();
}
return len;
}
void TupleImpl::assign(Value const& other)
{
if (other.type() != SQLType::Tuple) {
m_value = {};
return;
}
auto& other_impl = other.get_impl<TupleImpl>({});
auto other_descriptor = other_impl.m_descriptor;
if (m_descriptor && other_descriptor && m_descriptor->compare_ignoring_names(*other_descriptor)) {
m_value = {};
return;
}
assign_vector(other.to_vector().value());
}
size_t TupleImpl::length() const
{
return m_descriptor->length() + ContainerValueImpl::length();
}
bool TupleImpl::can_cast(Value const& other_value) const
{
if (other_value.type() != SQLType::Tuple)
return false;
return (m_descriptor == other_value.get_impl<TupleImpl>({}).m_descriptor);
}
int TupleImpl::compare(Value const& other) const
{
if (other.type() != SQLType::Tuple)
return 1;
auto& other_impl = other.get_impl<TupleImpl>({});
if (m_descriptor && other_impl.m_descriptor && m_descriptor->compare_ignoring_names(*other_impl.m_descriptor))
return 1;
auto other_values = other_impl.value();
if (size() != other_impl.size())
return (int)value().size() - (int)other_impl.size();
for (auto ix = 0u; ix < value().size(); ix++) {
auto ret = Value(value()[ix]).compare(Value(other_impl.value()[ix]));
if (ret != 0) {
if (m_descriptor && (ix < m_descriptor->size()) && (*m_descriptor)[ix].order == Order::Descending)
ret = -ret;
return ret;
}
}
return 0;
}
void TupleImpl::serialize(Serializer& serializer) const
{
serializer.serialize<TupleDescriptor>(*m_descriptor);
serialize_values(serializer);
}
void TupleImpl::deserialize(Serializer& serializer)
{
m_descriptor = serializer.adopt_and_deserialize<TupleDescriptor>();
deserialize_values(serializer);
}
void TupleImpl::infer_descriptor()
{
if (!m_descriptor) {
m_descriptor = adopt_ref(*new TupleDescriptor);
m_descriptor_inferred = true;
}
}
void TupleImpl::extend_descriptor(Value const& value)
{
VERIFY(m_descriptor_inferred);
m_descriptor->empend("", "", "", value.type(), Order::Ascending);
}
bool TupleImpl::validate_before_assignment(Vector<Value> const& values)
{
if (m_descriptor_inferred)
m_descriptor = nullptr;
if (!m_descriptor) {
infer_descriptor();
if (values.size() > m_descriptor->size()) {
for (auto ix = m_descriptor->size(); ix < values.size(); ix++) {
extend_descriptor(values[ix]);
}
}
}
return true;
}
bool TupleImpl::validate(BaseTypeImpl const& value)
{
if (!m_descriptor)
infer_descriptor();
if (m_descriptor_inferred && (this->value().size() == m_descriptor->size()))
extend_descriptor(Value(value));
if (m_descriptor->size() == this->value().size())
return false;
auto required_type = (*m_descriptor)[this->value().size()].type;
return Value(value).type() == required_type;
}
bool TupleImpl::validate_after_assignment()
{
for (auto ix = value().size(); ix < m_descriptor->size(); ++ix) {
auto required_type = (*m_descriptor)[ix].type;
append(Value(required_type));
}
return true;
}
void ArrayImpl::assign(Value const& other)
{
if (other.type() != SQLType::Array) {
m_value = {};
return;
}
auto& other_impl = other.get_impl<ArrayImpl>({});
if (m_max_size != other_impl.m_max_size || m_element_type != other_impl.m_element_type) {
m_value = {};
return;
}
assign_vector(other.to_vector().value());
}
size_t ArrayImpl::length() const
{
return sizeof(u8) + sizeof(u32) + ContainerValueImpl::length();
}
bool ArrayImpl::can_cast(Value const& other_value) const
{
if (other_value.type() != SQLType::Array)
return false;
auto& other_impl = other_value.get_impl<ArrayImpl>({});
return (m_max_size != other_impl.m_max_size || m_element_type != other_impl.m_element_type);
}
int ArrayImpl::compare(Value const& other) const
{
if (other.type() != SQLType::Array)
return 1;
auto other_impl = other.get_impl<ArrayImpl>({});
if (other_impl.m_element_type != m_element_type)
return 1;
if (other_impl.m_max_size.has_value() && m_max_size.has_value() && other_impl.m_max_size != m_max_size)
return (int)m_max_size.value() - (int)other_impl.m_max_size.value();
if (size() != other_impl.size())
return (int)size() - (int)other_impl.size();
for (auto ix = 0u; ix < size(); ix++) {
auto ret = Value(value()[ix]).compare(Value(other_impl.value()[ix]));
if (ret != 0) {
return ret;
}
}
return 0;
}
void ArrayImpl::serialize(Serializer& serializer) const
{
serializer.serialize((u8)m_element_type);
if (m_max_size.has_value())
serializer.serialize((u32)m_max_size.value());
else
serializer.serialize((u32)0);
serialize_values(serializer);
}
void ArrayImpl::deserialize(Serializer& serializer)
{
m_element_type = (SQLType)serializer.deserialize<u8>();
auto max_sz = serializer.deserialize<u32>();
if (max_sz)
m_max_size = max_sz;
else
m_max_size = {};
deserialize_values(serializer);
}
bool ArrayImpl::validate(BaseTypeImpl const& impl)
{
if (m_max_size.has_value() && (size() >= m_max_size.value()))
return false;
return Value(impl).type() == m_element_type;
}
}