serenity/AK/MemoryStream.h
AnotherTest 4c343c5f26 AK: Fix OOB access in DuplexMemoryStream::offset_of()
This fixes an OOB access when the last read/written chunk is empty (as we _just_
started on a new chunk).
Also adds a test case to TestMemoryStream.
Found via human fuzzing in the shell:
```sh
for $(cat /dev/urandom) {
    clear
    match $it {
        ?* as (x) {
            echo $x
            sleep 1
        }
    }
}
```
would assert at some point.
2020-11-17 17:07:39 +01:00

367 lines
10 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/MemMem.h>
#include <AK/Stream.h>
#include <AK/Vector.h>
namespace AK {
class InputMemoryStream final : public InputStream {
public:
explicit InputMemoryStream(ReadonlyBytes bytes)
: m_bytes(bytes)
{
}
bool unreliable_eof() const override { return eof(); }
bool eof() const { return m_offset >= m_bytes.size(); }
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
const auto count = min(bytes.size(), remaining());
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
m_offset += count;
return count;
}
bool read_or_error(Bytes bytes) override
{
if (remaining() < bytes.size()) {
set_recoverable_error();
return false;
}
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
m_offset += bytes.size();
return true;
}
bool discard_or_error(size_t count) override
{
if (remaining() < count) {
set_recoverable_error();
return false;
}
m_offset += count;
return true;
}
void seek(size_t offset)
{
ASSERT(offset < m_bytes.size());
m_offset = offset;
}
u8 peek_or_error() const
{
if (remaining() == 0) {
set_recoverable_error();
return 0;
}
return m_bytes[m_offset];
}
bool read_LEB128_unsigned(size_t& result)
{
const auto backup = m_offset;
result = 0;
size_t shift = 0;
while (true) {
if (eof()) {
m_offset = backup;
set_recoverable_error();
return false;
}
const u8 byte = m_bytes[m_offset++];
result |= (byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
return true;
}
bool read_LEB128_signed(ssize_t& result)
{
const auto backup = m_offset;
result = 0;
size_t shift = 0;
u8 byte = 0;
size_t size = sizeof(ssize_t) * 8;
do {
if (eof()) {
m_offset = backup;
set_recoverable_error();
return false;
}
byte = m_bytes[m_offset++];
result |= (byte & 0x7f) << shift;
} while (byte & (1 << 7));
if (shift < size && (byte & 0x40)) {
// sign extend
result |= (0xffffffffu << shift);
}
return true;
}
ReadonlyBytes bytes() const { return m_bytes; }
size_t offset() const { return m_offset; }
size_t remaining() const { return m_bytes.size() - m_offset; }
private:
ReadonlyBytes m_bytes;
size_t m_offset { 0 };
};
class OutputMemoryStream final : public OutputStream {
public:
explicit OutputMemoryStream(Bytes bytes)
: m_bytes(bytes)
{
}
size_t write(ReadonlyBytes bytes) override
{
const auto nwritten = bytes.copy_trimmed_to(m_bytes.slice(m_offset));
m_offset += nwritten;
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
if (remaining() < bytes.size()) {
set_recoverable_error();
return false;
}
write(bytes);
return true;
}
size_t fill_to_end(u8 value)
{
const auto nwritten = m_bytes.slice(m_offset).fill(value);
m_offset += nwritten;
return nwritten;
}
bool is_end() const { return remaining() == 0; }
ReadonlyBytes bytes() const { return { data(), size() }; }
Bytes bytes() { return { data(), size() }; }
const u8* data() const { return m_bytes.data(); }
u8* data() { return m_bytes.data(); }
size_t size() const { return m_offset; }
size_t remaining() const { return m_bytes.size() - m_offset; }
private:
size_t m_offset { 0 };
Bytes m_bytes;
};
class DuplexMemoryStream final : public DuplexStream {
public:
static constexpr size_t chunk_size = 4 * 1024;
bool unreliable_eof() const override { return eof(); }
bool eof() const { return m_write_offset == m_read_offset; }
bool discard_or_error(size_t count) override
{
if (m_write_offset - m_read_offset < count) {
set_recoverable_error();
return false;
}
m_read_offset += count;
try_discard_chunks();
return true;
}
// FIXME: Does not read across chunk boundaries
// Perhaps implement AK::memmem() for iterators?
Optional<size_t> offset_of(ReadonlyBytes value) const
{
if (value.size() > size())
return {};
// First, find which chunk we're in.
auto chunk_index = min((m_read_offset - m_base_offset) / chunk_size, m_chunks.size() - 1);
auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size;
auto first_chunk_index = chunk_index;
auto last_written_chunk_offset = m_write_offset % chunk_size;
auto first_chunk_offset = m_read_offset % chunk_size;
size_t last_chunk_offset = 0;
auto found_value = false;
auto chunk_index_max_bound = last_written_chunk_offset > 0 ? last_written_chunk_index + 1 : last_written_chunk_index;
for (; chunk_index < chunk_index_max_bound; ++chunk_index) {
auto& chunk = m_chunks[chunk_index];
auto chunk_bytes = chunk.bytes();
size_t chunk_offset = 0;
if (chunk_index == last_written_chunk_index) {
chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset);
}
if (chunk_index == first_chunk_index) {
chunk_bytes = chunk_bytes.slice(first_chunk_offset);
chunk_offset = first_chunk_offset;
}
// See if 'value' is in this chunk,
auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size());
if (!position)
continue; // Not in this chunk either :(
// We found it!
found_value = true;
last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset;
break;
}
if (found_value) {
if (first_chunk_index == chunk_index)
return last_chunk_offset - first_chunk_offset;
return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset;
}
// No dice.
return {};
}
size_t read_without_consuming(Bytes bytes) const
{
size_t nread = 0;
while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size;
const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread);
nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
}
return nread;
}
size_t read(Bytes bytes) override
{
if (has_any_error())
return 0;
const auto nread = read_without_consuming(bytes);
m_read_offset += nread;
try_discard_chunks();
return nread;
}
bool read_or_error(Bytes bytes) override
{
if (m_write_offset - m_read_offset < bytes.size()) {
set_recoverable_error();
return false;
}
read(bytes);
return true;
}
size_t write(ReadonlyBytes bytes) override
{
size_t nwritten = 0;
while (bytes.size() - nwritten > 0) {
if ((m_write_offset + nwritten) % chunk_size == 0)
m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));
nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size));
}
m_write_offset += nwritten;
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
write(bytes);
return true;
}
ByteBuffer copy_into_contiguous_buffer() const
{
auto buffer = ByteBuffer::create_uninitialized(size());
const auto nread = read_without_consuming(buffer);
ASSERT(nread == buffer.size());
return buffer;
}
size_t roffset() const { return m_read_offset; }
size_t woffset() const { return m_write_offset; }
size_t size() const { return m_write_offset - m_read_offset; }
private:
void try_discard_chunks()
{
while (m_read_offset - m_base_offset >= chunk_size) {
m_chunks.take_first();
m_base_offset += chunk_size;
}
}
Vector<ByteBuffer> m_chunks;
size_t m_write_offset { 0 };
size_t m_read_offset { 0 };
size_t m_base_offset { 0 };
};
}
using AK::DuplexMemoryStream;
using AK::InputMemoryStream;
using AK::InputStream;
using AK::OutputMemoryStream;