serenity/Userland/Libraries/LibGL/SoftwareGLContext.cpp
Stephan Unverwerth 33e601800c LibSoftGPU: Remove OpenGL type for draw buffer selection
Replaces the GLenum used in RasterizerConfig to select the draw buffer
with a simple boolean that disabled color output when the draw buffer
is set to GL_NONE on the OpenGL side.
2021-12-24 05:10:28 -08:00

2687 lines
97 KiB
C++

/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/QuickSort.h>
#include <AK/TemporaryChange.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
#include <LibGL/SoftwareGLContext.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector4.h>
#include <LibSoftGPU/Device.h>
using AK::dbgln;
namespace GL {
static constexpr size_t MODELVIEW_MATRIX_STACK_LIMIT = 64;
static constexpr size_t PROJECTION_MATRIX_STACK_LIMIT = 8;
static constexpr size_t TEXTURE_MATRIX_STACK_LIMIT = 8;
#define APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(name, ...) \
if (should_append_to_listing()) { \
append_to_listing<&SoftwareGLContext::name>(__VA_ARGS__); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
#define APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(name, arg) \
if (should_append_to_listing()) { \
auto ptr = store_in_listing(arg); \
append_to_listing<&SoftwareGLContext::name>(*ptr); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
#define RETURN_WITH_ERROR_IF(condition, error) \
if (condition) { \
if (m_error == GL_NO_ERROR) \
m_error = error; \
return; \
}
#define RETURN_VALUE_WITH_ERROR_IF(condition, error, return_value) \
if (condition) { \
if (m_error == GL_NO_ERROR) \
m_error = error; \
return return_value; \
}
SoftwareGLContext::SoftwareGLContext(Gfx::Bitmap& frontbuffer)
: m_frontbuffer(frontbuffer)
, m_rasterizer(frontbuffer.size())
{
}
Optional<ContextParameter> SoftwareGLContext::get_context_parameter(GLenum name)
{
switch (name) {
case GL_ALPHA_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_ALPHA_TEST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_alpha_test_enabled } };
case GL_BLEND:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_blend_enabled } };
case GL_BLEND_DST_ALPHA:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_blend_destination_factor) } };
case GL_BLEND_SRC_ALPHA:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_blend_source_factor) } };
case GL_BLUE_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_CULL_FACE:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_cull_faces } };
case GL_DEPTH_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_DEPTH_TEST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_depth_test_enabled } };
case GL_DITHER:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_dither_enabled } };
case GL_DOUBLEBUFFER:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = true } };
case GL_GREEN_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_LIGHTING:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_lighting_enabled } };
case GL_MAX_MODELVIEW_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = MODELVIEW_MATRIX_STACK_LIMIT } };
case GL_MAX_PROJECTION_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = PROJECTION_MATRIX_STACK_LIMIT } };
case GL_MAX_TEXTURE_SIZE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 4096 } };
case GL_MAX_TEXTURE_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = TEXTURE_MATRIX_STACK_LIMIT } };
case GL_MAX_TEXTURE_UNITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_texture_units.size()) } };
case GL_PACK_ALIGNMENT:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_pack_alignment } };
case GL_RED_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_SCISSOR_BOX: {
auto scissor_box = m_rasterizer.options().scissor_box;
return ContextParameter {
.type = GL_INT,
.count = 4,
.value = {
.integer_list = {
scissor_box.x(),
scissor_box.y(),
scissor_box.width(),
scissor_box.height(),
} }
};
} break;
case GL_STENCIL_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_STENCIL_TEST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_stencil_test_enabled } };
case GL_TEXTURE_1D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_1d_enabled() } };
case GL_TEXTURE_2D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_2d_enabled() } };
case GL_TEXTURE_3D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_3d_enabled() } };
case GL_TEXTURE_CUBE_MAP:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_cube_map_enabled() } };
case GL_UNPACK_ALIGNMENT:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_alignment } };
case GL_UNPACK_ROW_LENGTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_row_length } };
default:
dbgln_if(GL_DEBUG, "get_context_parameter({:#x}): unknown context parameter", name);
return {};
}
}
void SoftwareGLContext::gl_begin(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_begin, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode < GL_TRIANGLES || mode > GL_POLYGON, GL_INVALID_ENUM);
m_current_draw_mode = mode;
m_in_draw_state = true; // Certain commands will now generate an error
}
void SoftwareGLContext::gl_clear(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mask & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT), GL_INVALID_ENUM);
if (mask & GL_COLOR_BUFFER_BIT)
m_rasterizer.clear_color(m_clear_color);
if (mask & GL_DEPTH_BUFFER_BIT)
m_rasterizer.clear_depth(static_cast<float>(m_clear_depth));
// FIXME: implement GL_STENCIL_BUFFER_BIT
}
void SoftwareGLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_color, red, green, blue, alpha);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_color = { red, green, blue, alpha };
}
void SoftwareGLContext::gl_clear_depth(GLdouble depth)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_depth, depth);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_depth = depth;
}
void SoftwareGLContext::gl_clear_stencil(GLint s)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_stencil, s);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: "s is masked with 2^m - 1 , where m is the number of bits in the stencil buffer"
m_clear_stencil = s;
}
void SoftwareGLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color, r, g, b, a);
m_current_vertex_color = { (float)r, (float)g, (float)b, (float)a };
}
void SoftwareGLContext::gl_end()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_end);
// Make sure we had a `glBegin` before this call...
RETURN_WITH_ERROR_IF(!m_in_draw_state, GL_INVALID_OPERATION);
m_in_draw_state = false;
// FIXME: Add support for the remaining primitive types.
if (m_current_draw_mode != GL_TRIANGLES
&& m_current_draw_mode != GL_TRIANGLE_FAN
&& m_current_draw_mode != GL_TRIANGLE_STRIP
&& m_current_draw_mode != GL_QUADS
&& m_current_draw_mode != GL_POLYGON) {
m_vertex_list.clear_with_capacity();
dbgln_if(GL_DEBUG, "gl_end: draw mode {:#x} unsupported", m_current_draw_mode);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
Vector<size_t, 32> enabled_texture_units;
for (size_t i = 0; i < m_texture_units.size(); ++i) {
if (m_texture_units[i].texture_2d_enabled())
enabled_texture_units.append(i);
}
sync_device_config();
m_rasterizer.draw_primitives(m_current_draw_mode, m_projection_matrix * m_model_view_matrix, m_texture_matrix, m_vertex_list, enabled_texture_units);
m_vertex_list.clear_with_capacity();
}
void SoftwareGLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_frustum, left, right, bottom, top, near_val, far_val);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// Let's do some math!
// FIXME: Are we losing too much precision by doing this?
float a = static_cast<float>((right + left) / (right - left));
float b = static_cast<float>((top + bottom) / (top - bottom));
float c = static_cast<float>(-((far_val + near_val) / (far_val - near_val)));
float d = static_cast<float>(-((2 * (far_val * near_val)) / (far_val - near_val)));
FloatMatrix4x4 frustum {
((2 * (float)near_val) / ((float)right - (float)left)), 0, a, 0,
0, ((2 * (float)near_val) / ((float)top - (float)bottom)), b, 0,
0, 0, c, d,
0, 0, -1, 0
};
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * frustum;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_projection_matrix = m_model_view_matrix * frustum;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * frustum;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_ortho, left, right, bottom, top, near_val, far_val);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(left == right || bottom == top || near_val == far_val, GL_INVALID_VALUE);
auto rl = right - left;
auto tb = top - bottom;
auto fn = far_val - near_val;
auto tx = -(right + left) / rl;
auto ty = -(top + bottom) / tb;
auto tz = -(far_val + near_val) / fn;
FloatMatrix4x4 projection {
static_cast<float>(2 / rl), 0, 0, static_cast<float>(tx),
0, static_cast<float>(2 / tb), 0, static_cast<float>(ty),
0, 0, static_cast<float>(-2 / fn), static_cast<float>(tz),
0, 0, 0, 1
};
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * projection;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_projection_matrix = m_model_view_matrix * projection;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * projection;
else
VERIFY_NOT_REACHED();
}
GLenum SoftwareGLContext::gl_get_error()
{
if (m_in_draw_state)
return GL_INVALID_OPERATION;
auto last_error = m_error;
m_error = GL_NO_ERROR;
return last_error;
}
GLubyte* SoftwareGLContext::gl_get_string(GLenum name)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, nullptr);
switch (name) {
case GL_VENDOR:
return reinterpret_cast<GLubyte*>(const_cast<char*>("The SerenityOS Developers"));
case GL_RENDERER:
return reinterpret_cast<GLubyte*>(const_cast<char*>("SerenityOS OpenGL"));
case GL_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("1.5"));
case GL_EXTENSIONS:
return reinterpret_cast<GLubyte*>(const_cast<char*>(""));
case GL_SHADING_LANGUAGE_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("0.0"));
default:
dbgln_if(GL_DEBUG, "gl_get_string({:#x}): unknown name", name);
break;
}
RETURN_VALUE_WITH_ERROR_IF(true, GL_INVALID_ENUM, nullptr);
}
void SoftwareGLContext::gl_load_identity()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_load_identity);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = FloatMatrix4x4::identity();
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = FloatMatrix4x4::identity();
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = FloatMatrix4x4::identity();
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_load_matrix(const FloatMatrix4x4& matrix)
{
APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_load_matrix, matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = matrix;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_matrix_mode(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_matrix_mode, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode < GL_MODELVIEW || mode > GL_TEXTURE, GL_INVALID_ENUM);
m_current_matrix_mode = mode;
}
void SoftwareGLContext::gl_push_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
dbgln_if(GL_DEBUG, "glPushMatrix(): Pushing matrix to the matrix stack (matrix_mode {})", m_current_matrix_mode);
switch (m_current_matrix_mode) {
case GL_PROJECTION:
RETURN_WITH_ERROR_IF(m_projection_matrix_stack.size() >= PROJECTION_MATRIX_STACK_LIMIT, GL_STACK_OVERFLOW);
m_projection_matrix_stack.append(m_projection_matrix);
break;
case GL_MODELVIEW:
RETURN_WITH_ERROR_IF(m_model_view_matrix_stack.size() >= MODELVIEW_MATRIX_STACK_LIMIT, GL_STACK_OVERFLOW);
m_model_view_matrix_stack.append(m_model_view_matrix);
break;
case GL_TEXTURE:
RETURN_WITH_ERROR_IF(m_texture_matrix_stack.size() >= TEXTURE_MATRIX_STACK_LIMIT, GL_STACK_OVERFLOW);
m_texture_matrix_stack.append(m_texture_matrix);
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_pop_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
dbgln_if(GL_DEBUG, "glPopMatrix(): Popping matrix from matrix stack (matrix_mode = {})", m_current_matrix_mode);
switch (m_current_matrix_mode) {
case GL_PROJECTION:
RETURN_WITH_ERROR_IF(m_projection_matrix_stack.size() == 0, GL_STACK_UNDERFLOW);
m_projection_matrix = m_projection_matrix_stack.take_last();
break;
case GL_MODELVIEW:
RETURN_WITH_ERROR_IF(m_model_view_matrix_stack.size() == 0, GL_STACK_UNDERFLOW);
m_model_view_matrix = m_model_view_matrix_stack.take_last();
break;
case GL_TEXTURE:
RETURN_WITH_ERROR_IF(m_texture_matrix_stack.size() == 0, GL_STACK_UNDERFLOW);
m_texture_matrix = m_texture_matrix_stack.take_last();
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_mult_matrix(FloatMatrix4x4 const& matrix)
{
APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_mult_matrix, matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * matrix;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_rotate(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rotate, angle, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
FloatVector3 axis = { (float)x, (float)y, (float)z };
axis.normalize();
auto rotation_mat = Gfx::rotation_matrix(axis, static_cast<float>(angle * M_PI * 2 / 360));
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * rotation_mat;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * rotation_mat;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * rotation_mat;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_scale(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scale, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto scale_matrix = Gfx::scale_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * scale_matrix;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * scale_matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * scale_matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_translate, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto translation_matrix = Gfx::translation_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * translation_matrix;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * translation_matrix;
else if (m_current_matrix_mode == GL_TEXTURE)
m_texture_matrix = m_texture_matrix * translation_matrix;
else
VERIFY_NOT_REACHED();
}
void SoftwareGLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_vertex, x, y, z, w);
SoftGPU::Vertex vertex;
vertex.position = { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(w) };
vertex.color = m_current_vertex_color;
vertex.tex_coord = m_current_vertex_tex_coord;
vertex.normal = m_current_vertex_normal;
m_vertex_list.append(vertex);
}
// FIXME: We need to add `r` and `q` to our GLVertex?!
void SoftwareGLContext::gl_tex_coord(GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_coord, s, t, r, q);
m_current_vertex_tex_coord = { s, t, r, q };
}
void SoftwareGLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_viewport, x, y, width, height);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
(void)(x);
(void)(y);
(void)(width);
(void)(height);
}
void SoftwareGLContext::gl_enable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_enable, capability);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer.options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_CULL_FACE:
m_cull_faces = true;
rasterizer_options.enable_culling = true;
update_rasterizer_options = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = true;
rasterizer_options.enable_depth_test = true;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = true;
rasterizer_options.enable_blending = true;
update_rasterizer_options = true;
break;
case GL_ALPHA_TEST:
m_alpha_test_enabled = true;
rasterizer_options.enable_alpha_test = true;
update_rasterizer_options = true;
break;
case GL_DITHER:
m_dither_enabled = true;
break;
case GL_FOG:
rasterizer_options.fog_enabled = true;
update_rasterizer_options = true;
break;
case GL_LIGHTING:
m_lighting_enabled = true;
break;
case GL_SCISSOR_TEST:
rasterizer_options.scissor_enabled = true;
update_rasterizer_options = true;
break;
case GL_STENCIL_TEST:
m_stencil_test_enabled = true;
break;
case GL_TEXTURE_1D:
m_active_texture_unit->set_texture_1d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_2D:
m_active_texture_unit->set_texture_2d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_3D:
m_active_texture_unit->set_texture_3d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_CUBE_MAP:
m_active_texture_unit->set_texture_cube_map_enabled(true);
m_sampler_config_is_dirty = true;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
if (update_rasterizer_options)
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_disable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_disable, capability);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer.options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_CULL_FACE:
m_cull_faces = false;
rasterizer_options.enable_culling = false;
update_rasterizer_options = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = false;
rasterizer_options.enable_depth_test = false;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = false;
rasterizer_options.enable_blending = false;
update_rasterizer_options = true;
break;
case GL_ALPHA_TEST:
m_alpha_test_enabled = false;
rasterizer_options.enable_alpha_test = false;
update_rasterizer_options = true;
break;
case GL_DITHER:
m_dither_enabled = false;
break;
case GL_FOG:
rasterizer_options.fog_enabled = false;
update_rasterizer_options = true;
break;
case GL_LIGHTING:
m_lighting_enabled = false;
break;
case GL_SCISSOR_TEST:
rasterizer_options.scissor_enabled = false;
update_rasterizer_options = true;
break;
case GL_STENCIL_TEST:
m_stencil_test_enabled = false;
break;
case GL_TEXTURE_1D:
m_active_texture_unit->set_texture_1d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_2D:
m_active_texture_unit->set_texture_2d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_3D:
m_active_texture_unit->set_texture_3d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_CUBE_MAP:
m_active_texture_unit->set_texture_cube_map_enabled(false);
m_sampler_config_is_dirty = true;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
if (update_rasterizer_options)
m_rasterizer.set_options(rasterizer_options);
}
GLboolean SoftwareGLContext::gl_is_enabled(GLenum capability)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0);
auto rasterizer_options = m_rasterizer.options();
switch (capability) {
case GL_CULL_FACE:
return m_cull_faces;
case GL_DEPTH_TEST:
return m_depth_test_enabled;
case GL_BLEND:
return m_blend_enabled;
case GL_ALPHA_TEST:
return m_alpha_test_enabled;
case GL_DITHER:
return m_dither_enabled;
case GL_FOG:
return rasterizer_options.fog_enabled;
case GL_LIGHTING:
return m_lighting_enabled;
case GL_SCISSOR_TEST:
return rasterizer_options.scissor_enabled;
case GL_STENCIL_TEST:
return m_stencil_test_enabled;
}
RETURN_VALUE_WITH_ERROR_IF(true, GL_INVALID_ENUM, 0);
}
void SoftwareGLContext::gl_gen_textures(GLsizei n, GLuint* textures)
{
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_name_allocator.allocate(n, textures);
// Initialize all texture names with a nullptr
for (auto i = 0; i < n; i++) {
GLuint name = textures[i];
m_allocated_textures.set(name, nullptr);
}
}
void SoftwareGLContext::gl_delete_textures(GLsizei n, const GLuint* textures)
{
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
for (auto i = 0; i < n; i++) {
GLuint name = textures[i];
if (name == 0)
continue;
m_name_allocator.free(name);
auto texture_object = m_allocated_textures.find(name);
if (texture_object == m_allocated_textures.end() || texture_object->value.is_null())
continue;
// Check all texture units
for (auto& texture_unit : m_texture_units) {
if (texture_object->value == texture_unit.bound_texture())
texture_unit.bind_texture_to_target(GL_TEXTURE_2D, nullptr);
}
m_allocated_textures.remove(name);
}
}
void SoftwareGLContext::gl_tex_image_2d(GLenum target, GLint level, GLint internal_format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// Check if there is actually a texture bound
RETURN_WITH_ERROR_IF(target == GL_TEXTURE_2D && m_active_texture_unit->currently_bound_target() != GL_TEXTURE_2D, GL_INVALID_OPERATION);
// Internal format can also be a number between 1 and 4. Symbolic formats were only added with EXT_texture, promoted to core in OpenGL 1.1
if (internal_format == 1)
internal_format = GL_ALPHA;
else if (internal_format == 2)
internal_format = GL_LUMINANCE_ALPHA;
else if (internal_format == 3)
internal_format = GL_RGB;
else if (internal_format == 4)
internal_format = GL_RGBA;
// We only support symbolic constants for now
RETURN_WITH_ERROR_IF(!(internal_format == GL_RGB || internal_format == GL_RGBA), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE);
// Check if width and height are a power of 2
RETURN_WITH_ERROR_IF((width & (width - 1)) != 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF((height & (height - 1)) != 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(border < 0 || border > 1, GL_INVALID_VALUE);
if (level == 0) {
// FIXME: OpenGL has the concept of texture and mipmap completeness. A texture has to fulfill certain criteria to be considered complete.
// Trying to render while an incomplete texture is bound will result in an error.
// Here we simply create a complete device image when mipmap level 0 is attached to the texture object. This has the unfortunate side effect
// that constructing GL textures in any but the default mipmap order, going from level 0 upwards will cause mip levels to stay uninitialized.
// To be spec compliant we should create the device image once the texture has become complete and is used for rendering the first time.
// All images that were attached before the device image was created need to be stored somewhere to be used to initialize the device image once complete.
SoftGPU::ImageFormat device_format;
switch (internal_format) {
case GL_RGB:
device_format = SoftGPU::ImageFormat::RGB888;
break;
case GL_RGBA:
device_format = SoftGPU::ImageFormat::RGBA8888;
break;
default:
VERIFY_NOT_REACHED();
}
m_active_texture_unit->bound_texture_2d()->set_device_image(m_rasterizer.create_image(device_format, width, height, 1, 999, 1));
m_sampler_config_is_dirty = true;
}
m_active_texture_unit->bound_texture_2d()->upload_texture_data(level, internal_format, width, height, border, format, type, data, m_unpack_row_length, m_unpack_alignment);
}
void SoftwareGLContext::gl_tex_sub_image_2d(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// Check if there is actually a texture bound
RETURN_WITH_ERROR_IF(target == GL_TEXTURE_2D && m_active_texture_unit->currently_bound_target() != GL_TEXTURE_2D, GL_INVALID_OPERATION);
// We only support symbolic constants for now
RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_RGB), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE);
auto texture = m_active_texture_unit->bound_texture_2d();
RETURN_WITH_ERROR_IF(xoffset < 0 || yoffset < 0 || xoffset + width > texture->width_at_lod(level) || yoffset + height > texture->height_at_lod(level), GL_INVALID_VALUE);
texture->replace_sub_texture_data(level, xoffset, yoffset, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment);
}
void SoftwareGLContext::gl_tex_parameter(GLenum target, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_parameter, target, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We currently only support GL_TETXURE_2D targets. 1D, 3D and CUBE should also be supported (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// FIXME: implement the remaining parameters. (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(!(pname == GL_TEXTURE_MIN_FILTER
|| pname == GL_TEXTURE_MAG_FILTER
|| pname == GL_TEXTURE_WRAP_S
|| pname == GL_TEXTURE_WRAP_T),
GL_INVALID_ENUM);
if (target == GL_TEXTURE_2D) {
auto texture2d = m_active_texture_unit->bound_texture_2d();
if (texture2d.is_null())
return;
switch (pname) {
case GL_TEXTURE_MIN_FILTER:
RETURN_WITH_ERROR_IF(!(param == GL_NEAREST
|| param == GL_LINEAR
|| param == GL_NEAREST_MIPMAP_NEAREST
|| param == GL_LINEAR_MIPMAP_NEAREST
|| param == GL_NEAREST_MIPMAP_LINEAR
|| param == GL_LINEAR_MIPMAP_LINEAR),
GL_INVALID_ENUM);
texture2d->sampler().set_min_filter(param);
break;
case GL_TEXTURE_MAG_FILTER:
RETURN_WITH_ERROR_IF(!(param == GL_NEAREST
|| param == GL_LINEAR),
GL_INVALID_ENUM);
texture2d->sampler().set_mag_filter(param);
break;
case GL_TEXTURE_WRAP_S:
RETURN_WITH_ERROR_IF(!(param == GL_CLAMP
|| param == GL_CLAMP_TO_BORDER
|| param == GL_CLAMP_TO_EDGE
|| param == GL_MIRRORED_REPEAT
|| param == GL_REPEAT),
GL_INVALID_ENUM);
texture2d->sampler().set_wrap_s_mode(param);
break;
case GL_TEXTURE_WRAP_T:
RETURN_WITH_ERROR_IF(!(param == GL_CLAMP
|| param == GL_CLAMP_TO_BORDER
|| param == GL_CLAMP_TO_EDGE
|| param == GL_MIRRORED_REPEAT
|| param == GL_REPEAT),
GL_INVALID_ENUM);
texture2d->sampler().set_wrap_t_mode(param);
break;
default:
VERIFY_NOT_REACHED();
}
}
m_sampler_config_is_dirty = true;
}
void SoftwareGLContext::gl_front_face(GLenum face)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_front_face, face);
RETURN_WITH_ERROR_IF(face < GL_CW || face > GL_CCW, GL_INVALID_ENUM);
m_front_face = face;
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.front_face = (face == GL_CW) ? SoftGPU::WindingOrder::Clockwise : SoftGPU::WindingOrder::CounterClockwise;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_cull_face(GLenum cull_mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_cull_face, cull_mode);
RETURN_WITH_ERROR_IF(cull_mode < GL_FRONT || cull_mode > GL_FRONT_AND_BACK, GL_INVALID_ENUM);
m_culled_sides = cull_mode;
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.cull_back = cull_mode == GL_BACK || cull_mode == GL_FRONT_AND_BACK;
rasterizer_options.cull_front = cull_mode == GL_FRONT || cull_mode == GL_FRONT_AND_BACK;
m_rasterizer.set_options(rasterizer_options);
}
GLuint SoftwareGLContext::gl_gen_lists(GLsizei range)
{
RETURN_VALUE_WITH_ERROR_IF(range <= 0, GL_INVALID_VALUE, 0);
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0);
auto initial_entry = m_listings.size();
m_listings.resize(range + initial_entry);
return initial_entry + 1;
}
void SoftwareGLContext::invoke_list(size_t list_index)
{
auto& listing = m_listings[list_index - 1];
for (auto& entry : listing.entries) {
entry.function.visit([&](auto& function) {
entry.arguments.visit([&](auto& arguments) {
auto apply = [&]<typename... Args>(Args && ... args)
{
if constexpr (requires { (this->*function)(forward<Args>(args)...); })
(this->*function)(forward<Args>(args)...);
};
arguments.apply_as_args(apply);
});
});
}
}
void SoftwareGLContext::gl_call_list(GLuint list)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_list, list);
if (m_listings.size() < list)
return;
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
invoke_list(list);
}
void SoftwareGLContext::gl_call_lists(GLsizei n, GLenum type, void const* lists)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_lists, n, type, lists);
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_BYTE
|| type == GL_UNSIGNED_BYTE
|| type == GL_SHORT
|| type == GL_UNSIGNED_SHORT
|| type == GL_INT
|| type == GL_UNSIGNED_INT
|| type == GL_FLOAT
|| type == GL_2_BYTES
|| type == GL_3_BYTES
|| type == GL_4_BYTES),
GL_INVALID_ENUM);
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
auto invoke_all_lists = [&]<typename T>(T const* lists) {
for (int i = 0; i < n; ++i) {
auto list = static_cast<size_t>(lists[i]);
invoke_list(m_list_base + list);
}
};
switch (type) {
case GL_BYTE:
invoke_all_lists(static_cast<GLbyte const*>(lists));
break;
case GL_UNSIGNED_BYTE:
invoke_all_lists(static_cast<GLubyte const*>(lists));
break;
case GL_SHORT:
invoke_all_lists(static_cast<GLshort const*>(lists));
break;
case GL_UNSIGNED_SHORT:
invoke_all_lists(static_cast<GLushort const*>(lists));
break;
case GL_INT:
invoke_all_lists(static_cast<GLint const*>(lists));
break;
case GL_UNSIGNED_INT:
invoke_all_lists(static_cast<GLuint const*>(lists));
break;
case GL_FLOAT:
invoke_all_lists(static_cast<GLfloat const*>(lists));
break;
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
dbgln("SoftwareGLContext FIXME: unimplemented glCallLists() with type {}", type);
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_delete_lists(GLuint list, GLsizei range)
{
if (m_listings.size() < list || m_listings.size() <= list + range)
return;
for (auto& entry : m_listings.span().slice(list - 1, range))
entry.entries.clear_with_capacity();
}
void SoftwareGLContext::gl_list_base(GLuint base)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_list_base, base);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_list_base = base;
}
void SoftwareGLContext::gl_end_list()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!m_current_listing_index.has_value(), GL_INVALID_OPERATION);
m_listings[m_current_listing_index->index] = move(m_current_listing_index->listing);
m_current_listing_index.clear();
}
void SoftwareGLContext::gl_new_list(GLuint list, GLenum mode)
{
RETURN_WITH_ERROR_IF(list == 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(m_current_listing_index.has_value(), GL_INVALID_OPERATION);
if (m_listings.size() < list)
return;
m_current_listing_index = CurrentListing { {}, static_cast<size_t>(list - 1), mode };
}
GLboolean SoftwareGLContext::gl_is_list(GLuint list)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE);
return list < m_listings.size() ? GL_TRUE : GL_FALSE;
}
void SoftwareGLContext::gl_flush()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// No-op since SoftwareGLContext is completely synchronous at the moment
}
void SoftwareGLContext::gl_finish()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// No-op since SoftwareGLContext is completely synchronous at the moment
}
void SoftwareGLContext::gl_blend_func(GLenum src_factor, GLenum dst_factor)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_blend_func, src_factor, dst_factor);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: The list of allowed enums differs between API versions
// This was taken from the 2.0 spec on https://docs.gl/gl2/glBlendFunc
RETURN_WITH_ERROR_IF(!(src_factor == GL_ZERO
|| src_factor == GL_ONE
|| src_factor == GL_SRC_COLOR
|| src_factor == GL_ONE_MINUS_SRC_COLOR
|| src_factor == GL_DST_COLOR
|| src_factor == GL_ONE_MINUS_DST_COLOR
|| src_factor == GL_SRC_ALPHA
|| src_factor == GL_ONE_MINUS_SRC_ALPHA
|| src_factor == GL_DST_ALPHA
|| src_factor == GL_ONE_MINUS_DST_ALPHA
|| src_factor == GL_CONSTANT_COLOR
|| src_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| src_factor == GL_CONSTANT_ALPHA
|| src_factor == GL_ONE_MINUS_CONSTANT_ALPHA
|| src_factor == GL_SRC_ALPHA_SATURATE),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(dst_factor == GL_ZERO
|| dst_factor == GL_ONE
|| dst_factor == GL_SRC_COLOR
|| dst_factor == GL_ONE_MINUS_SRC_COLOR
|| dst_factor == GL_DST_COLOR
|| dst_factor == GL_ONE_MINUS_DST_COLOR
|| dst_factor == GL_SRC_ALPHA
|| dst_factor == GL_ONE_MINUS_SRC_ALPHA
|| dst_factor == GL_DST_ALPHA
|| dst_factor == GL_ONE_MINUS_DST_ALPHA
|| dst_factor == GL_CONSTANT_COLOR
|| dst_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| dst_factor == GL_CONSTANT_ALPHA
|| dst_factor == GL_ONE_MINUS_CONSTANT_ALPHA),
GL_INVALID_ENUM);
m_blend_source_factor = src_factor;
m_blend_destination_factor = dst_factor;
auto map_gl_blend_factor_to_device = [](GLenum factor) constexpr
{
switch (factor) {
case GL_ZERO:
return SoftGPU::BlendFactor::Zero;
case GL_ONE:
return SoftGPU::BlendFactor::One;
case GL_SRC_ALPHA:
return SoftGPU::BlendFactor::SrcAlpha;
case GL_ONE_MINUS_SRC_ALPHA:
return SoftGPU::BlendFactor::OneMinusSrcAlpha;
case GL_SRC_COLOR:
return SoftGPU::BlendFactor::SrcColor;
case GL_ONE_MINUS_SRC_COLOR:
return SoftGPU::BlendFactor::OneMinusSrcColor;
case GL_DST_ALPHA:
return SoftGPU::BlendFactor::DstAlpha;
case GL_ONE_MINUS_DST_ALPHA:
return SoftGPU::BlendFactor::OneMinusDstAlpha;
case GL_DST_COLOR:
return SoftGPU::BlendFactor::DstColor;
case GL_ONE_MINUS_DST_COLOR:
return SoftGPU::BlendFactor::OneMinusDstColor;
case GL_SRC_ALPHA_SATURATE:
return SoftGPU::BlendFactor::SrcAlphaSaturate;
default:
VERIFY_NOT_REACHED();
}
};
auto options = m_rasterizer.options();
options.blend_source_factor = map_gl_blend_factor_to_device(m_blend_source_factor);
options.blend_destination_factor = map_gl_blend_factor_to_device(m_blend_destination_factor);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_shade_model(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_shade_model, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode != GL_FLAT && mode != GL_SMOOTH, GL_INVALID_ENUM);
auto options = m_rasterizer.options();
options.shade_smooth = (mode == GL_SMOOTH);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_alpha_func(GLenum func, GLclampf ref)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_alpha_func, func, ref);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(func < GL_NEVER || func > GL_ALWAYS, GL_INVALID_ENUM);
m_alpha_test_func = func;
m_alpha_test_ref_value = ref;
auto options = m_rasterizer.options();
switch (func) {
case GL_NEVER:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Never;
break;
case GL_ALWAYS:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Always;
break;
case GL_LESS:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Less;
break;
case GL_LEQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::LessOrEqual;
break;
case GL_EQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Equal;
break;
case GL_NOTEQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::NotEqual;
break;
case GL_GEQUAL:
options.alpha_test_func = SoftGPU::AlphaTestFunction::GreaterOrEqual;
break;
case GL_GREATER:
options.alpha_test_func = SoftGPU::AlphaTestFunction::Greater;
break;
default:
VERIFY_NOT_REACHED();
}
options.alpha_test_ref_value = m_alpha_test_ref_value;
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_hint(GLenum target, GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_hint, target, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(target != GL_PERSPECTIVE_CORRECTION_HINT
&& target != GL_POINT_SMOOTH_HINT
&& target != GL_LINE_SMOOTH_HINT
&& target != GL_POLYGON_SMOOTH_HINT
&& target != GL_FOG_HINT
&& target != GL_GENERATE_MIPMAP_HINT
&& target != GL_TEXTURE_COMPRESSION_HINT,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(mode != GL_DONT_CARE
&& mode != GL_FASTEST
&& mode != GL_NICEST,
GL_INVALID_ENUM);
// According to the spec implementors are free to ignore glHint. So we do.
}
void SoftwareGLContext::gl_read_buffer(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_read_buffer, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here
// plus any aux buffer between 0 and GL_AUX_BUFFERS
RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT
&& mode != GL_FRONT_RIGHT
&& mode != GL_BACK_LEFT
&& mode != GL_BACK_RIGHT
&& mode != GL_FRONT
&& mode != GL_BACK
&& mode != GL_LEFT
&& mode != GL_RIGHT,
GL_INVALID_ENUM);
// FIXME: We do not currently have aux buffers, so make it an invalid
// operation to select anything but front or back buffers. Also we do
// not allow selecting the stereoscopic RIGHT buffers since we do not
// have them configured.
RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT
&& mode != GL_FRONT
&& mode != GL_BACK_LEFT
&& mode != GL_BACK
&& mode != GL_FRONT
&& mode != GL_BACK
&& mode != GL_LEFT,
GL_INVALID_OPERATION);
m_current_read_buffer = mode;
}
void SoftwareGLContext::gl_draw_buffer(GLenum buffer)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_buffer, buffer);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here
// plus any aux buffer between 0 and GL_AUX_BUFFERS
RETURN_WITH_ERROR_IF(buffer != GL_NONE
&& buffer != GL_FRONT_LEFT
&& buffer != GL_FRONT_RIGHT
&& buffer != GL_BACK_LEFT
&& buffer != GL_BACK_RIGHT
&& buffer != GL_FRONT
&& buffer != GL_BACK
&& buffer != GL_LEFT
&& buffer != GL_RIGHT,
GL_INVALID_ENUM);
// FIXME: We do not currently have aux buffers, so make it an invalid
// operation to select anything but front or back buffers. Also we do
// not allow selecting the stereoscopic RIGHT buffers since we do not
// have them configured.
RETURN_WITH_ERROR_IF(buffer != GL_NONE
&& buffer != GL_FRONT_LEFT
&& buffer != GL_FRONT
&& buffer != GL_BACK_LEFT
&& buffer != GL_BACK
&& buffer != GL_FRONT
&& buffer != GL_BACK
&& buffer != GL_LEFT,
GL_INVALID_OPERATION);
m_current_draw_buffer = buffer;
auto rasterizer_options = m_rasterizer.options();
// FIXME: We only have a single draw buffer in SoftGPU at the moment,
// so we simply disable color writes if GL_NONE is selected
rasterizer_options.enable_color_write = m_current_draw_buffer != GL_NONE;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_read_pixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid* pixels)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(format != GL_COLOR_INDEX
&& format != GL_STENCIL_INDEX
&& format != GL_DEPTH_COMPONENT
&& format != GL_RED
&& format != GL_GREEN
&& format != GL_BLUE
&& format != GL_ALPHA
&& format != GL_RGB
&& format != GL_RGBA
&& format != GL_LUMINANCE
&& format != GL_LUMINANCE_ALPHA,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(type != GL_UNSIGNED_BYTE
&& type != GL_BYTE
&& type != GL_BITMAP
&& type != GL_UNSIGNED_SHORT
&& type != GL_SHORT
&& type != GL_BLUE
&& type != GL_UNSIGNED_INT
&& type != GL_INT
&& type != GL_FLOAT,
GL_INVALID_ENUM);
// FIXME: We only support RGBA buffers for now.
// Once we add support for indexed color modes do the correct check here
RETURN_WITH_ERROR_IF(format == GL_COLOR_INDEX, GL_INVALID_OPERATION);
// FIXME: We do not have stencil buffers yet
// Once we add support for stencil buffers do the correct check here
RETURN_WITH_ERROR_IF(format == GL_STENCIL_INDEX, GL_INVALID_OPERATION);
if (format == GL_DEPTH_COMPONENT) {
// FIXME: This check needs to be a bit more sophisticated. Currently the buffers
// are hardcoded. Once we add proper structures for them we need to correct this check
// Error because only back buffer has a depth buffer
RETURN_WITH_ERROR_IF(m_current_read_buffer == GL_FRONT
|| m_current_read_buffer == GL_FRONT_LEFT
|| m_current_read_buffer == GL_FRONT_RIGHT,
GL_INVALID_OPERATION);
}
// Some helper functions for converting float values to integer types
auto float_to_i8 = [](float f) -> GLchar {
return static_cast<GLchar>((0x7f * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_i16 = [](float f) -> GLshort {
return static_cast<GLshort>((0x7fff * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_i32 = [](float f) -> GLint {
return static_cast<GLint>((0x7fffffff * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_u8 = [](float f) -> GLubyte {
return static_cast<GLubyte>(0xff * min(max(f, 0.0f), 1.0f));
};
auto float_to_u16 = [](float f) -> GLushort {
return static_cast<GLushort>(0xffff * min(max(f, 0.0f), 1.0f));
};
auto float_to_u32 = [](float f) -> GLuint {
return static_cast<GLuint>(0xffffffff * min(max(f, 0.0f), 1.0f));
};
u8 component_size = 0;
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
component_size = 1;
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
component_size = 2;
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
component_size = 4;
break;
}
if (format == GL_DEPTH_COMPONENT) {
auto const row_stride = (width * component_size + m_pack_alignment - 1) / m_pack_alignment * m_pack_alignment;
// Read from depth buffer
for (GLsizei i = 0; i < height; ++i) {
for (GLsizei j = 0; j < width; ++j) {
float depth = m_rasterizer.get_depthbuffer_value(x + j, y + i);
auto char_ptr = reinterpret_cast<char*>(pixels) + i * row_stride + j * component_size;
switch (type) {
case GL_BYTE:
*reinterpret_cast<GLchar*>(char_ptr) = float_to_i8(depth);
break;
case GL_SHORT:
*reinterpret_cast<GLshort*>(char_ptr) = float_to_i16(depth);
break;
case GL_INT:
*reinterpret_cast<GLint*>(char_ptr) = float_to_i32(depth);
break;
case GL_UNSIGNED_BYTE:
*reinterpret_cast<GLubyte*>(char_ptr) = float_to_u8(depth);
break;
case GL_UNSIGNED_SHORT:
*reinterpret_cast<GLushort*>(char_ptr) = float_to_u16(depth);
break;
case GL_UNSIGNED_INT:
*reinterpret_cast<GLuint*>(char_ptr) = float_to_u32(depth);
break;
case GL_FLOAT:
*reinterpret_cast<GLfloat*>(char_ptr) = min(max(depth, 0.0f), 1.0f);
break;
}
}
}
return;
}
bool write_red = false;
bool write_green = false;
bool write_blue = false;
bool write_alpha = false;
size_t component_count = 0;
size_t red_offset = 0;
size_t green_offset = 0;
size_t blue_offset = 0;
size_t alpha_offset = 0;
char* red_ptr = nullptr;
char* green_ptr = nullptr;
char* blue_ptr = nullptr;
char* alpha_ptr = nullptr;
switch (format) {
case GL_RGB:
write_red = true;
write_green = true;
write_blue = true;
component_count = 3;
red_offset = 2;
green_offset = 1;
blue_offset = 0;
break;
case GL_RGBA:
write_red = true;
write_green = true;
write_blue = true;
write_alpha = true;
component_count = 4;
red_offset = 3;
green_offset = 2;
blue_offset = 1;
alpha_offset = 0;
break;
case GL_RED:
write_red = true;
component_count = 1;
red_offset = 0;
break;
case GL_GREEN:
write_green = true;
component_count = 1;
green_offset = 0;
break;
case GL_BLUE:
write_blue = true;
component_count = 1;
blue_offset = 0;
break;
case GL_ALPHA:
write_alpha = true;
component_count = 1;
alpha_offset = 0;
break;
}
auto const pixel_bytes = component_size * component_count;
auto const row_alignment_bytes = (m_pack_alignment - ((width * pixel_bytes) % m_pack_alignment)) % m_pack_alignment;
char* out_ptr = reinterpret_cast<char*>(pixels);
for (int i = 0; i < (int)height; ++i) {
for (int j = 0; j < (int)width; ++j) {
Gfx::RGBA32 color {};
if (m_current_read_buffer == GL_FRONT || m_current_read_buffer == GL_LEFT || m_current_read_buffer == GL_FRONT_LEFT) {
if (y + i >= m_frontbuffer->width() || x + j >= m_frontbuffer->height())
color = 0;
else
color = m_frontbuffer->scanline(y + i)[x + j];
} else {
color = m_rasterizer.get_backbuffer_pixel(x + j, y + i);
}
float red = ((color >> 24) & 0xff) / 255.0f;
float green = ((color >> 16) & 0xff) / 255.0f;
float blue = ((color >> 8) & 0xff) / 255.0f;
float alpha = (color & 0xff) / 255.0f;
// FIXME: Set up write pointers based on selected endianness (glPixelStore)
red_ptr = out_ptr + (component_size * red_offset);
green_ptr = out_ptr + (component_size * green_offset);
blue_ptr = out_ptr + (component_size * blue_offset);
alpha_ptr = out_ptr + (component_size * alpha_offset);
switch (type) {
case GL_BYTE:
if (write_red)
*reinterpret_cast<GLchar*>(red_ptr) = float_to_i8(red);
if (write_green)
*reinterpret_cast<GLchar*>(green_ptr) = float_to_i8(green);
if (write_blue)
*reinterpret_cast<GLchar*>(blue_ptr) = float_to_i8(blue);
if (write_alpha)
*reinterpret_cast<GLchar*>(alpha_ptr) = float_to_i8(alpha);
break;
case GL_UNSIGNED_BYTE:
if (write_red)
*reinterpret_cast<GLubyte*>(red_ptr) = float_to_u8(red);
if (write_green)
*reinterpret_cast<GLubyte*>(green_ptr) = float_to_u8(green);
if (write_blue)
*reinterpret_cast<GLubyte*>(blue_ptr) = float_to_u8(blue);
if (write_alpha)
*reinterpret_cast<GLubyte*>(alpha_ptr) = float_to_u8(alpha);
break;
case GL_SHORT:
if (write_red)
*reinterpret_cast<GLshort*>(red_ptr) = float_to_i16(red);
if (write_green)
*reinterpret_cast<GLshort*>(green_ptr) = float_to_i16(green);
if (write_blue)
*reinterpret_cast<GLshort*>(blue_ptr) = float_to_i16(blue);
if (write_alpha)
*reinterpret_cast<GLshort*>(alpha_ptr) = float_to_i16(alpha);
break;
case GL_UNSIGNED_SHORT:
if (write_red)
*reinterpret_cast<GLushort*>(red_ptr) = float_to_u16(red);
if (write_green)
*reinterpret_cast<GLushort*>(green_ptr) = float_to_u16(green);
if (write_blue)
*reinterpret_cast<GLushort*>(blue_ptr) = float_to_u16(blue);
if (write_alpha)
*reinterpret_cast<GLushort*>(alpha_ptr) = float_to_u16(alpha);
break;
case GL_INT:
if (write_red)
*reinterpret_cast<GLint*>(red_ptr) = float_to_i32(red);
if (write_green)
*reinterpret_cast<GLint*>(green_ptr) = float_to_i32(green);
if (write_blue)
*reinterpret_cast<GLint*>(blue_ptr) = float_to_i32(blue);
if (write_alpha)
*reinterpret_cast<GLint*>(alpha_ptr) = float_to_i32(alpha);
break;
case GL_UNSIGNED_INT:
if (write_red)
*reinterpret_cast<GLuint*>(red_ptr) = float_to_u32(red);
if (write_green)
*reinterpret_cast<GLuint*>(green_ptr) = float_to_u32(green);
if (write_blue)
*reinterpret_cast<GLuint*>(blue_ptr) = float_to_u32(blue);
if (write_alpha)
*reinterpret_cast<GLuint*>(alpha_ptr) = float_to_u32(alpha);
break;
case GL_FLOAT:
if (write_red)
*reinterpret_cast<GLfloat*>(red_ptr) = min(max(red, 0.0f), 1.0f);
if (write_green)
*reinterpret_cast<GLfloat*>(green_ptr) = min(max(green, 0.0f), 1.0f);
if (write_blue)
*reinterpret_cast<GLfloat*>(blue_ptr) = min(max(blue, 0.0f), 1.0f);
if (write_alpha)
*reinterpret_cast<GLfloat*>(alpha_ptr) = min(max(alpha, 0.0f), 1.0f);
break;
}
out_ptr += pixel_bytes;
}
out_ptr += row_alignment_bytes;
}
}
void SoftwareGLContext::gl_bind_texture(GLenum target, GLuint texture)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
if (texture == 0) {
switch (target) {
case GL_TEXTURE_2D:
m_active_texture_unit->bind_texture_to_target(target, nullptr);
m_sampler_config_is_dirty = true;
return;
default:
VERIFY_NOT_REACHED();
return;
}
}
auto it = m_allocated_textures.find(texture);
// The texture name does not exist
RETURN_WITH_ERROR_IF(it == m_allocated_textures.end(), GL_INVALID_VALUE);
auto texture_object = it->value;
// Binding a texture to a different target than it was first bound is an invalid operation
// FIXME: We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target == GL_TEXTURE_2D && !texture_object.is_null() && !texture_object->is_texture_2d(), GL_INVALID_OPERATION);
if (!texture_object) {
// This is the first time the texture is bound. Allocate an actual texture object
switch (target) {
case GL_TEXTURE_2D:
texture_object = adopt_ref(*new Texture2D());
break;
default:
VERIFY_NOT_REACHED();
}
m_allocated_textures.set(texture, texture_object);
}
switch (target) {
case GL_TEXTURE_2D:
m_active_texture_unit->bind_texture_to_target(target, texture_object);
break;
}
m_sampler_config_is_dirty = true;
}
void SoftwareGLContext::gl_active_texture(GLenum texture)
{
RETURN_WITH_ERROR_IF(texture < GL_TEXTURE0 || texture > GL_TEXTURE31, GL_INVALID_ENUM);
m_active_texture_unit = &m_texture_units.at(texture - GL_TEXTURE0);
}
void SoftwareGLContext::gl_get_booleanv(GLenum pname, GLboolean* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE:
*data = (parameter.value.double_value == 0.0) ? GL_FALSE : GL_TRUE;
break;
case GL_INT:
*data = (parameter.value.integer_value == 0) ? GL_FALSE : GL_TRUE;
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_get_doublev(GLenum pname, GLdouble* params)
{
get_floating_point(pname, params);
}
void SoftwareGLContext::gl_get_floatv(GLenum pname, GLfloat* params)
{
get_floating_point(pname, params);
}
template<typename T>
void SoftwareGLContext::get_floating_point(GLenum pname, T* params)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// Handle special matrix cases first
auto flatten_and_assign_matrix = [&params](const FloatMatrix4x4& matrix) {
auto elements = matrix.elements();
for (size_t i = 0; i < 4; ++i)
for (size_t j = 0; j < 4; ++j)
params[i * 4 + j] = static_cast<T>(elements[i][j]);
};
switch (pname) {
case GL_MODELVIEW_MATRIX:
if (m_current_matrix_mode == GL_MODELVIEW)
flatten_and_assign_matrix(m_model_view_matrix);
else if (m_model_view_matrix_stack.is_empty())
flatten_and_assign_matrix(FloatMatrix4x4::identity());
else
flatten_and_assign_matrix(m_model_view_matrix_stack.last());
return;
case GL_PROJECTION_MATRIX:
if (m_current_matrix_mode == GL_PROJECTION)
flatten_and_assign_matrix(m_projection_matrix);
else if (m_projection_matrix_stack.is_empty())
flatten_and_assign_matrix(FloatMatrix4x4::identity());
else
flatten_and_assign_matrix(m_projection_matrix_stack.last());
return;
}
// Regular parameters
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*params = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE:
for (size_t i = 0; i < parameter.count; ++i) {
params[i] = parameter.value.double_list[i];
}
break;
case GL_INT:
for (size_t i = 0; i < parameter.count; ++i) {
params[i] = parameter.value.integer_list[i];
}
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_get_integerv(GLenum pname, GLint* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE: {
double const int_range = static_cast<double>(NumericLimits<GLint>::max()) - NumericLimits<GLint>::min();
for (size_t i = 0; i < parameter.count; ++i) {
double const result_factor = (clamp(parameter.value.double_list[i], -1.0, 1.0) + 1.0) / 2.0;
data[i] = static_cast<GLint>(NumericLimits<GLint>::min() + result_factor * int_range);
}
break;
}
case GL_INT:
for (size_t i = 0; i < parameter.count; ++i) {
data[i] = parameter.value.integer_list[i];
}
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_depth_mask(GLboolean flag)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_mask, flag);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
options.enable_depth_write = (flag != GL_FALSE);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_enable_client_state(GLenum cap)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (cap) {
case GL_VERTEX_ARRAY:
m_client_side_vertex_array_enabled = true;
break;
case GL_COLOR_ARRAY:
m_client_side_color_array_enabled = true;
break;
case GL_TEXTURE_COORD_ARRAY:
m_client_side_texture_coord_array_enabled = true;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void SoftwareGLContext::gl_disable_client_state(GLenum cap)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (cap) {
case GL_VERTEX_ARRAY:
m_client_side_vertex_array_enabled = false;
break;
case GL_COLOR_ARRAY:
m_client_side_color_array_enabled = false;
break;
case GL_TEXTURE_COORD_ARRAY:
m_client_side_texture_coord_array_enabled = false;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void SoftwareGLContext::gl_vertex_pointer(GLint size, GLenum type, GLsizei stride, const void* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 2 || size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_vertex_pointer.size = size;
m_client_vertex_pointer.type = type;
m_client_vertex_pointer.stride = stride;
m_client_vertex_pointer.pointer = pointer;
}
void SoftwareGLContext::gl_color_pointer(GLint size, GLenum type, GLsizei stride, const void* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_BYTE
|| type == GL_UNSIGNED_BYTE
|| type == GL_SHORT
|| type == GL_UNSIGNED_SHORT
|| type == GL_INT
|| type == GL_UNSIGNED_INT
|| type == GL_FLOAT
|| type == GL_DOUBLE),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_color_pointer.size = size;
m_client_color_pointer.type = type;
m_client_color_pointer.stride = stride;
m_client_color_pointer.pointer = pointer;
}
void SoftwareGLContext::gl_tex_coord_pointer(GLint size, GLenum type, GLsizei stride, const void* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 1 || size == 2 || size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_tex_coord_pointer.size = size;
m_client_tex_coord_pointer.type = type;
m_client_tex_coord_pointer.stride = stride;
m_client_tex_coord_pointer.pointer = pointer;
}
void SoftwareGLContext::gl_tex_env(GLenum target, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_env, target, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (target == GL_TEXTURE_ENV) {
if (pname == GL_TEXTURE_ENV_MODE) {
auto param_enum = static_cast<GLenum>(param);
switch (param_enum) {
case GL_MODULATE:
case GL_REPLACE:
case GL_DECAL:
m_active_texture_unit->set_env_mode(param_enum);
break;
default:
// FIXME: We currently only support a subset of possible param values. Implement the rest!
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
break;
}
} else {
// FIXME: We currently only support a subset of possible pname values. Implement the rest!
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
} else {
// FIXME: We currently only support a subset of possible target values. Implement the rest!
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void SoftwareGLContext::gl_draw_arrays(GLenum mode, GLint first, GLsizei count)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_arrays, mode, first, count);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES,GL_QUAD_STRIP)
RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP
|| mode == GL_TRIANGLE_FAN
|| mode == GL_TRIANGLES
|| mode == GL_QUADS
|| mode == GL_POLYGON),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE);
// At least the vertex array needs to be enabled
if (!m_client_side_vertex_array_enabled)
return;
auto last = first + count;
gl_begin(mode);
for (int i = first; i < last; i++) {
if (m_client_side_texture_coord_array_enabled) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer, i, tex_coords, false);
gl_tex_coord(tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color, true);
glColor4fv(color);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex, false);
glVertex4fv(vertex);
}
gl_end();
}
void SoftwareGLContext::gl_draw_elements(GLenum mode, GLsizei count, GLenum type, const void* indices)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_elements, mode, count, type, indices);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES,GL_QUAD_STRIP)
RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP
|| mode == GL_TRIANGLE_FAN
|| mode == GL_TRIANGLES
|| mode == GL_QUADS
|| mode == GL_POLYGON),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE
|| type == GL_UNSIGNED_SHORT
|| type == GL_UNSIGNED_INT),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE);
// At least the vertex array needs to be enabled
if (!m_client_side_vertex_array_enabled)
return;
gl_begin(mode);
for (int index = 0; index < count; index++) {
int i = 0;
switch (type) {
case GL_UNSIGNED_BYTE:
i = reinterpret_cast<const GLubyte*>(indices)[index];
break;
case GL_UNSIGNED_SHORT:
i = reinterpret_cast<const GLushort*>(indices)[index];
break;
case GL_UNSIGNED_INT:
i = reinterpret_cast<const GLuint*>(indices)[index];
break;
}
if (m_client_side_texture_coord_array_enabled) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer, i, tex_coords, false);
gl_tex_coord(tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color, true);
glColor4fv(color);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex, false);
glVertex4fv(vertex);
}
gl_end();
}
void SoftwareGLContext::gl_draw_pixels(GLsizei width, GLsizei height, GLenum format, GLenum type, const void* data)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_pixels, width, height, format, type, data);
RETURN_WITH_ERROR_IF(format < GL_COLOR_INDEX || format > GL_BGRA, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((type < GL_BYTE || type > GL_FLOAT)
&& (type < GL_UNSIGNED_BYTE_3_3_2 || type > GL_UNSIGNED_INT_10_10_10_2)
&& (type < GL_UNSIGNED_BYTE_2_3_3_REV || type > GL_UNSIGNED_INT_2_10_10_10_REV),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(type == GL_BITMAP && !(format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
// FIXME: GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil buffer
// FIXME: GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
// GL_BGR, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL is in color index mode
RETURN_WITH_ERROR_IF(format != GL_RGB
&& (type == GL_UNSIGNED_BYTE_3_3_2
|| type == GL_UNSIGNED_BYTE_2_3_3_REV
|| type == GL_UNSIGNED_SHORT_5_6_5
|| type == GL_UNSIGNED_SHORT_5_6_5_REV),
GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_BGRA)
&& (type == GL_UNSIGNED_SHORT_4_4_4_4
|| type == GL_UNSIGNED_SHORT_4_4_4_4_REV
|| type == GL_UNSIGNED_SHORT_5_5_5_1
|| type == GL_UNSIGNED_SHORT_1_5_5_5_REV
|| type == GL_UNSIGNED_INT_8_8_8_8
|| type == GL_UNSIGNED_INT_8_8_8_8_REV
|| type == GL_UNSIGNED_INT_10_10_10_2
|| type == GL_UNSIGNED_INT_2_10_10_10_REV),
GL_INVALID_OPERATION);
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and the buffer object's data store is currently mapped.
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and the data would be unpacked from the buffer object such that the memory reads required would
// exceed the data store size.
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and data is not evenly divisible into the number of bytes needed to store in memory a datum
// indicated by type.
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: we only support RGBA + GL_UNSIGNED_BYTE, implement all the others!
if (format != GL_RGBA) {
dbgln_if(GL_DEBUG, "gl_draw_pixels(): support for format {:#x} not implemented", format);
return;
} else if (type != GL_UNSIGNED_BYTE) {
dbgln_if(GL_DEBUG, "gl_draw_pixels(): support for type {:#x} not implemented", type);
return;
}
auto bitmap_or_error = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, { width, height });
RETURN_WITH_ERROR_IF(bitmap_or_error.is_error(), GL_OUT_OF_MEMORY);
auto bitmap = bitmap_or_error.release_value();
// FIXME: implement support for GL_UNPACK_ALIGNMENT and other pixel parameters
auto pixel_data = static_cast<u32 const*>(data);
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
bitmap->set_pixel(x, y, Color::from_rgba(*(pixel_data++)));
m_rasterizer.blit(
bitmap,
static_cast<int>(m_current_raster_position.window_coordinates.x()),
static_cast<int>(m_current_raster_position.window_coordinates.y()));
}
void SoftwareGLContext::gl_depth_range(GLdouble min, GLdouble max)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_range, min, max);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
options.depth_min = clamp(min, 0.f, 1.f);
options.depth_max = clamp(max, 0.f, 1.f);
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_depth_func(GLenum func)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_func, func);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(func == GL_NEVER
|| func == GL_LESS
|| func == GL_EQUAL
|| func == GL_LEQUAL
|| func == GL_GREATER
|| func == GL_NOTEQUAL
|| func == GL_GEQUAL
|| func == GL_ALWAYS),
GL_INVALID_ENUM);
auto options = m_rasterizer.options();
options.depth_func = func;
m_rasterizer.set_options(options);
}
// General helper function to read arbitrary vertex attribute data into a float array
void SoftwareGLContext::read_from_vertex_attribute_pointer(VertexAttribPointer const& attrib, int index, float* elements, bool normalize)
{
auto byte_ptr = reinterpret_cast<const char*>(attrib.pointer);
size_t stride = attrib.stride;
switch (attrib.type) {
case GL_BYTE: {
if (stride == 0)
stride = sizeof(GLbyte) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLbyte*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x80;
}
break;
}
case GL_UNSIGNED_BYTE: {
if (stride == 0)
stride = sizeof(GLubyte) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLubyte*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xff;
}
break;
}
case GL_SHORT: {
if (stride == 0)
stride = sizeof(GLshort) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLshort*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x8000;
}
break;
}
case GL_UNSIGNED_SHORT: {
if (stride == 0)
stride = sizeof(GLushort) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLushort*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xffff;
}
break;
}
case GL_INT: {
if (stride == 0)
stride = sizeof(GLint) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLint*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x80000000;
}
break;
}
case GL_UNSIGNED_INT: {
if (stride == 0)
stride = sizeof(GLuint) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLuint*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xffffffff;
}
break;
}
case GL_FLOAT: {
if (stride == 0)
stride = sizeof(GLfloat) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = *(reinterpret_cast<const GLfloat*>(byte_ptr + stride * index) + i);
}
break;
}
case GL_DOUBLE: {
if (stride == 0)
stride = sizeof(GLdouble) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
elements[i] = static_cast<float>(*(reinterpret_cast<const GLdouble*>(byte_ptr + stride * index) + i));
}
break;
}
}
}
void SoftwareGLContext::gl_color_mask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)
{
auto options = m_rasterizer.options();
auto mask = options.color_mask;
if (!red)
mask &= ~0x000000ff;
else
mask |= 0x000000ff;
if (!green)
mask &= ~0x0000ff00;
else
mask |= 0x0000ff00;
if (!blue)
mask &= ~0x00ff0000;
else
mask |= 0x00ff0000;
if (!alpha)
mask &= ~0xff000000;
else
mask |= 0xff000000;
options.color_mask = mask;
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_polygon_mode(GLenum face, GLenum mode)
{
RETURN_WITH_ERROR_IF(!(face == GL_BACK || face == GL_FRONT || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(mode == GL_POINT || mode == GL_LINE || mode == GL_FILL), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
options.polygon_mode = mode;
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_polygon_offset(GLfloat factor, GLfloat units)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_polygon_offset, factor, units);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer.options();
rasterizer_options.depth_offset_factor = factor;
rasterizer_options.depth_offset_constant = units;
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_fogfv(GLenum pname, GLfloat* params)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer.options();
switch (pname) {
case GL_FOG_COLOR:
// Set rasterizer options fog color
// NOTE: We purposefully don't check for `nullptr` here (as with other calls). The spec states nothing
// about us checking for such things. If the programmer does so and hits SIGSEGV, that's on them.
options.fog_color = FloatVector4 { params[0], params[1], params[2], params[3] };
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_fogf(GLenum pname, GLfloat param)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(param < 0.0f, GL_INVALID_VALUE);
auto options = m_rasterizer.options();
switch (pname) {
case GL_FOG_DENSITY:
options.fog_density = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_fogi(GLenum pname, GLint param)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(param == GL_EXP || param == GL_EXP2 || param != GL_LINEAR), GL_INVALID_ENUM);
auto options = m_rasterizer.options();
switch (pname) {
case GL_FOG_MODE:
options.fog_mode = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_pixel_storei(GLenum pname, GLint param)
{
// FIXME: Implement missing parameters
switch (pname) {
case GL_PACK_ALIGNMENT:
RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE);
m_pack_alignment = param;
break;
case GL_UNPACK_ROW_LENGTH:
RETURN_WITH_ERROR_IF(param < 0, GL_INVALID_VALUE);
m_unpack_row_length = static_cast<size_t>(param);
break;
case GL_UNPACK_ALIGNMENT:
RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE);
m_unpack_alignment = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
break;
}
}
void SoftwareGLContext::gl_scissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scissor, x, y, width, height);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
auto options = m_rasterizer.options();
options.scissor_box = { x, y, width, height };
m_rasterizer.set_options(options);
}
void SoftwareGLContext::gl_stencil_func_separate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_func_separate, face, func, ref, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(func == GL_NEVER
|| func == GL_LESS
|| func == GL_LEQUAL
|| func == GL_GREATER
|| func == GL_GEQUAL
|| func == GL_EQUAL
|| func == GL_NOTEQUAL
|| func == GL_ALWAYS),
GL_INVALID_ENUM);
// FIXME: "ref is clamped to the range 02^n - 1 , where n is the number of bitplanes in the stencil buffer"
StencilFunctionOptions new_options = { func, ref, mask };
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
m_stencil_frontfacing_func = new_options;
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
m_stencil_backfacing_func = new_options;
}
void SoftwareGLContext::gl_stencil_op_separate(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_op_separate, face, sfail, dpfail, dppass);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(sfail == GL_KEEP
|| sfail == GL_ZERO
|| sfail == GL_REPLACE
|| sfail == GL_INCR
|| sfail == GL_INCR_WRAP
|| sfail == GL_DECR
|| sfail == GL_DECR_WRAP
|| sfail == GL_INVERT),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(dpfail == GL_KEEP
|| dpfail == GL_ZERO
|| dpfail == GL_REPLACE
|| dpfail == GL_INCR
|| dpfail == GL_INCR_WRAP
|| dpfail == GL_DECR
|| dpfail == GL_DECR_WRAP
|| dpfail == GL_INVERT),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(dppass == GL_KEEP
|| dppass == GL_ZERO
|| dppass == GL_REPLACE
|| dppass == GL_INCR
|| dppass == GL_INCR_WRAP
|| dppass == GL_DECR
|| dppass == GL_DECR_WRAP
|| dppass == GL_INVERT),
GL_INVALID_ENUM);
StencilOperationOptions new_options = { sfail, dpfail, dppass };
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
m_stencil_frontfacing_op = new_options;
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
m_stencil_backfacing_op = new_options;
}
void SoftwareGLContext::gl_normal(GLfloat nx, GLfloat ny, GLfloat nz)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_normal, nx, ny, nz);
m_current_vertex_normal = { nx, ny, nz };
}
void SoftwareGLContext::gl_raster_pos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_raster_pos, x, y, z, w);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_current_raster_position.window_coordinates = { x, y, z };
m_current_raster_position.clip_coordinate_value = w;
}
void SoftwareGLContext::gl_materialv(GLenum face, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialv, face, pname, params);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT
|| pname == GL_DIFFUSE
|| pname == GL_SPECULAR
|| pname == GL_EMISSION
|| pname == GL_SHININESS
|| pname == GL_AMBIENT_AND_DIFFUSE
|| pname == GL_COLOR_INDEXES),
GL_INVALID_ENUM);
GLfloat x, y, z, w;
switch (pname) {
case GL_SHININESS:
x = params[0];
y = 0.0f;
z = 0.0f;
w = 0.0f;
break;
case GL_COLOR_INDEXES:
x = params[0];
y = params[1];
z = params[2];
w = 0.0f;
break;
default:
x = params[0];
y = params[1];
z = params[2];
w = params[3];
}
// FIXME: implement this method
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: gl_materialv({}, {}, {}, {}, {}, {})", face, pname, x, y, z, w);
}
void SoftwareGLContext::gl_line_width(GLfloat width)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_line_width, width);
RETURN_WITH_ERROR_IF(width <= 0, GL_INVALID_VALUE);
m_line_width = width;
}
void SoftwareGLContext::gl_push_attrib(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_attrib, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_push_attrib({})", mask);
}
void SoftwareGLContext::gl_pop_attrib()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_attrib);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_pop_attrib()");
}
void SoftwareGLContext::gl_light_model(GLenum pname, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_light_model, pname, x, y, z, w);
RETURN_WITH_ERROR_IF(!(pname == GL_LIGHT_MODEL_AMBIENT
|| pname == GL_LIGHT_MODEL_TWO_SIDE),
GL_INVALID_ENUM);
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
m_light_model_ambient = { x, y, z, w };
break;
case GL_LIGHT_MODEL_TWO_SIDE:
VERIFY(y == 0.0f && z == 0.0f && w == 0.0f);
m_light_model_two_side = x;
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftwareGLContext::gl_bitmap(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, GLubyte const* bitmap)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_bitmap, width, height, xorig, yorig, xmove, ymove, bitmap);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_bitmap({}, {}, {}, {}, {}, {}, {})", width, height, xorig, yorig, xmove, ymove, bitmap);
}
void SoftwareGLContext::gl_copy_tex_image_2d(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_copy_tex_image_2d, target, level, internalformat, x, y, width, height, border);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "SoftwareGLContext FIXME: implement gl_copy_tex_image_2d({:#x}, {}, {:#x}, {}, {}, {}, {}, {})",
target, level, internalformat, x, y, width, height, border);
}
void SoftwareGLContext::present()
{
m_rasterizer.blit_to(*m_frontbuffer);
}
void SoftwareGLContext::sync_device_config()
{
sync_device_sampler_config();
}
void SoftwareGLContext::sync_device_sampler_config()
{
if (!m_sampler_config_is_dirty)
return;
m_sampler_config_is_dirty = false;
for (unsigned i = 0; i < m_texture_units.size(); ++i) {
SoftGPU::SamplerConfig config;
if (!m_texture_units[i].texture_2d_enabled())
continue;
auto texture = m_texture_units[i].bound_texture_2d();
config.bound_image = texture.is_null() ? nullptr : texture->device_image();
auto const& sampler = texture->sampler();
switch (sampler.min_filter()) {
case GL_NEAREST:
config.texture_min_filter = SoftGPU::TextureFilter::Nearest;
config.mipmap_filter = SoftGPU::MipMapFilter::None;
break;
case GL_LINEAR:
config.texture_min_filter = SoftGPU::TextureFilter::Linear;
config.mipmap_filter = SoftGPU::MipMapFilter::None;
break;
case GL_NEAREST_MIPMAP_NEAREST:
config.texture_min_filter = SoftGPU::TextureFilter::Nearest;
config.mipmap_filter = SoftGPU::MipMapFilter::Nearest;
break;
case GL_NEAREST_MIPMAP_LINEAR:
config.texture_min_filter = SoftGPU::TextureFilter::Linear;
config.mipmap_filter = SoftGPU::MipMapFilter::Nearest;
break;
case GL_LINEAR_MIPMAP_LINEAR:
config.texture_min_filter = SoftGPU::TextureFilter::Linear;
config.mipmap_filter = SoftGPU::MipMapFilter::Linear;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.mag_filter()) {
case GL_NEAREST:
config.texture_mag_filter = SoftGPU::TextureFilter::Nearest;
break;
case GL_LINEAR:
config.texture_mag_filter = SoftGPU::TextureFilter::Linear;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.wrap_s_mode()) {
case GL_CLAMP:
config.texture_wrap_u = SoftGPU::TextureWrapMode::Clamp;
break;
case GL_CLAMP_TO_BORDER:
config.texture_wrap_u = SoftGPU::TextureWrapMode::ClampToBorder;
break;
case GL_CLAMP_TO_EDGE:
config.texture_wrap_u = SoftGPU::TextureWrapMode::ClampToEdge;
break;
case GL_REPEAT:
config.texture_wrap_u = SoftGPU::TextureWrapMode::Repeat;
break;
case GL_MIRRORED_REPEAT:
config.texture_wrap_u = SoftGPU::TextureWrapMode::MirroredRepeat;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.wrap_t_mode()) {
case GL_CLAMP:
config.texture_wrap_v = SoftGPU::TextureWrapMode::Clamp;
break;
case GL_CLAMP_TO_BORDER:
config.texture_wrap_v = SoftGPU::TextureWrapMode::ClampToBorder;
break;
case GL_CLAMP_TO_EDGE:
config.texture_wrap_v = SoftGPU::TextureWrapMode::ClampToEdge;
break;
case GL_REPEAT:
config.texture_wrap_v = SoftGPU::TextureWrapMode::Repeat;
break;
case GL_MIRRORED_REPEAT:
config.texture_wrap_v = SoftGPU::TextureWrapMode::MirroredRepeat;
break;
default:
VERIFY_NOT_REACHED();
}
switch (m_texture_units[i].env_mode()) {
case GL_MODULATE:
config.fixed_function_texture_env_mode = SoftGPU::TextureEnvMode::Modulate;
break;
case GL_REPLACE:
config.fixed_function_texture_env_mode = SoftGPU::TextureEnvMode::Replace;
break;
case GL_DECAL:
config.fixed_function_texture_env_mode = SoftGPU::TextureEnvMode::Decal;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer.set_sampler_config(i, config);
}
}
}