serenity/Kernel/init.cpp
Tom bc107d0b33 Kernel: Add SMP IPI support
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.

We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.

Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.

This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
2020-07-06 17:07:44 +02:00

391 lines
13 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Types.h>
#include <Kernel/ACPI/DynamicParser.h>
#include <Kernel/ACPI/Initialize.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/BXVGADevice.h>
#include <Kernel/Devices/DiskPartition.h>
#include <Kernel/Devices/EBRPartitionTable.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/GPTPartitionTable.h>
#include <Kernel/Devices/KeyboardDevice.h>
#include <Kernel/Devices/MBRPartitionTable.h>
#include <Kernel/Devices/MBVGADevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/PATAChannel.h>
#include <Kernel/Devices/PATADiskDevice.h>
#include <Kernel/Devices/PS2MouseDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SB16.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/VMWareBackdoor.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Interrupts/PIC.h>
#include <Kernel/KSyms.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Random.h>
#include <Kernel/Scheduler.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/Tasks/FinalizerTask.h>
#include <Kernel/Tasks/SyncTask.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_ctors;
extern ctor_func_t end_ctors;
extern u32 __stack_chk_guard;
u32 __stack_chk_guard;
namespace Kernel {
[[noreturn]] static void init_stage2();
static void setup_serial_debug();
VirtualConsole* tty0;
static Processor s_bsp_processor; // global but let's keep it "private"
// SerenityOS Kernel C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
// The purpose of init() is to start multi-tasking. It does the bare minimum
// amount of work needed to start the scheduler.
//
// Once multi-tasking is ready, we spawn a new thread that starts in the
// init_stage2() function. Initialization continues there.
extern "C" [[noreturn]] void init()
{
setup_serial_debug();
s_bsp_processor.early_initialize(0);
kmalloc_init();
slab_alloc_init();
s_bsp_processor.initialize(0);
CommandLine::initialize(reinterpret_cast<const char*>(low_physical_to_virtual(multiboot_info_ptr->cmdline)));
MemoryManager::initialize(0);
// Invoke all static global constructors in the kernel.
// Note that we want to do this as early as possible.
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
(*ctor)();
APIC::initialize();
InterruptManagement::initialize();
ACPI::initialize();
new VFS;
new KeyboardDevice;
new PS2MouseDevice;
new Console;
klog() << "Starting SerenityOS...";
__stack_chk_guard = get_fast_random<u32>();
TimeManagement::initialize();
new NullDevice;
if (!get_serial_debug())
new SerialDevice(SERIAL_COM1_ADDR, 64);
new SerialDevice(SERIAL_COM2_ADDR, 65);
new SerialDevice(SERIAL_COM3_ADDR, 66);
new SerialDevice(SERIAL_COM4_ADDR, 67);
VirtualConsole::initialize();
tty0 = new VirtualConsole(0);
new VirtualConsole(1);
VirtualConsole::switch_to(0);
Process::initialize();
Scheduler::initialize();
Thread* init_stage2_thread = nullptr;
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2);
Scheduler::start();
ASSERT_NOT_REACHED();
}
//
// This is where C++ execution begins for APs, after boot.S transfers control here.
//
// The purpose of init_ap() is to initialize APs for multi-tasking.
//
extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info)
{
processor_info->early_initialize(cpu);
klog() << "CPU #" << cpu << " processor_info at " << VirtualAddress(FlatPtr(processor_info));
processor_info->initialize(cpu);
APIC::the().enable(cpu);
MemoryManager::initialize(cpu);
Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
Scheduler::start();
ASSERT_NOT_REACHED();
}
//
// This method is called once a CPU enters the scheduler and its idle thread
// At this point the initial boot stack can be freed
//
extern "C" void init_finished(u32 cpu)
{
klog() << "CPU #" << cpu << " finished initialization";
if (cpu == 0) {
// TODO: we can reuse the boot stack, maybe for kmalloc()?
} else {
APIC::the().init_finished(cpu);
}
}
void init_stage2()
{
if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We can't start the APs until we have a scheduler up and running.
// We need to be able to process ICI messages, otherwise another
// core may send too many and end up deadlocking once the pool is
// exhausted
APIC::the().boot_aps();
}
SyncTask::spawn();
FinalizerTask::spawn();
PCI::initialize();
bool text_mode = kernel_command_line().lookup("boot_mode").value_or("graphical") == "text";
if (text_mode) {
dbg() << "Text mode enabled";
} else {
bool bxvga_found = false;
PCI::enumerate([&](const PCI::Address&, PCI::ID id) {
if (id.vendor_id == 0x1234 && id.device_id == 0x1111)
bxvga_found = true;
});
if (bxvga_found) {
new BXVGADevice;
} else {
if (multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB || multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_EGA_TEXT) {
new MBVGADevice(
PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)),
multiboot_info_ptr->framebuffer_pitch,
multiboot_info_ptr->framebuffer_width,
multiboot_info_ptr->framebuffer_height);
} else {
new BXVGADevice;
}
}
}
E1000NetworkAdapter::detect();
RTL8139NetworkAdapter::detect();
LoopbackAdapter::the();
Syscall::initialize();
new ZeroDevice;
new FullDevice;
new RandomDevice;
new PTYMultiplexer;
new SB16;
VMWareBackdoor::initialize();
bool force_pio = kernel_command_line().contains("force_pio");
auto root = kernel_command_line().lookup("root").value_or("/dev/hda");
if (!root.starts_with("/dev/hda")) {
klog() << "init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)";
Processor::halt();
}
auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio);
NonnullRefPtr<BlockDevice> root_dev = *pata0->master_device();
root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda"));
if (root.length()) {
auto partition_number = root.to_uint();
if (!partition_number.has_value()) {
klog() << "init_stage2: couldn't parse partition number from root kernel parameter";
Processor::halt();
}
MBRPartitionTable mbr(root_dev);
if (!mbr.initialize()) {
klog() << "init_stage2: couldn't read MBR from disk";
Processor::halt();
}
if (mbr.is_protective_mbr()) {
dbg() << "GPT Partitioned Storage Detected!";
GPTPartitionTable gpt(root_dev);
if (!gpt.initialize()) {
klog() << "init_stage2: couldn't read GPT from disk";
Processor::halt();
}
auto partition = gpt.partition(partition_number.value());
if (!partition) {
klog() << "init_stage2: couldn't get partition " << partition_number.value();
Processor::halt();
}
root_dev = *partition;
} else {
dbg() << "MBR Partitioned Storage Detected!";
if (mbr.contains_ebr()) {
EBRPartitionTable ebr(root_dev);
if (!ebr.initialize()) {
klog() << "init_stage2: couldn't read EBR from disk";
Processor::halt();
}
auto partition = ebr.partition(partition_number.value());
if (!partition) {
klog() << "init_stage2: couldn't get partition " << partition_number.value();
Processor::halt();
}
root_dev = *partition;
} else {
if (partition_number.value() < 1 || partition_number.value() > 4) {
klog() << "init_stage2: invalid partition number " << partition_number.value() << "; expected 1 to 4";
Processor::halt();
}
auto partition = mbr.partition(partition_number.value());
if (!partition) {
klog() << "init_stage2: couldn't get partition " << partition_number.value();
Processor::halt();
}
root_dev = *partition;
}
}
}
auto e2fs = Ext2FS::create(*FileDescription::create(root_dev));
if (!e2fs->initialize()) {
klog() << "init_stage2: couldn't open root filesystem";
Processor::halt();
}
if (!VFS::the().mount_root(e2fs)) {
klog() << "VFS::mount_root failed";
Processor::halt();
}
Process::current()->set_root_directory(VFS::the().root_custody());
load_kernel_symbol_table();
int error;
// FIXME: It would be nicer to set the mode from userspace.
tty0->set_graphical(!text_mode);
Thread* thread = nullptr;
auto userspace_init = kernel_command_line().lookup("init").value_or("/bin/SystemServer");
Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
klog() << "init_stage2: error spawning SystemServer: " << error;
Processor::halt();
}
thread->set_priority(THREAD_PRIORITY_HIGH);
NetworkTask::spawn();
Process::current()->sys$exit(0);
ASSERT_NOT_REACHED();
}
void setup_serial_debug()
{
// this is only used one time, directly below here. we can't use this part
// of libc at this point in the boot process, or we'd just pull strstr in
// from <string.h>.
auto bad_prefix_check = [](const char* str, const char* search) -> bool {
while (*search)
if (*search++ != *str++)
return false;
return true;
};
// serial_debug will output all the klog() and dbg() data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
//
// note: it must be the first option in the boot cmdline.
u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline);
if (cmdline && bad_prefix_check(reinterpret_cast<const char*>(cmdline), "serial_debug"))
set_serial_debug(true);
}
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
// Define some Itanium C++ ABI methods to stop the linker from complaining
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
extern "C" int __cxa_atexit(void (*)(void*), void*, void*)
{
ASSERT_NOT_REACHED();
return 0;
}
}