serenity/AK/InlineLinkedList.h
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

330 lines
8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Types.h>
namespace AK {
template<typename T>
class InlineLinkedList;
template<typename T>
class InlineLinkedListIterator {
public:
bool operator!=(const InlineLinkedListIterator& other) const { return m_node != other.m_node; }
bool operator==(const InlineLinkedListIterator& other) const { return m_node == other.m_node; }
InlineLinkedListIterator& operator++()
{
m_node = m_node->next();
return *this;
}
T& operator*() { return *m_node; }
T* operator->() { return m_node; }
bool is_end() const { return !m_node; }
static InlineLinkedListIterator universal_end() { return InlineLinkedListIterator(nullptr); }
private:
friend InlineLinkedList<T>;
explicit InlineLinkedListIterator(T* node)
: m_node(node)
{
}
T* m_node;
};
template<typename T>
class InlineLinkedListNode {
public:
InlineLinkedListNode();
void set_prev(T*);
void set_next(T*);
T* prev() const;
T* next() const;
};
template<typename T>
inline InlineLinkedListNode<T>::InlineLinkedListNode()
{
set_prev(0);
set_next(0);
}
template<typename T>
inline void InlineLinkedListNode<T>::set_prev(T* prev)
{
static_cast<T*>(this)->m_prev = prev;
}
template<typename T>
inline void InlineLinkedListNode<T>::set_next(T* next)
{
static_cast<T*>(this)->m_next = next;
}
template<typename T>
inline T* InlineLinkedListNode<T>::prev() const
{
return static_cast<const T*>(this)->m_prev;
}
template<typename T>
inline T* InlineLinkedListNode<T>::next() const
{
return static_cast<const T*>(this)->m_next;
}
template<typename T>
class InlineLinkedList {
public:
InlineLinkedList() = default;
bool is_empty() const { return !m_head; }
size_t size_slow() const;
void clear();
T* head() const { return m_head; }
T* remove_head();
T* remove_tail();
T* tail() const { return m_tail; }
void prepend(T*);
void append(T*);
void remove(T*);
void append(InlineLinkedList<T>&);
void insert_before(T*, T*);
void insert_after(T*, T*);
bool contains_slow(T* value) const
{
for (T* node = m_head; node; node = node->next()) {
if (node == value)
return true;
}
return false;
}
template<typename F>
IterationDecision for_each(F func) const
{
for (T* node = m_head; node; node = node->next()) {
IterationDecision decision = func(*node);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
using Iterator = InlineLinkedListIterator<T>;
friend Iterator;
Iterator begin() { return Iterator(m_head); }
Iterator end() { return Iterator::universal_end(); }
using ConstIterator = InlineLinkedListIterator<const T>;
friend ConstIterator;
ConstIterator begin() const { return ConstIterator(m_head); }
ConstIterator end() const { return ConstIterator::universal_end(); }
private:
T* m_head { nullptr };
T* m_tail { nullptr };
};
template<typename T>
inline size_t InlineLinkedList<T>::size_slow() const
{
size_t size = 0;
for (T* node = m_head; node; node = node->next())
++size;
return size;
}
template<typename T>
inline void InlineLinkedList<T>::clear()
{
m_head = 0;
m_tail = 0;
}
template<typename T>
inline void InlineLinkedList<T>::prepend(T* node)
{
if (!m_head) {
VERIFY(!m_tail);
m_head = node;
m_tail = node;
node->set_prev(0);
node->set_next(0);
return;
}
VERIFY(m_tail);
m_head->set_prev(node);
node->set_next(m_head);
node->set_prev(0);
m_head = node;
}
template<typename T>
inline void InlineLinkedList<T>::append(T* node)
{
if (!m_tail) {
VERIFY(!m_head);
m_head = node;
m_tail = node;
node->set_prev(0);
node->set_next(0);
return;
}
VERIFY(m_head);
m_tail->set_next(node);
node->set_prev(m_tail);
node->set_next(0);
m_tail = node;
}
template<typename T>
inline void InlineLinkedList<T>::insert_before(T* before_node, T* node)
{
VERIFY(before_node);
VERIFY(node);
VERIFY(before_node != node);
VERIFY(!is_empty());
if (m_head == before_node) {
VERIFY(!before_node->prev());
m_head = node;
node->set_prev(0);
node->set_next(before_node);
before_node->set_prev(node);
} else {
VERIFY(before_node->prev());
node->set_prev(before_node->prev());
before_node->prev()->set_next(node);
node->set_next(before_node);
before_node->set_prev(node);
}
}
template<typename T>
inline void InlineLinkedList<T>::insert_after(T* after_node, T* node)
{
VERIFY(after_node);
VERIFY(node);
VERIFY(after_node != node);
VERIFY(!is_empty());
if (m_tail == after_node) {
VERIFY(!after_node->next());
m_tail = node;
node->set_prev(after_node);
node->set_next(0);
after_node->set_next(node);
} else {
VERIFY(after_node->next());
node->set_prev(after_node);
node->set_next(after_node->next());
after_node->next()->set_prev(node);
after_node->set_next(node);
}
}
template<typename T>
inline void InlineLinkedList<T>::remove(T* node)
{
if (node->prev()) {
VERIFY(node != m_head);
node->prev()->set_next(node->next());
} else {
VERIFY(node == m_head);
m_head = node->next();
}
if (node->next()) {
VERIFY(node != m_tail);
node->next()->set_prev(node->prev());
} else {
VERIFY(node == m_tail);
m_tail = node->prev();
}
node->set_next(0);
node->set_prev(0);
}
template<typename T>
inline T* InlineLinkedList<T>::remove_head()
{
T* node = head();
if (node)
remove(node);
return node;
}
template<typename T>
inline T* InlineLinkedList<T>::remove_tail()
{
T* node = tail();
if (node)
remove(node);
return node;
}
template<typename T>
inline void InlineLinkedList<T>::append(InlineLinkedList<T>& other)
{
if (!other.head())
return;
if (!head()) {
m_head = other.head();
m_tail = other.tail();
other.clear();
return;
}
VERIFY(tail());
VERIFY(other.head());
T* other_head = other.head();
T* other_tail = other.tail();
other.clear();
VERIFY(!m_tail->next());
m_tail->set_next(other_head);
VERIFY(!other_head->prev());
other_head->set_prev(m_tail);
m_tail = other_tail;
}
}
using AK::InlineLinkedList;
using AK::InlineLinkedListNode;