/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #if defined(AK_OS_SERENITY) && defined(KERNEL) # include # include // We need a Badge for some MonotonicTime operations. namespace Kernel { class TimeManagement; } #else # include # include #endif namespace AK { // Concept to detect types which look like timespec without requiring the type. template concept TimeSpecType = requires(T t) { t.tv_sec; t.tv_nsec; }; constexpr bool is_leap_year(int year) { return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } // Month and day start at 1. Month must be >= 1 and <= 12. // The return value is 0-indexed, that is 0 is Sunday, 1 is Monday, etc. // Day may be negative or larger than the number of days // in the given month. unsigned day_of_week(int year, unsigned month, int day); // Month and day start at 1. Month must be >= 1 and <= 12. // The return value is 0-indexed, that is Jan 1 is day 0. // Day may be negative or larger than the number of days // in the given month. If day is negative enough, the result // can be negative. constexpr int day_of_year(int year, unsigned month, int day) { if (is_constant_evaluated()) VERIFY(month >= 1 && month <= 12); // Note that this prevents bad constexpr months, but never actually prints anything. else if (!(month >= 1 && month <= 12)) return 0; constexpr Array seek_table = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int day_of_year = seek_table[month - 1] + day - 1; if (is_leap_year(year) && month >= 3) day_of_year++; return day_of_year; } // Month starts at 1. Month must be >= 1 and <= 12. int days_in_month(int year, unsigned month); constexpr int days_in_year(int year) { return 365 + (is_leap_year(year) ? 1 : 0); } namespace Detail { // Integer division rounding towards negative infinity. // TODO: This feels like there should be an easier way to do this. template constexpr i64 floor_div_by(i64 dividend) { static_assert(divisor > 1); int is_negative = dividend < 0; return (dividend + is_negative) / divisor - is_negative; } // Counts how many integers n are in the interval [begin, end) with n % positive_mod == 0. // NOTE: "end" is not considered to be part of the range, hence "[begin, end)". template constexpr i64 mod_zeros_in_range(i64 begin, i64 end) { return floor_div_by(end - 1) - floor_div_by(begin - 1); } } constexpr i64 years_to_days_since_epoch(int year) { int begin_year, end_year, leap_sign; if (year < 1970) { begin_year = year; end_year = 1970; leap_sign = -1; } else { begin_year = 1970; end_year = year; leap_sign = +1; } i64 year_i64 = year; // This duplicates the logic of 'is_leap_year', with the advantage of not needing any loops. // Given that the definition of leap years is not expected to change, this should be a good trade-off. i64 days = 365 * (year_i64 - 1970); i64 extra_leap_days = 0; extra_leap_days += Detail::mod_zeros_in_range<4>(begin_year, end_year); extra_leap_days -= Detail::mod_zeros_in_range<100>(begin_year, end_year); extra_leap_days += Detail::mod_zeros_in_range<400>(begin_year, end_year); return days + extra_leap_days * leap_sign; } constexpr i64 days_since_epoch(int year, int month, int day) { return years_to_days_since_epoch(year) + day_of_year(year, month, day); } constexpr i64 seconds_since_epoch_to_year(i64 seconds) { constexpr double seconds_per_year = 60.0 * 60.0 * 24.0 * 365.2425; // NOTE: We are not using floor() from to avoid LibC / DynamicLoader dependency issues. auto round_down = [](double value) -> i64 { auto as_i64 = static_cast(value); if ((value == as_i64) || (as_i64 >= 0)) return as_i64; return as_i64 - 1; }; auto years_since_epoch = static_cast(seconds) / seconds_per_year; return 1970 + round_down(years_since_epoch); } // Represents a duration in a "safe" way. // Minimum: -(2**63) seconds, 0 nanoseconds // Maximum: 2**63-1 seconds, 999'999'999 nanoseconds // If any operation (e.g. 'from_timeval' or operator-) would over- or underflow, the closest legal value is returned instead. // Inputs (e.g. to 'from_timespec') are allowed to be in non-normal form (e.g. "1 second, 2'012'345'678 nanoseconds" or "1 second, -2 microseconds"). // Outputs (e.g. from 'to_timeval') are always in normal form. // // NOTE: This class is naive. It may represent either absolute offsets or relative durations. It does not have a reference point in itself, // and therefore comparing multiple instances of this class is only sensible if you are sure that their reference point is identical. // You should not be using this class directly to represent absolute time. class Duration { public: constexpr Duration() = default; constexpr Duration(Duration const&) = default; constexpr Duration& operator=(Duration const&) = default; constexpr Duration(Duration&& other) : m_seconds(exchange(other.m_seconds, 0)) , m_nanoseconds(exchange(other.m_nanoseconds, 0)) { } constexpr Duration& operator=(Duration&& other) { if (this != &other) { m_seconds = exchange(other.m_seconds, 0); m_nanoseconds = exchange(other.m_nanoseconds, 0); } return *this; } private: // This must be part of the header in order to make the various 'from_*' functions constexpr. // However, sane_mod can only deal with a limited range of values for 'denominator', so this can't be made public. ALWAYS_INLINE static constexpr i64 sane_mod(i64& numerator, i64 denominator) { VERIFY(2 <= denominator && denominator <= 1'000'000'000); // '%' in C/C++ does not work in the obvious way: // For example, -9 % 7 is -2, not +5. // However, we want a representation like "(-2)*7 + (+5)". i64 dividend = numerator / denominator; numerator %= denominator; if (numerator < 0) { // Does not overflow: different signs. numerator += denominator; // Does not underflow: denominator >= 2. dividend -= 1; } return dividend; } ALWAYS_INLINE static constexpr i32 sane_mod(i32& numerator, i32 denominator) { i64 numerator_64 = numerator; i64 dividend = sane_mod(numerator_64, denominator); // Does not underflow: numerator can only become smaller. numerator = static_cast(numerator_64); // Does not overflow: Will be smaller than original value of 'numerator'. return static_cast(dividend); } public: [[nodiscard]] constexpr static Duration from_seconds(i64 seconds) { return Duration(seconds, 0); } [[nodiscard]] constexpr static Duration from_nanoseconds(i64 nanoseconds) { i64 seconds = sane_mod(nanoseconds, 1'000'000'000); return Duration(seconds, nanoseconds); } [[nodiscard]] constexpr static Duration from_microseconds(i64 microseconds) { i64 seconds = sane_mod(microseconds, 1'000'000); return Duration(seconds, microseconds * 1'000); } [[nodiscard]] constexpr static Duration from_milliseconds(i64 milliseconds) { i64 seconds = sane_mod(milliseconds, 1'000); return Duration(seconds, milliseconds * 1'000'000); } [[nodiscard]] static Duration from_ticks(clock_t, time_t); [[nodiscard]] static Duration from_timespec(const struct timespec&); [[nodiscard]] static Duration from_timeval(const struct timeval&); // We don't pull in for the pretty min/max definitions because this file is also included in the Kernel [[nodiscard]] constexpr static Duration min() { return Duration(-__INT64_MAX__ - 1LL, 0); } [[nodiscard]] constexpr static Duration zero() { return Duration(0, 0); } [[nodiscard]] constexpr static Duration max() { return Duration(__INT64_MAX__, 999'999'999); } // Truncates towards zero (2.8s to 2s, -2.8s to -2s). [[nodiscard]] i64 to_truncated_seconds() const; [[nodiscard]] i64 to_truncated_milliseconds() const; [[nodiscard]] i64 to_truncated_microseconds() const; // Rounds away from zero (2.3s to 3s, -2.3s to -3s). [[nodiscard]] i64 to_seconds() const; [[nodiscard]] i64 to_milliseconds() const; [[nodiscard]] i64 to_microseconds() const; [[nodiscard]] i64 to_nanoseconds() const; [[nodiscard]] timespec to_timespec() const; // Rounds towards -inf (it was the easiest to implement). [[nodiscard]] timeval to_timeval() const; [[nodiscard]] bool is_zero() const { return (m_seconds == 0) && (m_nanoseconds == 0); } [[nodiscard]] bool is_negative() const { return m_seconds < 0; } constexpr Duration operator+(Duration const& other) const { VERIFY(m_nanoseconds < 1'000'000'000); VERIFY(other.m_nanoseconds < 1'000'000'000); u32 new_nsecs = m_nanoseconds + other.m_nanoseconds; u32 extra_secs = new_nsecs / 1'000'000'000; new_nsecs %= 1'000'000'000; i64 this_secs = m_seconds; i64 other_secs = other.m_seconds; // We would like to just add "this_secs + other_secs + extra_secs". // However, computing this naively may overflow even though the result is in-bounds. // Example in 8-bit: (-127) + (-2) + (+1) = (-128), which fits in an i8. // Example in 8-bit, the other way around: (-2) + (127) + (+1) = 126. // So we do something more sophisticated: if (extra_secs) { VERIFY(extra_secs == 1); if (this_secs != 0x7fff'ffff'ffff'ffff) { this_secs += 1; } else if (other_secs != 0x7fff'ffff'ffff'ffff) { other_secs += 1; } else { /* If *both* are INT64_MAX, then adding them will overflow in any case. */ return Duration::max(); } } Checked new_secs { this_secs }; new_secs += other_secs; if (new_secs.has_overflow()) { if (other_secs > 0) return Duration::max(); else return Duration::min(); } return Duration { new_secs.value(), new_nsecs }; } constexpr Duration& operator+=(Duration const& other) { *this = *this + other; return *this; } constexpr Duration operator-(Duration const& other) const { VERIFY(m_nanoseconds < 1'000'000'000); VERIFY(other.m_nanoseconds < 1'000'000'000); if (other.m_nanoseconds) return *this + Duration((i64) ~(u64)other.m_seconds, 1'000'000'000 - other.m_nanoseconds); if (other.m_seconds != (i64)-0x8000'0000'0000'0000) return *this + Duration(-other.m_seconds, 0); // Only remaining case: We want to subtract -0x8000'0000'0000'0000 seconds, // i.e. add a very large number. if (m_seconds >= 0) return Duration::max(); return Duration { (m_seconds + 0x4000'0000'0000'0000) + 0x4000'0000'0000'0000, m_nanoseconds }; } constexpr Duration& operator-=(Duration const& other) { *this = *this - other; return *this; } constexpr bool operator==(Duration const& other) const = default; constexpr int operator<=>(Duration const& other) const { if (int cmp = (m_seconds > other.m_seconds ? 1 : m_seconds < other.m_seconds ? -1 : 0); cmp != 0) return cmp; if (int cmp = (m_nanoseconds > other.m_nanoseconds ? 1 : m_nanoseconds < other.m_nanoseconds ? -1 : 0); cmp != 0) return cmp; return 0; } private: constexpr explicit Duration(i64 seconds, u32 nanoseconds) : m_seconds(seconds) , m_nanoseconds(nanoseconds) { } [[nodiscard]] static Duration from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds); i64 m_seconds { 0 }; u32 m_nanoseconds { 0 }; // Always less than 1'000'000'000 }; namespace Detail { // Common base class for all unaware time types. // Naive, or unaware, in the time context means to make heavily simplifying assumptions about time. // In the case of this class and its children, they are not timezone-aware and strictly ordered. class UnawareTime { public: constexpr UnawareTime(UnawareTime const&) = default; constexpr UnawareTime& operator=(UnawareTime const&) = default; [[nodiscard]] timespec to_timespec() const { return m_offset.to_timespec(); } // Rounds towards -inf. [[nodiscard]] timeval to_timeval() const { return m_offset.to_timeval(); } // We intentionally do not define a comparison operator here to avoid accidentally comparing incompatible time types. protected: constexpr explicit UnawareTime(Duration offset) : m_offset(offset) { } Duration m_offset {}; }; } // Naive UNIX time, representing an offset from 1970-01-01 00:00:00Z, without accounting for UTC leap seconds. // This class is mainly intended for interoperating with anything that expects a unix timestamp. class UnixDateTime : public Detail::UnawareTime { public: constexpr UnixDateTime() : Detail::UnawareTime(Duration::zero()) { } constexpr static UnixDateTime epoch() { return UnixDateTime {}; } // Creates UNIX time from a unix timestamp. // Note that the returned time is probably not equivalent to the same timestamp in UTC time, since UNIX time does not observe leap seconds. [[nodiscard]] constexpr static UnixDateTime from_unix_time_parts(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond) { constexpr auto seconds_per_day = 86'400; constexpr auto seconds_per_hour = 3'600; constexpr auto seconds_per_minute = 60; i64 days = days_since_epoch(year, month, day); // With year=2'147'483'648, we can end up with days=569'603'931'504. // Expressing that in milliseconds would require more than 64 bits, // so we must choose seconds here, and not milliseconds. i64 seconds_since_epoch = days * seconds_per_day; seconds_since_epoch += hour * seconds_per_hour; seconds_since_epoch += minute * seconds_per_minute; seconds_since_epoch += second; return from_seconds_since_epoch(seconds_since_epoch) + Duration::from_milliseconds(millisecond); } [[nodiscard]] constexpr static UnixDateTime from_seconds_since_epoch(i64 seconds) { return UnixDateTime { Duration::from_seconds(seconds) }; } [[nodiscard]] constexpr static UnixDateTime from_milliseconds_since_epoch(i64 milliseconds) { return UnixDateTime { Duration::from_milliseconds(milliseconds) }; } [[nodiscard]] constexpr static UnixDateTime from_nanoseconds_since_epoch(i64 nanoseconds) { return UnixDateTime { Duration::from_nanoseconds(nanoseconds) }; } [[nodiscard]] static UnixDateTime from_unix_timespec(struct timespec const& time) { return UnixDateTime { Duration::from_timespec(time) }; } // Earliest and latest representable UNIX timestamps. [[nodiscard]] constexpr static UnixDateTime earliest() { return UnixDateTime { Duration::min() }; } [[nodiscard]] constexpr static UnixDateTime latest() { return UnixDateTime { Duration::max() }; } [[nodiscard]] constexpr Duration offset_to_epoch() const { return m_offset; } // May return an epoch offset *after* what this UnixDateTime contains, because rounding to seconds occurs. [[nodiscard]] i64 seconds_since_epoch() const { return m_offset.to_seconds(); } [[nodiscard]] i64 milliseconds_since_epoch() const { return m_offset.to_milliseconds(); } [[nodiscard]] i64 nanoseconds_since_epoch() const { return m_offset.to_nanoseconds(); } // Never returns a point after this UnixDateTime, since fractional seconds are cut off. [[nodiscard]] i64 truncated_seconds_since_epoch() const { return m_offset.to_truncated_seconds(); } // Offsetting a UNIX time by a duration yields another UNIX time. constexpr UnixDateTime operator+(Duration const& other) const { return UnixDateTime { m_offset + other }; } constexpr UnixDateTime& operator+=(Duration const& other) { this->m_offset = this->m_offset + other; return *this; } constexpr UnixDateTime operator-(Duration const& other) const { return UnixDateTime { m_offset - other }; } constexpr UnixDateTime& operator-=(Duration const& other) { m_offset = m_offset - other; return *this; } // Subtracting two UNIX times yields their time difference. constexpr Duration operator-(UnixDateTime const& other) const { return m_offset - other.m_offset; } #ifndef KERNEL [[nodiscard]] static UnixDateTime now(); [[nodiscard]] static UnixDateTime now_coarse(); #endif constexpr bool operator==(UnixDateTime const& other) const { return this->m_offset == other.m_offset; } constexpr int operator<=>(UnixDateTime const& other) const { return this->m_offset <=> other.m_offset; } private: constexpr explicit UnixDateTime(Duration offset) : Detail::UnawareTime(offset) { } }; // Monotonic time represents time returned from the CLOCK_MONOTONIC clock, which has an arbitrary fixed reference point. class MonotonicTime : private Detail::UnawareTime { public: // Monotonic time does not have a defined reference point. // A MonotonicTime at the reference point is therefore meaningless. MonotonicTime() = delete; constexpr MonotonicTime(MonotonicTime const&) = default; constexpr MonotonicTime(MonotonicTime&&) = default; constexpr MonotonicTime& operator=(MonotonicTime const&) = default; constexpr MonotonicTime& operator=(MonotonicTime&&) = default; #ifndef KERNEL [[nodiscard]] static MonotonicTime now(); [[nodiscard]] static MonotonicTime now_coarse(); #endif // clang-format off // Clang-format likes to expand this function for some reason. [[nodiscard]] i64 seconds() const { return m_offset.to_seconds(); } // clang-format on [[nodiscard]] i64 milliseconds() const { return m_offset.to_milliseconds(); } [[nodiscard]] i64 nanoseconds() const { return m_offset.to_nanoseconds(); } // Never returns a point in the future, since fractional seconds are cut off. [[nodiscard]] i64 truncated_seconds() const { return m_offset.to_truncated_seconds(); } [[nodiscard]] i64 nanoseconds_within_second() const { return to_timespec().tv_nsec; } constexpr bool operator==(MonotonicTime const& other) const { return this->m_offset == other.m_offset; } constexpr int operator<=>(MonotonicTime const& other) const { return this->m_offset <=> other.m_offset; } constexpr MonotonicTime operator+(Duration const& other) const { return MonotonicTime { m_offset + other }; } constexpr MonotonicTime& operator+=(Duration const& other) { this->m_offset = this->m_offset + other; return *this; } constexpr MonotonicTime operator-(Duration const& other) const { return MonotonicTime { m_offset - other }; } constexpr Duration operator-(MonotonicTime const& other) const { return m_offset - other.m_offset; } #ifdef KERNEL // Required in the Kernel in order to create monotonic time information from hardware timers. [[nodiscard]] static MonotonicTime from_hardware_time(Badge, time_t seconds, long nanoseconds) { return MonotonicTime { Duration::from_timespec({ seconds, nanoseconds }) }; } // "Start" is whenever the hardware timers started counting (e.g. for HPET it's most certainly boot). [[nodiscard]] Duration time_since_start(Badge) { return m_offset; } #endif private: constexpr explicit MonotonicTime(Duration offset) : Detail::UnawareTime(offset) { } }; template inline void timeval_sub(TimevalType const& a, TimevalType const& b, TimevalType& result) { result.tv_sec = a.tv_sec - b.tv_sec; result.tv_usec = a.tv_usec - b.tv_usec; if (result.tv_usec < 0) { --result.tv_sec; result.tv_usec += 1'000'000; } } template inline void timeval_add(TimevalType const& a, TimevalType const& b, TimevalType& result) { result.tv_sec = a.tv_sec + b.tv_sec; result.tv_usec = a.tv_usec + b.tv_usec; if (result.tv_usec >= 1'000'000) { ++result.tv_sec; result.tv_usec -= 1'000'000; } } template inline void timespec_sub(TimespecType const& a, TimespecType const& b, TimespecType& result) { result.tv_sec = a.tv_sec - b.tv_sec; result.tv_nsec = a.tv_nsec - b.tv_nsec; if (result.tv_nsec < 0) { --result.tv_sec; result.tv_nsec += 1'000'000'000; } } template inline void timespec_add(TimespecType const& a, TimespecType const& b, TimespecType& result) { result.tv_sec = a.tv_sec + b.tv_sec; result.tv_nsec = a.tv_nsec + b.tv_nsec; if (result.tv_nsec >= 1000'000'000) { ++result.tv_sec; result.tv_nsec -= 1000'000'000; } } template inline void timespec_add_timeval(TimespecType const& a, TimevalType const& b, TimespecType& result) { result.tv_sec = a.tv_sec + b.tv_sec; result.tv_nsec = a.tv_nsec + b.tv_usec * 1000; if (result.tv_nsec >= 1000'000'000) { ++result.tv_sec; result.tv_nsec -= 1000'000'000; } } template inline void timeval_to_timespec(TimevalType const& tv, TimespecType& ts) { ts.tv_sec = tv.tv_sec; ts.tv_nsec = tv.tv_usec * 1000; } template inline void timespec_to_timeval(TimespecType const& ts, TimevalType& tv) { tv.tv_sec = ts.tv_sec; tv.tv_usec = ts.tv_nsec / 1000; } // To use these, add a ``using namespace AK::TimeLiterals`` at block or file scope namespace TimeLiterals { constexpr Duration operator""_ns(unsigned long long nanoseconds) { return Duration::from_nanoseconds(static_cast(nanoseconds)); } constexpr Duration operator""_us(unsigned long long microseconds) { return Duration::from_microseconds(static_cast(microseconds)); } constexpr Duration operator""_ms(unsigned long long milliseconds) { return Duration::from_milliseconds(static_cast(milliseconds)); } constexpr Duration operator""_sec(unsigned long long seconds) { return Duration::from_seconds(static_cast(seconds)); } } } #if USING_AK_GLOBALLY using AK::day_of_week; using AK::day_of_year; using AK::days_in_month; using AK::days_in_year; using AK::days_since_epoch; using AK::Duration; using AK::is_leap_year; using AK::MonotonicTime; using AK::seconds_since_epoch_to_year; using AK::timespec_add; using AK::timespec_add_timeval; using AK::timespec_sub; using AK::timespec_to_timeval; using AK::timeval_add; using AK::timeval_sub; using AK::timeval_to_timespec; using AK::UnixDateTime; using AK::years_to_days_since_epoch; #endif