/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once constexpr unsigned round_up_to_power_of_two(unsigned value, unsigned power_of_two) { return ((value - 1) & ~(power_of_two - 1)) + power_of_two; } namespace AK { template auto declval() -> T; template constexpr SizeType array_size(T (&)[N]) { return N; } template constexpr T min(const T& a, const T& b) { return b < a ? b : a; } template constexpr T max(const T& a, const T& b) { return a < b ? b : a; } template constexpr T clamp(const T& value, const T& min, const T& max) { ASSERT(max >= min); if (value > max) return max; if (value < min) return min; return value; } template constexpr T ceil_div(T a, U b) { static_assert(sizeof(T) == sizeof(U)); T result = a / b; if ((a % b) != 0) ++result; return result; } template constexpr T&& move(T& arg) { return static_cast(arg); } template inline void swap(T& a, U& b) { U tmp = move((U&)a); a = (T &&) move(b); b = move(tmp); } template struct EnableIf { }; template struct EnableIf { using Type = T; }; template struct AddConst { using Type = const T; }; template struct RemoveConst { using Type = T; }; template struct RemoveConst { using Type = T; }; template struct RemoveVolatile { using Type = T; }; template struct RemoveVolatile { using Type = T; }; template struct RemoveCV { using Type = typename RemoveVolatile::Type>::Type; }; template struct IntegralConstant { static constexpr T value = v; using ValueType = T; using Type = IntegralConstant; constexpr operator ValueType() const { return value; } constexpr ValueType operator()() const { return value; } }; using FalseType = IntegralConstant; using TrueType = IntegralConstant; template using VoidType = void; template struct IsLvalueReference : FalseType { }; template struct IsLvalueReference : TrueType { }; template struct __IsPointerHelper : FalseType { }; template struct __IsPointerHelper : TrueType { }; template struct IsPointer : __IsPointerHelper::Type> { }; template struct IsFunction : FalseType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsFunction : TrueType { }; template struct IsRvalueReference : FalseType { }; template struct IsRvalueReference : TrueType { }; template struct RemovePointer { using Type = T; }; template struct RemovePointer { using Type = T; }; template struct RemovePointer { using Type = T; }; template struct RemovePointer { using Type = T; }; template struct RemovePointer { using Type = T; }; template struct IsSame { static constexpr bool value = false; }; template struct IsSame { static constexpr bool value = true; }; template struct Conditional { using Type = TrueType; }; template struct Conditional { using Type = FalseType; }; template struct IsNullPointer : IsSame::Type> { }; template struct RemoveReference { using Type = T; }; template struct RemoveReference { using Type = T; }; template struct RemoveReference { using Type = T; }; template constexpr T&& forward(typename RemoveReference::Type& param) { return static_cast(param); } template constexpr T&& forward(typename RemoveReference::Type&& param) noexcept { static_assert(!IsLvalueReference::value, "Can't forward an rvalue as an lvalue."); return static_cast(param); } template struct MakeUnsigned { using Type = void; }; template<> struct MakeUnsigned { using Type = unsigned char; }; template<> struct MakeUnsigned { using Type = unsigned short; }; template<> struct MakeUnsigned { using Type = unsigned int; }; template<> struct MakeUnsigned { using Type = unsigned long; }; template<> struct MakeUnsigned { using Type = unsigned long long; }; template<> struct MakeUnsigned { using Type = unsigned char; }; template<> struct MakeUnsigned { using Type = unsigned short; }; template<> struct MakeUnsigned { using Type = unsigned int; }; template<> struct MakeUnsigned { using Type = unsigned long; }; template<> struct MakeUnsigned { using Type = unsigned long long; }; template<> struct MakeUnsigned { using Type = unsigned char; }; template<> struct MakeUnsigned { using Type = char8_t; }; template<> struct MakeUnsigned { using Type = char16_t; }; template<> struct MakeUnsigned { using Type = char32_t; }; template<> struct MakeUnsigned { using Type = bool; }; template struct MakeSigned { }; template<> struct MakeSigned { using Type = signed char; }; template<> struct MakeSigned { using Type = short; }; template<> struct MakeSigned { using Type = int; }; template<> struct MakeSigned { using Type = long; }; template<> struct MakeSigned { using Type = long long; }; template<> struct MakeSigned { using Type = char; }; template<> struct MakeSigned { using Type = short; }; template<> struct MakeSigned { using Type = int; }; template<> struct MakeSigned { using Type = long; }; template<> struct MakeSigned { using Type = long long; }; template<> struct MakeSigned { using Type = signed char; }; template struct IsVoid : IsSame::Type> { }; template struct IsConst : FalseType { }; template struct IsConst : TrueType { }; template constexpr T exchange(T& slot, U&& value) { T old_value = move(slot); slot = forward(value); return old_value; } template struct IsUnion : public IntegralConstant { }; template struct IsClass : public IntegralConstant { }; template struct IsBaseOf : public IntegralConstant { }; template constexpr bool is_trivial() { return __is_trivial(T); } template constexpr bool is_trivially_copyable() { return __is_trivially_copyable(T); } template struct __IsIntegral : FalseType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template<> struct __IsIntegral : TrueType { }; template using IsIntegral = __IsIntegral::Type>::Type>; template struct __IsFloatingPoint : FalseType { }; template<> struct __IsFloatingPoint : TrueType { }; template<> struct __IsFloatingPoint : TrueType { }; template<> struct __IsFloatingPoint : TrueType { }; template using IsFloatingPoint = __IsFloatingPoint::Type>; template using CopyConst = typename Conditional::value, typename AddConst::Type, typename RemoveConst::Type>::Type; template using Void = void; template constexpr auto DependentFalse = false; template using IsUnsigned = IsSame::Type>; template using IsArithmetic = IntegralConstant::value || IsFloatingPoint::value>; template using IsFundamental = IntegralConstant::value || IsVoid::value || IsNullPointer::value>; template struct IntegerSequence { using Type = T; static constexpr unsigned size() noexcept { return sizeof...(Ts); }; }; template using IndexSequence = IntegerSequence; template auto make_integer_sequence_impl() { if constexpr (N == 0) return IntegerSequence {}; else return make_integer_sequence_impl(); } template using MakeIntegerSequence = decltype(make_integer_sequence_impl()); template using MakeIndexSequence = MakeIntegerSequence; template struct StringLiteral { constexpr StringLiteral(const char (&in)[N]) : data {} , size { N } { for (unsigned long i = 0; i < N; ++i) data[i] = in[i]; } template constexpr StringLiteral& operator=(const StringLiteral& other) { static_assert(Nx <= N, "Storing a string literal in a smaller one"); for (unsigned long i = 0; i < Nx; ++i) data[i] = other[i]; return *this; } template constexpr StringLiteral& operator=(const char (&other)[Nx]) { static_assert(Nx <= N, "Storing a string literal in a smaller one"); for (unsigned long i = 0; i < Nx; ++i) data[i] = other[i]; return *this; } char data[N]; unsigned long size; }; } using AK::AddConst; using AK::array_size; using AK::ceil_div; using AK::clamp; using AK::Conditional; using AK::declval; using AK::DependentFalse; using AK::exchange; using AK::forward; using AK::IndexSequence; using AK::IntegerSequence; using AK::is_trivial; using AK::is_trivially_copyable; using AK::IsArithmetic; using AK::IsBaseOf; using AK::IsClass; using AK::IsConst; using AK::IsFundamental; using AK::IsNullPointer; using AK::IsSame; using AK::IsUnion; using AK::IsUnsigned; using AK::IsVoid; using AK::MakeIndexSequence; using AK::MakeIntegerSequence; using AK::MakeSigned; using AK::MakeUnsigned; using AK::max; using AK::min; using AK::move; using AK::RemoveConst; using AK::StringLiteral; using AK::swap; using AK::Void;