/* * Copyright (c) 2018-2022, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { static void create_signal_trampoline(); extern ProcessID g_init_pid; RecursiveSpinlock g_profiling_lock { LockRank::None }; static Atomic next_pid; static Singleton> s_all_instances; READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region; static Singleton>> s_hostname; MutexProtected>& hostname() { return *s_hostname; } SpinlockProtected& Process::all_instances() { return *s_all_instances; } ErrorOr Process::for_each_in_same_jail(Function(Process&)> callback) { ErrorOr result {}; Process::all_instances().with([&](auto const& list) { Process::current().jail().with([&](auto my_jail) { for (auto& process : list) { if (!my_jail) { result = callback(process); } else { // Note: Don't acquire the process jail spinlock twice if it's the same process // we are currently inspecting. if (&Process::current() == &process) { result = callback(process); } else { process.jail().with([&](auto& their_jail) { if (their_jail.ptr() == my_jail.ptr()) result = callback(process); }); } } if (result.is_error()) break; } }); }); return result; } ErrorOr Process::for_each_child_in_same_jail(Function(Process&)> callback) { ProcessID my_pid = pid(); ErrorOr result {}; Process::all_instances().with([&](auto const& list) { jail().with([&](auto my_jail) { for (auto& process : list) { if (!my_jail) { if (process.ppid() == my_pid || process.has_tracee_thread(pid())) result = callback(process); } else { // FIXME: Is it possible to have a child process being pointing to itself // as the parent process under normal conditions? // Note: Don't acquire the process jail spinlock twice if it's the same process // we are currently inspecting. if (&Process::current() == &process && (process.ppid() == my_pid || process.has_tracee_thread(pid()))) { result = callback(process); } else { process.jail().with([&](auto& their_jail) { if ((their_jail.ptr() == my_jail.ptr()) && (process.ppid() == my_pid || process.has_tracee_thread(pid()))) result = callback(process); }); } } if (result.is_error()) break; } }); }); return result; } ErrorOr Process::for_each_in_pgrp_in_same_jail(ProcessGroupID pgid, Function(Process&)> callback) { ErrorOr result {}; Process::all_instances().with([&](auto const& list) { jail().with([&](auto my_jail) { for (auto& process : list) { if (!my_jail) { if (!process.is_dead() && process.pgid() == pgid) result = callback(process); } else { // Note: Don't acquire the process jail spinlock twice if it's the same process // we are currently inspecting. if (&Process::current() == &process && !process.is_dead() && process.pgid() == pgid) { result = callback(process); } else { process.jail().with([&](auto& their_jail) { if ((their_jail.ptr() == my_jail.ptr()) && !process.is_dead() && process.pgid() == pgid) result = callback(process); }); } } if (result.is_error()) break; } }); }); return result; } ProcessID Process::allocate_pid() { // Overflow is UB, and negative PIDs wreck havoc. // TODO: Handle PID overflow // For example: Use an Atomic, mask the most significant bit, // retry if PID is already taken as a PID, taken as a TID, // takes as a PGID, taken as a SID, or zero. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel); } UNMAP_AFTER_INIT void Process::initialize() { next_pid.store(0, AK::MemoryOrder::memory_order_release); // Note: This is called before scheduling is initialized, and before APs are booted. // So we can "safely" bypass the lock here. reinterpret_cast&>(hostname()) = KString::must_create("courage"sv); create_signal_trampoline(); } void Process::kill_threads_except_self() { InterruptDisabler disabler; if (thread_count() <= 1) return; auto* current_thread = Thread::current(); for_each_thread([&](Thread& thread) { if (&thread == current_thread) return; if (auto state = thread.state(); state == Thread::State::Dead || state == Thread::State::Dying) return; // We need to detach this thread in case it hasn't been joined thread.detach(); thread.set_should_die(); }); u32 dropped_lock_count = 0; if (big_lock().force_unlock_exclusive_if_locked(dropped_lock_count) != LockMode::Unlocked) dbgln("Process {} big lock had {} locks", *this, dropped_lock_count); } void Process::kill_all_threads() { for_each_thread([&](Thread& thread) { // We need to detach this thread in case it hasn't been joined thread.detach(); thread.set_should_die(); }); } void Process::register_new(Process& process) { // Note: this is essentially the same like process->ref() LockRefPtr new_process = process; all_instances().with([&](auto& list) { list.prepend(process); }); } ErrorOr> Process::try_create_user_process(LockRefPtr& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector arguments, NonnullOwnPtrVector environment, TTY* tty) { auto parts = path.split_view('/'); if (arguments.is_empty()) { auto last_part = TRY(KString::try_create(parts.last())); TRY(arguments.try_append(move(last_part))); } auto path_string = TRY(KString::try_create(path)); auto name = TRY(KString::try_create(parts.last())); auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty)); TRY(process->m_fds.with_exclusive([&](auto& fds) -> ErrorOr { TRY(fds.try_resize(Process::OpenFileDescriptions::max_open())); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device(); auto description = TRY(device_to_use_as_tty.open(O_RDWR)); auto setup_description = [&](int fd) { fds.m_fds_metadatas[fd].allocate(); fds[fd].set(*description); }; setup_description(0); setup_description(1); setup_description(2); return {}; })); Thread* new_main_thread = nullptr; u32 prev_flags = 0; if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) { dbgln("Failed to exec {}: {}", path, result.error()); first_thread = nullptr; return result.release_error(); } register_new(*process); // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize(). process->ref(); { SpinlockLocker lock(g_scheduler_lock); new_main_thread->set_state(Thread::State::Runnable); } return process; } LockRefPtr Process::create_kernel_process(LockRefPtr& first_thread, NonnullOwnPtr name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register) { auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true); if (process_or_error.is_error()) return {}; auto process = process_or_error.release_value(); first_thread->regs().set_ip((FlatPtr)entry); #if ARCH(I386) first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp #elif ARCH(X86_64) first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi #elif ARCH(AARCH64) (void)entry_data; TODO_AARCH64(); #else # error Unknown architecture #endif if (do_register == RegisterProcess::Yes) register_new(*process); SpinlockLocker lock(g_scheduler_lock); first_thread->set_affinity(affinity); first_thread->set_state(Thread::State::Runnable); return process; } void Process::protect_data() { m_protected_data_refs.unref([&]() { MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values_do_not_access_directly }, false); }); } void Process::unprotect_data() { m_protected_data_refs.ref([&]() { MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values_do_not_access_directly }, true); }); } ErrorOr> Process::try_create(LockRefPtr& first_thread, NonnullOwnPtr name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr current_directory, RefPtr executable, TTY* tty, Process* fork_parent) { OwnPtr new_address_space; if (fork_parent) { TRY(fork_parent->address_space().with([&](auto& parent_address_space) -> ErrorOr { new_address_space = TRY(Memory::AddressSpace::try_create(parent_address_space.ptr())); return {}; })); } else { new_address_space = TRY(Memory::AddressSpace::try_create(nullptr)); } auto unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) }; auto exec_unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) }; auto credentials = TRY(Credentials::create(uid, gid, uid, gid, uid, gid, {})); auto process = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) Process(move(name), move(credentials), ppid, is_kernel_process, move(current_directory), move(executable), tty, move(unveil_tree), move(exec_unveil_tree)))); TRY(process->attach_resources(new_address_space.release_nonnull(), first_thread, fork_parent)); return process; } Process::Process(NonnullOwnPtr name, NonnullRefPtr credentials, ProcessID ppid, bool is_kernel_process, RefPtr current_directory, RefPtr executable, TTY* tty, UnveilNode unveil_tree, UnveilNode exec_unveil_tree) : m_name(move(name)) , m_space(LockRank::None) , m_protected_data_lock(LockRank::None) , m_is_kernel_process(is_kernel_process) , m_executable(LockRank::None, move(executable)) , m_current_directory(LockRank::None, move(current_directory)) , m_tty(tty) , m_unveil_data(LockRank::None, move(unveil_tree)) , m_exec_unveil_data(LockRank::None, move(exec_unveil_tree)) , m_wait_blocker_set(*this) { // Ensure that we protect the process data when exiting the constructor. with_mutable_protected_data([&](auto& protected_data) { protected_data.pid = allocate_pid(); protected_data.ppid = ppid; protected_data.credentials = move(credentials); }); dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value()); } ErrorOr Process::attach_resources(NonnullOwnPtr&& preallocated_space, LockRefPtr& first_thread, Process* fork_parent) { m_space.with([&](auto& space) { space = move(preallocated_space); }); auto create_first_thread = [&] { if (fork_parent) { // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process. return Thread::current()->try_clone(*this); } // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.) return Thread::try_create(*this); }; first_thread = TRY(create_first_thread()); if (!fork_parent) { // FIXME: Figure out if this is really necessary. first_thread->detach(); } auto weak_ptr = TRY(this->try_make_weak_ptr()); m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, move(weak_ptr))); // This is not actually explicitly verified by any official documentation, // but it's not listed anywhere as being cleared, and rsync expects it to work like this. if (fork_parent) m_signal_action_data = fork_parent->m_signal_action_data; return {}; } Process::~Process() { unprotect_data(); VERIFY(thread_count() == 0); // all threads should have been finalized VERIFY(!m_alarm_timer); PerformanceManager::add_process_exit_event(*this); } // Make sure the compiler doesn't "optimize away" this function: extern void signal_trampoline_dummy() __attribute__((used)); void signal_trampoline_dummy() { #if ARCH(I386) // The trampoline preserves the current eax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // necessary to preserve it here. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 4 * sizeof(FlatPtr); asm( ".intel_syntax noprefix\n" ".globl asm_signal_trampoline\n" "asm_signal_trampoline:\n" // stack state: 0, ucontext, signal_info, (alignment = 16), fpu_state (alignment = 16), 0, ucontext*, siginfo*, signal, (alignment = 16), handler // Pop the handler into ecx "pop ecx\n" // save handler // we have to save eax 'cause it might be the return value from a syscall "mov [esp+%P1], eax\n" // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above. // and it's already setup to call the handler with the expected values on the stack. // call the signal handler "call ecx\n" // drop the 4 arguments "add esp, 16\n" // Current stack state is just saved_eax, ucontext, signal_info, fpu_state?. // syscall SC_sigreturn "mov eax, %P0\n" "int 0x82\n" ".globl asm_signal_trampoline_end\n" "asm_signal_trampoline_end:\n" ".att_syntax" : : "i"(Syscall::SC_sigreturn), "i"(offset_to_first_register_slot)); #elif ARCH(X86_64) // The trampoline preserves the current rax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // necessary to preserve it here. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 3 * sizeof(FlatPtr); asm( ".intel_syntax noprefix\n" ".globl asm_signal_trampoline\n" "asm_signal_trampoline:\n" // stack state: 0, ucontext, signal_info (alignment = 16), fpu_state (alignment = 16), ucontext*, siginfo*, signal, handler // Pop the handler into rcx "pop rcx\n" // save handler // we have to save rax 'cause it might be the return value from a syscall "mov [rsp+%P1], rax\n" // pop signal number into rdi (first param) "pop rdi\n" // pop siginfo* into rsi (second param) "pop rsi\n" // pop ucontext* into rdx (third param) "pop rdx\n" // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above. // call the signal handler "call rcx\n" // Current stack state is just saved_rax, ucontext, signal_info, fpu_state. // syscall SC_sigreturn "mov rax, %P0\n" "int 0x82\n" ".globl asm_signal_trampoline_end\n" "asm_signal_trampoline_end:\n" ".att_syntax" : : "i"(Syscall::SC_sigreturn), "i"(offset_to_first_register_slot)); #endif } extern "C" char const asm_signal_trampoline[]; extern "C" char const asm_signal_trampoline_end[]; void create_signal_trampoline() { // NOTE: We leak this region. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines"sv, Memory::Region::Access::ReadWrite).release_value().leak_ptr(); g_signal_trampoline_region->set_syscall_region(true); size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline; u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr(); memcpy(code_ptr, asm_signal_trampoline, trampoline_size); g_signal_trampoline_region->set_writable(false); g_signal_trampoline_region->remap(); } void Process::crash(int signal, FlatPtr ip, bool out_of_memory) { VERIFY(!is_dead()); VERIFY(&Process::current() == this); if (out_of_memory) { dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this); } else { if (ip >= kernel_load_base && g_kernel_symbols_available) { auto const* symbol = symbolicate_kernel_address(ip); dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0)); } else { dbgln("\033[31;1m{:p} (?)\033[0m\n", ip); } dump_backtrace(); } with_mutable_protected_data([&](auto& protected_data) { protected_data.termination_signal = signal; }); set_should_generate_coredump(!out_of_memory); if constexpr (DUMP_REGIONS_ON_CRASH) { address_space().with([](auto& space) { space->dump_regions(); }); } VERIFY(is_user_process()); die(); // We can not return from here, as there is nowhere // to unwind to, so die right away. Thread::current()->die_if_needed(); VERIFY_NOT_REACHED(); } LockRefPtr Process::from_pid_in_same_jail(ProcessID pid) { return Process::current().jail().with([&](auto& my_jail) -> LockRefPtr { return all_instances().with([&](auto const& list) -> LockRefPtr { if (!my_jail) { for (auto& process : list) { if (process.pid() == pid) { return process; } } } else { for (auto& process : list) { if (process.pid() == pid) { return process.jail().with([&](auto& other_process_jail) -> LockRefPtr { if (other_process_jail.ptr() == my_jail.ptr()) return process; return {}; }); } } } return {}; }); }); } LockRefPtr Process::from_pid_ignoring_jails(ProcessID pid) { return all_instances().with([&](auto const& list) -> LockRefPtr { for (auto const& process : list) { if (process.pid() == pid) return &process; } return {}; }); } Process::OpenFileDescriptionAndFlags const* Process::OpenFileDescriptions::get_if_valid(size_t i) const { if (m_fds_metadatas.size() <= i) return nullptr; if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid()) return &metadata; return nullptr; } Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) { if (m_fds_metadatas.size() <= i) return nullptr; if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid()) return &metadata; return nullptr; } Process::OpenFileDescriptionAndFlags const& Process::OpenFileDescriptions::at(size_t i) const { VERIFY(m_fds_metadatas[i].is_allocated()); return m_fds_metadatas[i]; } Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) { VERIFY(m_fds_metadatas[i].is_allocated()); return m_fds_metadatas[i]; } ErrorOr> Process::OpenFileDescriptions::open_file_description(int fd) const { if (fd < 0) return EBADF; if (static_cast(fd) >= m_fds_metadatas.size()) return EBADF; LockRefPtr description = m_fds_metadatas[fd].description(); if (!description) return EBADF; return description.release_nonnull(); } void Process::OpenFileDescriptions::enumerate(Function callback) const { for (auto const& file_description_metadata : m_fds_metadatas) { callback(file_description_metadata); } } ErrorOr Process::OpenFileDescriptions::try_enumerate(Function(OpenFileDescriptionAndFlags const&)> callback) const { for (auto const& file_description_metadata : m_fds_metadatas) { TRY(callback(file_description_metadata)); } return {}; } void Process::OpenFileDescriptions::change_each(Function callback) { for (auto& file_description_metadata : m_fds_metadatas) { callback(file_description_metadata); } } size_t Process::OpenFileDescriptions::open_count() const { size_t count = 0; enumerate([&](auto& file_description_metadata) { if (file_description_metadata.is_valid()) ++count; }); return count; } ErrorOr Process::OpenFileDescriptions::allocate(int first_candidate_fd) { for (size_t i = first_candidate_fd; i < max_open(); ++i) { if (!m_fds_metadatas[i].is_allocated()) { m_fds_metadatas[i].allocate(); return Process::ScopedDescriptionAllocation { static_cast(i), &m_fds_metadatas[i] }; } } return EMFILE; } Time kgettimeofday() { return TimeManagement::now(); } siginfo_t Process::wait_info() const { auto credentials = this->credentials(); siginfo_t siginfo {}; siginfo.si_signo = SIGCHLD; siginfo.si_pid = pid().value(); siginfo.si_uid = credentials->uid().value(); with_protected_data([&](auto& protected_data) { if (protected_data.termination_signal != 0) { siginfo.si_status = protected_data.termination_signal; siginfo.si_code = CLD_KILLED; } else { siginfo.si_status = protected_data.termination_status; siginfo.si_code = CLD_EXITED; } }); return siginfo; } NonnullRefPtr Process::current_directory() { return m_current_directory.with([&](auto& current_directory) -> NonnullRefPtr { if (!current_directory) current_directory = VirtualFileSystem::the().root_custody(); return *current_directory; }); } ErrorOr> Process::get_syscall_path_argument(Userspace user_path, size_t path_length) { if (path_length == 0) return EINVAL; if (path_length > PATH_MAX) return ENAMETOOLONG; return try_copy_kstring_from_user(user_path, path_length); } ErrorOr> Process::get_syscall_path_argument(Syscall::StringArgument const& path) { Userspace path_characters((FlatPtr)path.characters); return get_syscall_path_argument(path_characters, path.length); } ErrorOr Process::dump_core() { VERIFY(is_dumpable()); VERIFY(should_generate_coredump()); dbgln("Generating coredump for pid: {}", pid().value()); auto coredump_directory_path = TRY(Coredump::directory_path().with([&](auto& coredump_directory_path) -> ErrorOr> { if (coredump_directory_path) return KString::try_create(coredump_directory_path->view()); return KString::try_create(""sv); })); if (coredump_directory_path->view() == ""sv) { dbgln("Generating coredump for pid {} failed because coredump directory was not set.", pid().value()); return {}; } auto coredump_path = TRY(KString::formatted("{}/{}_{}_{}", coredump_directory_path->view(), name(), pid().value(), kgettimeofday().to_truncated_seconds())); auto coredump = TRY(Coredump::try_create(*this, coredump_path->view())); return coredump->write(); } ErrorOr Process::dump_perfcore() { VERIFY(is_dumpable()); VERIFY(m_perf_event_buffer); dbgln("Generating perfcore for pid: {}", pid().value()); // Try to generate a filename which isn't already used. auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value())); auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename)); LockRefPtr description; auto credentials = this->credentials(); for (size_t attempt = 1; attempt <= 10; ++attempt) { auto description_or_error = VirtualFileSystem::the().open(credentials, perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 }); if (!description_or_error.is_error()) { description = description_or_error.release_value(); break; } perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt)); } if (!description) { dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value()); return EEXIST; } auto builder = TRY(KBufferBuilder::try_create()); TRY(m_perf_event_buffer->to_json(builder)); auto json = builder.build(); if (!json) { dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value()); return ENOMEM; } auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data()); TRY(description->write(json_buffer, json->size())); dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename); return {}; } void Process::finalize() { VERIFY(Thread::current() == g_finalizer); dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this); if (veil_state() == VeilState::Dropped) dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name()); if (g_init_pid != 0 && pid() == g_init_pid) PANIC("Init process quit unexpectedly. Exit code: {}", termination_status()); if (is_dumpable()) { if (m_should_generate_coredump) { auto result = dump_core(); if (result.is_error()) { dmesgln("Failed to write coredump for pid {}: {}", pid(), result.error()); } } if (m_perf_event_buffer) { auto result = dump_perfcore(); if (result.is_error()) dmesgln("Failed to write perfcore for pid {}: {}", pid(), result.error()); TimeManagement::the().disable_profile_timer(); } } m_threads_for_coredump.clear(); if (m_alarm_timer) TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull()); m_fds.with_exclusive([](auto& fds) { fds.clear(); }); m_tty = nullptr; m_executable.with([](auto& executable) { executable = nullptr; }); m_attached_jail.with([](auto& jail) { if (jail) jail->detach({}); jail = nullptr; }); m_arguments.clear(); m_environment.clear(); m_state.store(State::Dead, AK::MemoryOrder::memory_order_release); { if (auto parent_process = Process::from_pid_ignoring_jails(ppid())) { if (parent_process->is_user_process() && (parent_process->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT) (void)parent_process->send_signal(SIGCHLD, this); } } if (!!ppid()) { if (auto parent = Process::from_pid_ignoring_jails(ppid())) { parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children; } } unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated); m_space.with([](auto& space) { space->remove_all_regions({}); }); VERIFY(ref_count() > 0); // WaitBlockerSet::finalize will be in charge of dropping the last // reference if there are still waiters around, or whenever the last // waitable states are consumed. Unless there is no parent around // anymore, in which case we'll just drop it right away. m_wait_blocker_set.finalize(); } void Process::disowned_by_waiter(Process& process) { m_wait_blocker_set.disowned_by_waiter(process); } void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal) { LockRefPtr waiter_process; if (auto* my_tracer = tracer()) waiter_process = Process::from_pid_ignoring_jails(my_tracer->tracer_pid()); else waiter_process = Process::from_pid_ignoring_jails(ppid()); if (waiter_process) waiter_process->m_wait_blocker_set.unblock(*this, flags, signal); } void Process::die() { auto expected = State::Running; if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) { // It's possible that another thread calls this at almost the same time // as we can't always instantly kill other threads (they may be blocked) // So if we already were called then other threads should stop running // momentarily and we only really need to service the first thread return; } // Let go of the TTY, otherwise a slave PTY may keep the master PTY from // getting an EOF when the last process using the slave PTY dies. // If the master PTY owner relies on an EOF to know when to wait() on a // slave owner, we have to allow the PTY pair to be torn down. m_tty = nullptr; VERIFY(m_threads_for_coredump.is_empty()); for_each_thread([&](auto& thread) { auto result = m_threads_for_coredump.try_append(thread); if (result.is_error()) dbgln("Failed to add thread {} to coredump due to OOM", thread.tid()); }); all_instances().with([&](auto const& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (process.has_tracee_thread(pid())) { dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid()); process.stop_tracing(); auto err = process.send_signal(SIGSTOP, this); if (err.is_error()) dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid()); } } }); kill_all_threads(); #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION KCOVDevice::free_process(); #endif } void Process::terminate_due_to_signal(u8 signal) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(signal < NSIG); VERIFY(&Process::current() == this); dbgln("Terminating {} due to signal {}", *this, signal); with_mutable_protected_data([&](auto& protected_data) { protected_data.termination_status = 0; protected_data.termination_signal = signal; }); die(); } ErrorOr Process::send_signal(u8 signal, Process* sender) { VERIFY(is_user_process()); // Try to send it to the "obvious" main thread: auto receiver_thread = Thread::from_tid(pid().value()); // If the main thread has died, there may still be other threads: if (!receiver_thread) { // The first one should be good enough. // Neither kill(2) nor kill(3) specify any selection procedure. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision { receiver_thread = &thread; return IterationDecision::Break; }); } if (receiver_thread) { receiver_thread->send_signal(signal, sender); return {}; } return ESRCH; } LockRefPtr Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr name, u32 affinity, bool joinable) { VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX)); // FIXME: Do something with guard pages? auto thread_or_error = Thread::try_create(*this); if (thread_or_error.is_error()) return {}; auto thread = thread_or_error.release_value(); thread->set_name(move(name)); thread->set_affinity(affinity); thread->set_priority(priority); if (!joinable) thread->detach(); auto& regs = thread->regs(); regs.set_ip((FlatPtr)entry); regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register SpinlockLocker lock(g_scheduler_lock); thread->set_state(Thread::State::Runnable); return thread; } void Process::OpenFileDescriptionAndFlags::clear() { // FIXME: Verify Process::m_fds_lock is locked! m_description = nullptr; m_flags = 0; } void Process::OpenFileDescriptionAndFlags::set(NonnullLockRefPtr&& description, u32 flags) { // FIXME: Verify Process::m_fds_lock is locked! m_description = move(description); m_flags = flags; } void Process::set_tty(TTY* tty) { m_tty = tty; } ErrorOr Process::start_tracing_from(ProcessID tracer) { m_tracer = TRY(ThreadTracer::try_create(tracer)); return {}; } void Process::stop_tracing() { m_tracer = nullptr; } void Process::tracer_trap(Thread& thread, RegisterState const& regs) { VERIFY(m_tracer.ptr()); m_tracer->set_regs(regs); thread.send_urgent_signal_to_self(SIGTRAP); } bool Process::create_perf_events_buffer_if_needed() { if (m_perf_event_buffer) return true; m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB); if (!m_perf_event_buffer) return false; return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error(); } void Process::delete_perf_events_buffer() { if (m_perf_event_buffer) m_perf_event_buffer = nullptr; } bool Process::remove_thread(Thread& thread) { u32 thread_count_before = 0; thread_list().with([&](auto& thread_list) { thread_list.remove(thread); with_mutable_protected_data([&](auto& protected_data) { thread_count_before = protected_data.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel); VERIFY(thread_count_before != 0); }); }); return thread_count_before == 1; } bool Process::add_thread(Thread& thread) { bool is_first = false; thread_list().with([&](auto& thread_list) { thread_list.append(thread); with_mutable_protected_data([&](auto& protected_data) { is_first = protected_data.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0; }); }); return is_first; } void Process::set_dumpable(bool dumpable) { with_mutable_protected_data([&](auto& protected_data) { protected_data.dumpable = dumpable; }); } ErrorOr Process::set_coredump_property(NonnullOwnPtr key, NonnullOwnPtr value) { return m_coredump_properties.with([&](auto& coredump_properties) -> ErrorOr { // Write it into the first available property slot. for (auto& slot : coredump_properties) { if (slot.key) continue; slot.key = move(key); slot.value = move(value); return {}; } return ENOBUFS; }); } ErrorOr Process::try_set_coredump_property(StringView key, StringView value) { auto key_kstring = TRY(KString::try_create(key)); auto value_kstring = TRY(KString::try_create(value)); return set_coredump_property(move(key_kstring), move(value_kstring)); }; static constexpr StringView to_string(Pledge promise) { #define __ENUMERATE_PLEDGE_PROMISE(x) \ case Pledge::x: \ return #x##sv; switch (promise) { ENUMERATE_PLEDGE_PROMISES } #undef __ENUMERATE_PLEDGE_PROMISE VERIFY_NOT_REACHED(); } ErrorOr Process::require_no_promises() const { if (!has_promises()) return {}; dbgln("Has made a promise"); Thread::current()->set_promise_violation_pending(true); return EPROMISEVIOLATION; } ErrorOr Process::require_promise(Pledge promise) { if (!has_promises()) return {}; if (has_promised(promise)) return {}; dbgln("Has not pledged {}", to_string(promise)); Thread::current()->set_promise_violation_pending(true); (void)try_set_coredump_property("pledge_violation"sv, to_string(promise)); return EPROMISEVIOLATION; } NonnullRefPtr Process::credentials() const { return with_protected_data([&](auto& protected_data) -> NonnullRefPtr { return *protected_data.credentials; }); } RefPtr Process::executable() { return m_executable.with([](auto& executable) { return executable; }); } RefPtr Process::executable() const { return m_executable.with([](auto& executable) { return executable; }); } }