#include "MemoryManager.h" #include #include #include #include "i386.h" #include "StdLib.h" #include "Process.h" #include //#define MM_DEBUG //#define PAGE_FAULT_DEBUG static MemoryManager* s_the; MemoryManager& MM { return *s_the; } MemoryManager::MemoryManager() { m_kernel_page_directory = make(PhysicalAddress(0x4000)); m_page_table_zero = (dword*)0x6000; initialize_paging(); } MemoryManager::~MemoryManager() { } PageDirectory::PageDirectory(PhysicalAddress paddr) { kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get()); m_directory_page = adopt(*new PhysicalPage(paddr, true)); } PageDirectory::PageDirectory() { MM.populate_page_directory(*this); } void MemoryManager::populate_page_directory(PageDirectory& page_directory) { page_directory.m_directory_page = allocate_supervisor_physical_page(); memset(page_directory.entries(), 0, PAGE_SIZE); page_directory.entries()[0] = kernel_page_directory().entries()[0]; } void MemoryManager::initialize_paging() { static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4); static_assert(sizeof(MemoryManager::PageTableEntry) == 4); memset(m_page_table_zero, 0, PAGE_SIZE); #ifdef MM_DEBUG dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3()); #endif #ifdef MM_DEBUG dbgprintf("MM: Protect against null dereferences\n"); #endif // Make null dereferences crash. map_protected(LinearAddress(0), PAGE_SIZE); #ifdef MM_DEBUG dbgprintf("MM: Identity map bottom 4MB\n"); #endif // The bottom 4 MB (except for the null page) are identity mapped & supervisor only. // Every process shares these mappings. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE); // Basic memory map: // 0 -> 512 kB Kernel code. Root page directory & PDE 0. // 1 MB -> 2 MB kmalloc_eternal() space. // 2 MB -> 3 MB kmalloc() space. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!) // 4 MB -> 32 MB Userspace physical pages (available for allocation!) for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE) m_free_supervisor_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), true))); #ifdef MM_DEBUG dbgprintf("MM: 4MB-32MB available for allocation\n"); #endif for (size_t i = (4 * MB); i < (32 * MB); i += PAGE_SIZE) m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), false))); m_quickmap_addr = LinearAddress(m_free_physical_pages.takeLast().leakRef()->paddr().get()); #ifdef MM_DEBUG dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get()); dbgprintf("MM: Installing page directory\n"); #endif asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3())); asm volatile( "movl %cr0, %eax\n" "orl $0x80000001, %eax\n" "movl %eax, %cr0\n" ); } RetainPtr MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index) { ASSERT(!page_directory.m_physical_pages.contains(index)); auto physical_page = allocate_supervisor_physical_page(); if (!physical_page) return nullptr; dword address = physical_page->paddr().get(); memset((void*)address, 0, PAGE_SIZE); page_directory.m_physical_pages.set(index, physical_page.copyRef()); return physical_page; } void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size) { InterruptDisabler disabler; // FIXME: ASSERT(laddr is 4KB aligned); for (dword offset = 0; offset < size; offset += PAGE_SIZE) { auto pte_address = laddr.offset(offset); auto pte = ensure_pte(page_directory, pte_address); pte.set_physical_page_base(0); pte.set_user_allowed(false); pte.set_present(true); pte.set_writable(true); flush_tlb(pte_address); } } auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry { ASSERT_INTERRUPTS_DISABLED(); dword page_directory_index = (laddr.get() >> 22) & 0x3ff; dword page_table_index = (laddr.get() >> 12) & 0x3ff; PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]); if (!pde.is_present()) { #ifdef MM_DEBUG dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get()); #endif if (page_directory_index == 0) { ASSERT(&page_directory == m_kernel_page_directory.ptr()); pde.setPageTableBase((dword)m_page_table_zero); pde.set_user_allowed(false); pde.set_present(true); pde.set_writable(true); } else { ASSERT(&page_directory != m_kernel_page_directory.ptr()); auto page_table = allocate_page_table(page_directory, page_directory_index); #ifdef MM_DEBUG dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n", &page_directory, &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User", page_directory.cr3(), page_directory_index, laddr.get(), page_table->paddr().get()); #endif pde.setPageTableBase(page_table->paddr().get()); pde.set_user_allowed(true); pde.set_present(true); pde.set_writable(true); page_directory.m_physical_pages.set(page_directory_index, move(page_table)); } } return PageTableEntry(&pde.pageTableBase()[page_table_index]); } void MemoryManager::map_protected(LinearAddress linearAddress, size_t length) { InterruptDisabler disabler; // FIXME: ASSERT(linearAddress is 4KB aligned); for (dword offset = 0; offset < length; offset += PAGE_SIZE) { auto pteAddress = linearAddress.offset(offset); auto pte = ensure_pte(kernel_page_directory(), pteAddress); pte.set_physical_page_base(pteAddress.get()); pte.set_user_allowed(false); pte.set_present(false); pte.set_writable(false); flush_tlb(pteAddress); } } void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size) { InterruptDisabler disabler; ASSERT((laddr.get() & ~PAGE_MASK) == 0); for (dword offset = 0; offset < size; offset += PAGE_SIZE) { auto pteAddress = laddr.offset(offset); auto pte = ensure_pte(page_directory, pteAddress); pte.set_physical_page_base(pteAddress.get()); pte.set_user_allowed(false); pte.set_present(true); pte.set_writable(true); page_directory.flush(pteAddress); } } void MemoryManager::initialize() { s_the = new MemoryManager; } Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr) { ASSERT_INTERRUPTS_DISABLED(); // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure! for (auto& region : process.m_regions) { if (region->contains(laddr)) return region.ptr(); } kprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get()); return nullptr; } bool MemoryManager::zero_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region) { ASSERT_INTERRUPTS_DISABLED(); auto& vmo = region.vmo(); auto physical_page = allocate_physical_page(); byte* dest_ptr = quickmap_page(*physical_page); memset(dest_ptr, 0, PAGE_SIZE); #ifdef PAGE_FAULT_DEBUG dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get()); #endif unquickmap_page(); region.cow_map.set(page_index_in_region, false); vmo.physical_pages()[page_index_in_region] = move(physical_page); remap_region_page(page_directory, region, page_index_in_region, true); return true; } bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region) { ASSERT_INTERRUPTS_DISABLED(); auto& vmo = region.vmo(); if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) { #ifdef PAGE_FAULT_DEBUG dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n"); #endif region.cow_map.set(page_index_in_region, false); remap_region_page(process.page_directory(), region, page_index_in_region, true); return true; } #ifdef PAGE_FAULT_DEBUG dbgprintf(" >> It's a COW page and it's time to COW!\n"); #endif auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]); auto physical_page = allocate_physical_page(); byte* dest_ptr = quickmap_page(*physical_page); const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr(); #ifdef PAGE_FAULT_DEBUG dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get()); #endif memcpy(dest_ptr, src_ptr, PAGE_SIZE); vmo.physical_pages()[page_index_in_region] = move(physical_page); unquickmap_page(); region.cow_map.set(page_index_in_region, false); remap_region_page(process.page_directory(), region, page_index_in_region, true); return true; } bool Region::page_in(PageDirectory& page_directory) { ASSERT(!vmo().is_anonymous()); ASSERT(vmo().vnode()); #ifdef MM_DEBUG dbgprintf("MM: page_in %u pages\n", page_count()); #endif for (size_t i = 0; i < page_count(); ++i) { auto& vmo_page = vmo().physical_pages()[first_page_index() + i]; if (vmo_page.is_null()) { bool success = MM.page_in_from_vnode(page_directory, *this, i); if (!success) return false; } MM.remap_region_page(page_directory, *this, i, true); } return true; } bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region) { auto& vmo = region.vmo(); ASSERT(!vmo.is_anonymous()); ASSERT(vmo.vnode()); auto& vnode = *vmo.vnode(); auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region]; ASSERT(vmo_page.is_null()); vmo_page = allocate_physical_page(); if (vmo_page.is_null()) { kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n"); return false; } remap_region_page(page_directory, region, page_index_in_region, true); byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr(); #ifdef MM_DEBUG dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr); #endif sti(); // Oh god here we go... ASSERT(vnode.core_inode()); auto nread = vnode.core_inode()->read_bytes(vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr); if (nread < 0) { kprintf("MM: page_in_from_vnode had error (%d) while reading!\n", nread); return false; } if (nread < PAGE_SIZE) { // If we read less than a page, zero out the rest to avoid leaking uninitialized data. memset(dest_ptr + nread, 0, PAGE_SIZE - nread); } cli(); return true; } PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault) { ASSERT_INTERRUPTS_DISABLED(); #ifdef PAGE_FAULT_DEBUG dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get()); #endif ASSERT(fault.laddr() != m_quickmap_addr); auto* region = region_from_laddr(*current, fault.laddr()); if (!region) { kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get()); return PageFaultResponse::ShouldCrash; } auto page_index_in_region = region->page_index_from_address(fault.laddr()); if (fault.is_not_present()) { if (region->vmo().vnode()) { dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region); page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region); return PageFaultResponse::Continue; } else { dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region); zero_page(*current->m_page_directory, *region, page_index_in_region); return PageFaultResponse::Continue; } } else if (fault.is_protection_violation()) { if (region->cow_map.get(page_index_in_region)) { dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region); bool success = copy_on_write(*current, *region, page_index_in_region); ASSERT(success); return PageFaultResponse::Continue; } kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region); } else { ASSERT_NOT_REACHED(); } return PageFaultResponse::ShouldCrash; } RetainPtr MemoryManager::allocate_physical_page() { InterruptDisabler disabler; if (1 > m_free_physical_pages.size()) return { }; #ifdef MM_DEBUG dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size()); #endif return m_free_physical_pages.takeLast(); } RetainPtr MemoryManager::allocate_supervisor_physical_page() { InterruptDisabler disabler; if (1 > m_free_supervisor_physical_pages.size()) return { }; #ifdef MM_DEBUG dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size()); #endif return m_free_supervisor_physical_pages.takeLast(); } void MemoryManager::enter_process_paging_scope(Process& process) { InterruptDisabler disabler; current->m_tss.cr3 = process.page_directory().cr3(); asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory"); } void MemoryManager::flush_entire_tlb() { asm volatile( "mov %cr3, %eax\n" "mov %eax, %cr3\n" ); } void MemoryManager::flush_tlb(LinearAddress laddr) { asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory"); } byte* MemoryManager::quickmap_page(PhysicalPage& physical_page) { ASSERT_INTERRUPTS_DISABLED(); auto page_laddr = m_quickmap_addr; auto pte = ensure_pte(current->page_directory(), page_laddr); pte.set_physical_page_base(physical_page.paddr().get()); pte.set_present(true); pte.set_writable(true); flush_tlb(page_laddr); ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get()); #ifdef MM_DEBUG dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr()); #endif return page_laddr.asPtr(); } void MemoryManager::unquickmap_page() { ASSERT_INTERRUPTS_DISABLED(); auto page_laddr = m_quickmap_addr; auto pte = ensure_pte(current->page_directory(), page_laddr); #ifdef MM_DEBUG auto old_physical_address = pte.physical_page_base(); #endif pte.set_physical_page_base(0); pte.set_present(false); pte.set_writable(false); flush_tlb(page_laddr); #ifdef MM_DEBUG dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address); #endif } void MemoryManager::remap_region_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region, bool user_allowed) { InterruptDisabler disabler; auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE); auto pte = ensure_pte(page_directory, page_laddr); auto& physical_page = region.vmo().physical_pages()[page_index_in_region]; ASSERT(physical_page); pte.set_physical_page_base(physical_page->paddr().get()); pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here? if (region.cow_map.get(page_index_in_region)) pte.set_writable(false); else pte.set_writable(region.is_writable); pte.set_user_allowed(user_allowed); page_directory.flush(page_laddr); #ifdef MM_DEBUG dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", &page_directory, pte.ptr(), region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr()); #endif } void MemoryManager::remap_region(Process& process, Region& region) { InterruptDisabler disabler; map_region_at_address(process.page_directory(), region, region.linearAddress, true); } void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed) { InterruptDisabler disabler; auto& vmo = region.vmo(); #ifdef MM_DEBUG dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count()); #endif for (size_t i = 0; i < region.page_count(); ++i) { auto page_laddr = laddr.offset(i * PAGE_SIZE); auto pte = ensure_pte(page_directory, page_laddr); auto& physical_page = vmo.physical_pages()[region.first_page_index() + i]; if (physical_page) { pte.set_physical_page_base(physical_page->paddr().get()); pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here? // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices. if (region.cow_map.get(region.first_page_index() + i)) pte.set_writable(false); else pte.set_writable(region.is_writable); } else { pte.set_physical_page_base(0); pte.set_present(false); pte.set_writable(region.is_writable); } pte.set_user_allowed(user_allowed); page_directory.flush(page_laddr); #ifdef MM_DEBUG dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr()); #endif } } void MemoryManager::unmap_range(PageDirectory& page_directory, LinearAddress laddr, size_t size) { ASSERT((size % PAGE_SIZE) == 0); InterruptDisabler disabler; size_t numPages = size / PAGE_SIZE; for (size_t i = 0; i < numPages; ++i) { auto page_laddr = laddr.offset(i * PAGE_SIZE); auto pte = ensure_pte(page_directory, page_laddr); pte.set_physical_page_base(0); pte.set_present(false); pte.set_writable(false); pte.set_user_allowed(false); page_directory.flush(page_laddr); #ifdef MM_DEBUG dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr); #endif } } bool MemoryManager::unmap_region(Process& process, Region& region) { InterruptDisabler disabler; for (size_t i = 0; i < region.page_count(); ++i) { auto laddr = region.linearAddress.offset(i * PAGE_SIZE); auto pte = ensure_pte(process.page_directory(), laddr); pte.set_physical_page_base(0); pte.set_present(false); pte.set_writable(false); pte.set_user_allowed(false); process.page_directory().flush(laddr); #ifdef MM_DEBUG auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i]; dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0); #endif } return true; } bool MemoryManager::map_region(Process& process, Region& region) { map_region_at_address(process.page_directory(), region, region.linearAddress, true); return true; } bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const { dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff; dword pageTableIndex = (laddr.get() >> 12) & 0x3ff; auto pde = PageDirectoryEntry(&const_cast(process).page_directory().entries()[pageDirectoryIndex]); if (!pde.is_present()) return false; auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]); if (!pte.is_present()) return false; if (!pte.is_user_allowed()) return false; return true; } bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const { dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff; dword pageTableIndex = (laddr.get() >> 12) & 0x3ff; auto pde = PageDirectoryEntry(&const_cast(process).page_directory().entries()[pageDirectoryIndex]); if (!pde.is_present()) return false; auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]); if (!pte.is_present()) return false; if (!pte.is_user_allowed()) return false; if (!pte.is_writable()) return false; return true; } RetainPtr Region::clone() { InterruptDisabler disabler; if (is_readable && !is_writable) { // Create a new region backed by the same VMObject. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable)); } // Set up a COW region. The parent (this) region becomes COW as well! for (size_t i = 0; i < page_count(); ++i) cow_map.set(i, true); MM.remap_region(*current, *this); return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true)); } Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow) : linearAddress(a) , size(s) , m_vmo(VMObject::create_anonymous(s)) , name(move(n)) , is_readable(r) , is_writable(w) , cow_map(Bitmap::create(m_vmo->page_count(), cow)) { m_vmo->set_name(name); MM.register_region(*this); } Region::Region(LinearAddress a, size_t s, RetainPtr&& vnode, String&& n, bool r, bool w) : linearAddress(a) , size(s) , m_vmo(VMObject::create_file_backed(move(vnode), s)) , name(move(n)) , is_readable(r) , is_writable(w) , cow_map(Bitmap::create(m_vmo->page_count())) { MM.register_region(*this); } Region::Region(LinearAddress a, size_t s, RetainPtr&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow) : linearAddress(a) , size(s) , m_offset_in_vmo(offset_in_vmo) , m_vmo(move(vmo)) , name(move(n)) , is_readable(r) , is_writable(w) , cow_map(Bitmap::create(m_vmo->page_count(), cow)) { MM.register_region(*this); } Region::~Region() { MM.unregister_region(*this); } PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor) : m_supervisor(supervisor) , m_paddr(paddr) { } void PhysicalPage::return_to_freelist() { ASSERT((paddr().get() & ~PAGE_MASK) == 0); InterruptDisabler disabler; m_retain_count = 1; if (m_supervisor) MM.m_free_supervisor_physical_pages.append(adopt(*this)); else MM.m_free_physical_pages.append(adopt(*this)); #ifdef MM_DEBUG dbgprintf("MM: P%x released to freelist\n", m_paddr.get()); #endif } RetainPtr VMObject::create_file_backed(RetainPtr&& vnode, size_t size) { InterruptDisabler disabler; if (vnode->vmo()) return static_cast(vnode->vmo()); size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE; auto vmo = adopt(*new VMObject(move(vnode), size)); vmo->vnode()->set_vmo(vmo.ptr()); return vmo; } RetainPtr VMObject::create_anonymous(size_t size) { size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE; return adopt(*new VMObject(size)); } RetainPtr VMObject::create_framebuffer_wrapper(PhysicalAddress paddr, size_t size) { size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE; return adopt(*new VMObject(paddr, size)); } RetainPtr VMObject::clone() { return adopt(*new VMObject(*this)); } VMObject::VMObject(VMObject& other) : m_name(other.m_name) , m_anonymous(other.m_anonymous) , m_vnode_offset(other.m_vnode_offset) , m_size(other.m_size) , m_vnode(other.m_vnode) , m_physical_pages(other.m_physical_pages) { MM.register_vmo(*this); } VMObject::VMObject(size_t size) : m_anonymous(true) , m_size(size) { MM.register_vmo(*this); m_physical_pages.resize(page_count()); } VMObject::VMObject(PhysicalAddress paddr, size_t size) : m_anonymous(true) , m_size(size) { MM.register_vmo(*this); for (size_t i = 0; i < size; i += PAGE_SIZE) { m_physical_pages.append(adopt(*new PhysicalPage(paddr.offset(i), false))); } ASSERT(m_physical_pages.size() == page_count()); } VMObject::VMObject(RetainPtr&& vnode, size_t size) : m_size(size) , m_vnode(move(vnode)) { m_physical_pages.resize(page_count()); MM.register_vmo(*this); } VMObject::~VMObject() { if (m_vnode) { ASSERT(m_vnode->vmo() == this); m_vnode->set_vmo(nullptr); } MM.unregister_vmo(*this); } int Region::commit(Process& process) { InterruptDisabler disabler; #ifdef MM_DEBUG dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), linearAddress.get()); #endif for (size_t i = first_page_index(); i <= last_page_index(); ++i) { if (!vmo().physical_pages()[i].is_null()) continue; auto physical_page = MM.allocate_physical_page(); if (!physical_page) { kprintf("MM: commit was unable to allocate a physical page\n"); return -ENOMEM; } vmo().physical_pages()[i] = move(physical_page); MM.remap_region_page(process.page_directory(), *this, i, true); } return 0; } void MemoryManager::register_vmo(VMObject& vmo) { InterruptDisabler disabler; m_vmos.set(&vmo); } void MemoryManager::unregister_vmo(VMObject& vmo) { InterruptDisabler disabler; m_vmos.remove(&vmo); } void MemoryManager::register_region(Region& region) { InterruptDisabler disabler; m_regions.set(®ion); } void MemoryManager::unregister_region(Region& region) { InterruptDisabler disabler; m_regions.remove(®ion); } size_t Region::committed() const { size_t bytes = 0; for (size_t i = 0; i < page_count(); ++i) { if (m_vmo->physical_pages()[first_page_index() + i]) bytes += PAGE_SIZE; } return bytes; } PageDirectory::~PageDirectory() { ASSERT_INTERRUPTS_DISABLED(); #ifdef MM_DEBUG dbgprintf("MM: ~PageDirectory K%x\n", this); #endif } void PageDirectory::flush(LinearAddress laddr) { if (¤t->page_directory() == this) MM.flush_tlb(laddr); }